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Abstract

We consider the problem of planar spanning tree trans-
formation in a two-dimensional plane. Given two pla-
nar trees T ′ and T ′′ drawn on a set S of n points in
general position in the plane, the problem is to trans-
form T ′ into T ′′ by a sequence of simple changes called
edge-flips or just flips. A flip is an operation by which
one edge e of a geometric object is removed and an edge
f (f 6= e) is inserted such that the resulting object be-
longs to the same class as the original object. Generally,
for geometric transformation, the usual technique is to
rely on some ‘canonical’ object which can be obtained by
making simple changes to the initial object and then do-
ing the reverse operations that transform the canonical
object to the desired object. In this paper, we present a
technique for such transformation that does not rely on
any canonical tree. It is shown that T ′ and T ′′ can be
transformed into each other by at most n − 1 + k flips
(k ≥ 0) when S is in convex position and we also show
results when S is in general position. We provide cases
where the approach performs an optimal number of flips.
A counterexample is given to show that if |T ′ \ T ′′| = k
then they cannot be transformed to one another by at
most k flips.

1 Introduction

The problem of transforming of a certain class of ge-
ometric objects consisting of straight line segments
and points in the plane, by applying small changes
called flips in the objects, has been studied extensively
[2, 5, 4, 6]. Given any two objects for a certain set of
points, the question is whether the two objects can be
transformed to each other by a sequence of flips and how
many such transformations are required. A flip can be
informally defined as the removal of an edge from, and
insertion of another edge to, the object given. Origi-
nally, triangulations were investigated with positive re-
sults by K. Wagner [8]. Since then the problem has been
studied for other classes of planar graphs such as tetra-
hedrons, linked-edge lists, pseudo-triangulations, planar
spanning trees, crossing-free Hamiltonian paths and so
on. Algorithms for such transformation as well as lower
and upper bounds for achieving transformation results
can be found in [1, 2, 4, 6].

One of the best-known results in the case of pla-
nar tree transformation is by Avis and Fukuda [2] who
showed that for n points in general position every pla-
nar tree T ′ can be transformed into another planar tree
T ′′ by means of at most 2n − 4 flips. Later, the bound
was slightly improved to 2n−m− s− 2 in [7] (which is
better if m + s > 2 otherwise it is at least as good as
that in [2]). Here m is the maximum degree of any ver-
tex v of T ′, where v is a point on the convex hull of the
point set representing the vertex set and s is the degree
of v in T ′′. Both of these approaches rely on the use of
some ‘canonical’ tree. Informally, a canonical tree is a
planar tree that has some particular characteristics such
as, for example, all the vertices are directly connected
to some vertex called the root. Surprisingly, most re-
sults related to transformations of different classes of
graphs are based on the notion of some ‘canonical’ form
of these graphs, as mentioned in [3]. The main idea of
these techniques can be stated as follows: Given two
objects A and B of a certain class of graph, the tech-
nique is to transform A into some canonical object C
of that class by a sequence of transformations. Later,
the sequence of transformations that transform B to C
is reversed to obtain the desired transformation from A
to B. This is an indirect approach. The main prob-
lem with this approach is that it takes a long sequence
of additional flips to obtain the canonical graph even if
the two objects are quite similar or they differ only in
few edges.

Here we study the transformation of planar spanning
trees using flips for a set S of n points in general po-
sition in the plane, avoiding the use of canonical trees.
We provide results when the points are in convex po-
sition. With this approach, trees could be transformed
in a more direct manner. We determine bounds on the
number of transformations needed and show that an
upper bound on the number of flips using this transfor-
mation is n − 1 + k, (k is the number of edges of one
planar tree crossed by edges of the other planar tree
drawn on S). We provide a counterexample where this
direct approach cannot apply when S is in general po-
sition. Our algorithm obtains an optimal bound on the
number of flips when there are no crossings.

The organization of the paper is as follows. In Section
2, we provide the definitions and terminologies that will
be used throughout the paper. The technique of our al-
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gorithm for transformation and the results of the paper
are presented in Section 3 and we conclude in Section
4.

2 Preliminaries

A graph G = (V, E) consists of a set of vertices V ,
and an edge set E = {(vi, vj)|vi, vj ∈ V }. A graph
G is called planar if it can be drawn in the plane so
that no two edges cross, except at their common ver-
tex. If (vi, vj) ∈ E, then vi and vj are adjacent. Let
S = {v0, v1, v2, · · · , vn−1} be a set of n points in gen-
eral position (no three points are collinear) in the two-
dimensional Euclidean plane. Trees are drawn in the
plane where the vertices (V ) and edges (E) of a tree are
represented by points of S and straight line-segments.
Two vertices vi and vj , vi 6= vj in an embedding of G
are visible to each other if the straight line segment
(vi, vj) ∈ E between them does not cross any of the
edges in G. A flip in tree T ′ is the operation of re-
moval of an edge e and addition of an edge f such that
T ′′ = T ′\{e} ∪ {f} is a tree.

Let T (S) denote the set of all trees of S and the geo-
metric tree graph TG(S) denote the graph having T (S)
as vertex set. Two trees T ′, T ′′ ∈ T (S) are adjacent if
T ′′ = T ′\{e} ∪ {f} for some edges e and f . In the rest
of the paper, it is assumed that a tree is planar unless
otherwise mentioned.

3 Tree Transformation

Let T ′ = (V, E′) and T ′′ = (V, E′′) be any two trees
belonging to T (S). It is required to construct T ′′ by
applying a sequence of flips one by one to T ′. In general,
we say that T ′′ can be transformed from T ′ by p flips if
there is a set of trees T0, T1, · · · , Tp where T ′ = T0 and
T ′′ = Tp such that Ti+1 can be obtained from Ti by a
single flip. This implies that for any i, Ti and Ti+1 are
adjacent in TG(S) and it is known that the diameter of
TG(S) is linear. Consider Fig. 1 where the tree T ′′ is
obtained from T ′ by a sequence of flips.

T ′′

T ′

Figure 1: Transformations (shown with thick edges) ap-
plied on T ′ to construct T ′′.

In the following, we outline the main idea of our al-
gorithm which does not rely on any form of canonical
tree but obtains the desired transformation.

We draw two trees T ′ and T ′′ on S in the plane and
obtain the graph G = (V, E ′ ∪ E′′) where E′ and E′′

denote the edge-sets of T ′ and T ′′, respectively. Let
G0 = G = (V, E0 ∪E′′) (where E0 = E′). If there are p
flips that transform T ′ into T ′′, our idea is to apply the
sequence of flips on the edges of E ′ on G such that the
resulting graphs are represented by G1 = (V, E1 ∪ E′′),
G2 = (V, E2 ∪ E′′), G3 = (V, E3 ∪ E′′), · · · , Gp = T ′′ =
(V, E′′) where Gi+1 is obtained from Gi by a single flip.
In Gi = (V, Ei ∪E′′), Ei represents the edge set of Ti =
(V, Ei) being transformed into T ′′. Note that after the
pth flip, the graph Gp turns into tree T ′′, since we expect
that as flips are applied on the edges of T ′, gradually T ′

is turned into T ′′ and each instance of the intermediate
trees Ti = (V, Ei) along with T ′′ = (V, E′′) is reflected
in Gp. In other words, we remember the order and the
set of flips carried on Gi to produce Gp, then we apply
these sequence of flips on T ′ in order to obtain T ′′.

To distinguish the edges of Ei from the edges of E′′ in
Gi, we color them with different colors. Edges (u, v) ∈
Ei\E

′′ are colored in red, edges (u′, v′) ∈ E′′\Ei in blue,
and edges (u′′, v′′) ∈ Ei∩E′′ in purple. Observe that, in
graph Gi, only red edges can cross blue edges and there
will be no crossings between red and purple or blue and
purple edges since T ′ and T ′′ are planar. If a red edge
is crossed by one or more blue edges, then we call it a
crossed red edge. We count the total number of such
crossed red edges after forming G0 = G = (V, E′ ∪ E′′)
at the beginning of our algorithm and denote it by k.

Lemma 1 Suppose Gi = (V, Ei ∪ E′′) is not planar.
The removal of a crossed red edge, e ∈ Ei\E′′ from Gi

splits Ei into two edge sets E ′

i (and vertex set V ′

i ) and
E′′

i (and vertex set V ′′

i ). Assume CH(V ) ∩ V ′

i 6= ∅ and
CH(V ) ∩ V ′′

i 6= ∅ where CH(V ) is the convex hull of
V . There exists an edge f ∈ V × V such that Gi+1 =
(V, Ei\{e}∪E′′∪{f}) where f is an edge on the convex
hull of V connecting a vertex of V ′ to a vertex of V.

Proof. Begin by removing a crossed red edge e =
(vk, v`) from Gi = (V, Ei ∪ E′′) and obtain two edge
sets E′

i and E′′

i . Let V ′

i ⊂ V and V ′′

i ⊂ V denote the
incident vertices of E ′

i and E′′

i respectively. The aim is
to connect vi ∈ V ′

i and vj ∈ V ′′

i ((vi, vj) = f) so that
the edge f does not cross any edges in Gi+1.

Color the vertices of V ′

i and V ′′

i black and white, re-
spectively. It suffices now to connect a black vertex
to a white one without yielding any crossing. Select
any of the black vertices vi, vi ∈ V ′

i , on the convex
hull of CH(V ) and start walking along the boundary of
CH(V ) in some order. Once a walk is complete (that
is, we reach the same vertex from which we started), we
get a sequence of white and black vertices. We can in-
sert an edge f by connecting any two consecutive white
and black vertices in the sequence that does not gener-
ate any crossing in Gi+1 since the edge is drawn on the
boundary of CH(V ).
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(a)

e

(b) G1 = (V, E1 ∪ E ′′)G0 = (V, E ′ ∪ E ′′)

Figure 2: (a) Graph G0 = (V, E′ ∪ E′′) is drawn with
trees T ′ = (V, E′) and T ′′ = (V, E′′) where thin edges
represent red edges, thick edges denote blue edges and
dashed edges denote purple edges. (b) Edge e is re-
moved and edge f is inserted without making any cross-
ing in the graph. Black vertices belong to V1 while the
rest belong to V2.

�

An illustration of the above lemma is shown in Fig.2.
We identify a case where we can obtain an optimal

number of flips for the desired transformation: this is
given in the following lemma.

Lemma 2 Any tree T ′ = (V, E′) can be transformed
into another tree T ′′ = (V, E′′) with at most n − 1 flips
when the number of crossed red edges is zero.

Proof. Obtain the graph G0 = (V, E0 ∪ E′′), where
E0 = E′. Since there are no crossed red edges, G0

is planar. Begin in the following way. At each step,
remove an arbitrary red edge (u, v) ∈ Ei\E′′ from Gi

and colour the vertices black and white as in the proof
of Lemma 1. Insert a purple edge between a black and a
white vertex, otherwise the purple edge will make a cycle
if the two incident vertices are of the same color. Since
at every step a flip is carried out, we get a new graph
Gi+1 = (V, Ei+1∪E′′), where |Ei+1∩E′′| = |Ei∩E′′|+1
(0 ≤ i < p). The procedure stops when |Ep ∩ E′′| =
n − 1, meaning that T ′ has been transformed into T ′′

and Gp becomes Gp = (V, E′′). Since there can be zero
purple edge in G0 = (V, E0 ∪E′′), the number of flips is
at most n − 1. �

The above two lemmas allow us to formulate the fol-
lowing theorem.

Theorem 3 Any tree T ′ = (V, E′) can be transformed
into another tree T ′′ = (V, E′′) with at most n − 1 + k
flips where k is the number of crossed red edges, provided
that for any flip 1 ≤ i ≤ k, CH(V ) ∩ V ′

i 6= ∅ and
CH(V ) ∩ V ′′

i 6= ∅.

Proof. Consider the graph G0 = (V, E0 ∪ E′′), where
E0 = E′. The graph can be made planar by removing all
the crossings between red and blue edges, as previously

shown. Thus we need at most k flips to make the graph
planar provided for any flip 1 ≤ i ≤ k CH(V ) ∩ V ′

i 6= ∅
and CH(V )∩V ′′

i 6= ∅. As the graph is made planar, we
can now follow Lemma 2 to obtain T ′′. It takes at most
n − 1 + k flips to transform T ′ into T ′′. �

If the set of points are in convex position, then each
flip must reduce the number of crossings between red
and blue edges by at least one, since there will always
be two consecutive black and white points available to
make the flip successful. Now we have the following
corollary:

Corollary 4 When the set of points is in convex posi-
tion we need at most n− 1 + k flips for the above trans-
formation since for any flip 1 ≤ i ≤ k, CH(V )∩V ′

i 6= ∅
and CH(V ) ∩ V ′′

i 6= ∅.

3.1 Counterexample

In this section, we show that there exist two trees de-
fined on the same point set such that there does not
exist any flip in one of the two trees that reduces the
total number of crossings by at least 1 in Gi. Such an
example is shown in Fig. 3 where the tree, T ′ in Fig.
3(a) has three edges different from the tree, T ′′ in Fig.
3(b), that is, |T ′ \ T ′′| = 3. However, there is no way
(as evident from Fig. 3(c)) that any of the trees can be
transformed to the other by three flips. This means that
the direct transformation would fail after looking for all
possible removal of edge crossings and this exhaustive
searching would take time proportional to the number
of crossings. However, once this fails we can then re-
sort to the technique of using a canonical tree [1] which
guarantees to take at most 2n−m− s− 2 flips for such
transformation. The way the algorithm in [1] works is
as follows: Let T ′ be the tree to be transformed into
another tree T ′′. Let m be the maximum degree of any
vertex v of T ′, where v is a point on the convex hull of
the point set representing the vertex set. Similarly s is
the degree of v in T ′′. We can first make T ′ into some
canonical tree Tc where the degree of vertex v is n − 1
by a sequence of n − 1 − m flips and then perform the
flips that transform T ′′ into Tc by having n− 1− s flips
in reverse order. Thus we incur 2n−m− s− 2 flips for
such transformation.

3.2 Remarks

The technique we present in this paper has the obvi-
ous advantage that in some cases it leads to the op-
timal number of flips to complete the transformation.
It is well known that an approach for transforming a
given tree (in general, it is true for other planar graphs
of some class, e.g., planar paths, pseudotriangulations,
etc.) into another via a flip operation which depends
on a canonical tree never leads to the computation of
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(c)

(a) (b)

Figure 3: A counterexample with two trees defined on
the same point where there does not exist any flip in one
of the two trees such that the total number of crossings
is reduced by at least one in Gi.

the optimal number of flips. This is because the two
objects may differ only in a very small number of edges,
whereas to transform them into a canonical form may
take a large number of flips. As can be seen from Fig.
4, transforming any of the trees into the other takes 5
flips via a canonical tree based approach whereas only
one flip suffices.

(a) (b)

Figure 4: Transforming one tree into another takes only
one flip optimally, but 5 flips through a canonical tree.

Finally, we provide a simple average case analysis of
the number of flips of our algorithm. First, we deter-
mine the average number of crossed red edges. The
number of crossed red edges varies from 0 to n−3. Thus,
the total number of crossed red edges is

∑n−3

k=0
k yielding

the average number of crossed red edges,
∑n−3

k=0
k/(n −

2) = 1

n−2
(1+2+3+ · · ·+n−3) = (n−3)/2, where k is

assumed to be uniformly distributed in [0, n− 3]. Then
the average number of flips required by our algorithm
is (n − 1) + (n − 3)/2 = 1.5n− 2.5. The above analysis
is based on the fact that for any flip and for 1 ≤ i ≤ k,

CH(V ) ∩ V ′

i 6= ∅ and CH(V ) ∩ V ′′

i 6= ∅. However,
the average-case analysis is based on the simplifying
assumption that the number of crossings is uniformly
distributed over a given interval. It is an interesting
open problem to derive a more sophisticated value for
the average number of flips required by our algorithm.

4 Conclusion

In this paper, we present a technique for tree trans-
formation through flips when the points are in general
position and also investigate the results when the points
are in convex position. In this approach, we avoid the
use canonical tree and directly transform one tree into
another and show it takes at most n−1+k flips (k ≥ 0)
for such transformation when the points are in convex
position. We also show results when the points are in
general position and provide an upper bound on the
number of flips. If there are no crossings in the union
of edges of the given trees, it is shown that this tech-
nique performs an optimal number of flips. Finally, a
counterexample is given to show that if two planar trees
on the same point set differ by k edges, they cannot be
transformed to one another by at most k flips.
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