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The Embroidery Problem
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Abstract

We consider the problem of embroidering a design pat-
tern, given by a graph G, using a single minimum length
thread. We give an exact polynomial-time algorithm for
the case that G is connected. If G has multiple con-
nected components, then we show that the problem is
NP-hard and give a polynomial-time 2-approximation
algorithm. We also present results for special cases of
the problem with various objective functions.

1 Introduction

Figure 1: Embroidery
of a girl with basket.

An embroidery is a deco-
rative design sewn onto a
fabric using one or more
threads. The artist guides
the thread with a needle
as it alternates between the
top and the bottom of the
fabric. The exposed thread
on the top of the fabric
is the desired design; the
thread on the bottom of the
design is needed only to in-
terconnect the needle holes
as the design is sewn. We
study the single-thread embroidery problem in which
the goal is to minimize the total length of thread.

Model. We require that the complete embroidery must
be done with a single continuous piece of thread and
that the thread must form a cycle, returning to the start-
ing point (where a knot will be tied). The embroidery
problem is graph traversal optimization problem, as we
now formally state.

Problem Statement. Given a graph G(V,E), with ver-
tices V and edges E embedded in the Euclidean plane,
find a minimum-length closed tour T with alternating
edge types (front and back), such that front edges ex-
actly cover E (without repetition) and back edges form
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an arbitrary subset of the edges of the complete graph
on V , with possible repetitions. We assume that V is
a finite set of n points in the plane and that E is a set
of m straight line segments joining pairs of points in V .
The length of an edge is its Euclidean length; the total
length of a tour or a set, X, of edges is denoted |X|.

Figure 2: An embroidery graph, with red (solid) edges
representing the front edges, E, of the embroidery de-
sign and blue (dashed) edges representing the back
edges.

We refer to a tour T satisfying the above constraints
as an embroidery tour for G. The front edges of T are
denoted F , the back edges are denoted B. A single
continuous piece of thread following T gives exactly the
desired embroidery design E = F (without repeating
any edge) on the front of the cloth, and the back edges
B of T represent “wasted” thread length. Since the
edges F exactly cover E, the length of any feasible em-
broidery tour is simply |T | = |E| + |B|, so, for given E,
exactly minimizing |T | is equivalent to minimizing |B|.
However, in terms of approximation ratio, the problem,
OPTT , of minimizing |T | is different from the problem,
OPTB , of minimizing |B|.

We also consider the Steiner version of the embroi-
dery problem in which we allow the set V to be aug-
mented by a set of Steiner points that lie along edges
E of the design; i.e., in the Steiner embroidery problem
the set F of front edges must form an exact cover of the
edges E, but each edge e ∈ E may be (exactly) covered
by a set of segments in F , with endpoints that may lie
interior to e.

Related Work. The rural postman is most closely re-
lated to our problem: Given an undirected graph G =
(V,E) with edge weights, and a subset E′ ⊆ E, find
a closed walk of minimum weight traversing all edges
of E′ at least once. The stacker-crane problem is also
similar, but the required edges to be traversed are di-
rected. The main distinction between the embroidery
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Graph G OPTT OPTB

Connected poly-time poly-time
Section 2.1 Section 2.1

Arbitrary NP-hard, 2-apx NP-hard, 3-apx
Section 2.2 Section 2.2

Indep Segments NP-hard, 1.5-apx, NP-hard, 2-apx
Section 2.3 Section 2.3

Table 1: Summary of results: No Steiner points allowed.

Graph G OPTT OPTB

Connected poly-time poly-time
Section 3.1 Section 3.1

Arbitrary NP-hard, 2-apx, PTAS NP-hard, 3-apx
Section 3.2 Section 3.2

Table 2: Summary of results with Steiner points.

problem and these related problems is that in the em-
broidery problem the tour is not allowed to traverse two
of the required edges in a row; it must alternate between
the front (specified) and back edges. The rural post-
man has a (Christofides-like) 3/2-approximation [3] and
the stacker-crane has a 9/5-approximation [4]. Biedl [2]
studies the special case of the embroidery problem in
which only “cross-stitches” are used.

Summary of Results. Table 1 summarizes our results
on the OPTT and OPTB problems for different types of
input embroidery graphs G: (i) connected, (ii) arbitrary,
with possibly many connected components, and (iii) an
independent set of edges – no two edges of E share an
endpoint (however, the line segments that embed E may
cross arbitrarily). Table 2 lists our results for the Steiner
embroidery problem.

2 Embroidery Without Steiner Points

An embroidery tour T alternates between front edges
and back edges. Hence ∀v ∈ V the number of back
edges incident to v must be exactly equal to the number
of front edges incident to v. See Theorem 1.

Theorem 1 T is an embroidery tour for G(V,E) if and
only if G(V, T ) is connected and ∀v ∈ V : dF (v) = dB(v),
where dF (v) is the degree of vertex v in G(V, F ).

Proof. If: Since T is an embroidery tour (using sin-
gle continuous thread) G(V, T ) must be connected. If
there exists a vertex v such that dB(v) < dF (v), by the
pigeon-hole-principle on entry and exit type of edges on
v, T must have two consecutive front edges ei, ej ∈ F

sharing v, hence contradicting that T is embroiderable.
A similar contradiction holds if dB(v) > dF (v).

Only If: Since G(V, T ) is connected and dT (v) is even
there exists an Euler tour in G(V, T ). We show how to

construct an Euler tour that alternates edges from F

and B. First, we show that G(V, T ) must contain an
edge-alternating circuit. Start an edge-alternating walk
W = {a, . . . , v, x . . . , y, v} from an arbitrary vertex, un-
til a vertex v repeats. This defines an edge-alternating
circuit, unless edges (v, x) and (y, v) belong to the same
side. But if so, W can be continued, as there remains at
least one unused alternate side edge incident on v. Thus,
we can decompose G(V, T ) into a set of edge-disjoint, al-
ternating circuits. Any two such circuits (say c1 and c2)
incident on a common vertex v′ can be merged to form
a larger alternating circuit, since both c1 and c2 contain
front and back edges at v′. Repeated merging opera-
tions reduce the set of alternating circuits to a single
alternating tour. �

2.1 One Connected Component

If G is connected, then the embroidery problem can be
solved as follows: Find a minimum-length set of back
edges B such that the degree requirement ∀v ∈ V :
dB(v) = dE(v) is satisfied. By Theorem 1 E ∪ B

is an embroidery tour for G. Since B is minimum-
length, the resulting tour is optimal. Thus, the selec-
tion of an optimal B is exactly the minimum-weight b-
matching problem on V , with vertex weights (degrees)
b(v) = dE(v), ∀v ∈ V , which is solvable in polynomial
time [1].

2.2 Multiple Connected Components

Consider now an arbitrary design G, with possibly many
connected components. As before, we can compute
a minimum-weight b-matching, with vertices weighted
by the degrees, dE(v); however, an optimal b-matching
does not result in a set B of back edges that yields a
complete solution, since the graph G(V,E ∪B) may be
disconnected.

In fact, we show that it is NP-hard to solve OPTT or
OPTB exactly, using a simple reduction from Euclidean
TSP ( [6]):

Theorem 2 The embroidery problem (either OPTT or
OPTB) is NP-hard for arbitrary graphs G, with many
connected components.

Approximating OPTT . We turn now to approximat-
ing OPTT . We define a new graph G′(V ′, E′), where
V ′ is the set of connected components in G(V,E), and
E′ is the set of edges in the complete graph on V ′.
For each edge e(i, j) ∈ E′ , the weight of the edge
w(i, j) = minu∈ Vi,w∈ Vj

dist(u,w). Let MST be a min-
imum spanning tree of G′.

Now initialize B to contain a copy of front edges E

and two copies of each MST edge. Note that each MST
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edge is a minimum-weight edge connecting the appro-
priate vertices in the two different components. Let
Tapx = E ∪ B. Hence, ∀v ∈ V, dTapx

(v) ≥ 2 · dE(v),
implying

|Tapx| = 2 · |E| + 2 · |MST |.

Theorem 3 Tapx can be converted to an embroidery
tour for G(V,E) with length ≤ 2 · OPTT .

Proof. By the definition of Tapx, G(V, Tapx) is con-
nected (since it uses the MST edges to connect between
different connected components) and dTapx

(v) is even.
Also since ∀v ∈ V , dTapx

(v) ≥ 2 · dE(v), we can find an
Euler tour in G(V, Tapx), such that there are no consecu-
tive front edges. We also try to “avoid” consecutive back
edges, by choosing to leave a node on a front edge, if it
was entered on a back edge, if possible. Note that Tapx

may have consecutive back edges ei(vi, v), ej(v, vj) ∈ B

at a vertex v, in which case we can shortcut using
e′(vi, vj) and update Tapx := Tapx ∪ {e′} \ {ei, ej} with-
out increasing |Tapx| (by triangle inequality). Since all
front edges touching v had already been used, we know
that this shortcut does not disconnect v from the tour.
Thus we can convert Tapx to a tour containing alternate
front and back edges to make it an embroidery tour
without increasing its cost.

Also, OPTT = |Topt| ≥ |E| + |MST |, since Topt must
cover all the edges in E and must also span all the con-
nected components and by definition of MST , it is the
cheapest way to connect the disconnected components.
Thus, 2 · OPTT ≥ 2 · (|E| + |MST |) ≥ |Tapx|. �

Approximating OPTB. We start by finding a
minimum-weight b-matching Mb of V with weight
b(v) = dE(v),∀v ∈ V . Then for all connected com-
ponents V1, V2, . . . , Vk in graph G(V,E ∪ Mb), we find
the MST on graph G′(V ′, E′), as we did in Section 2.2.
Now add a copy of each Mb edge and two copies of
each MST edge to B. Let Tapx = E ∪ B. Again,
∀v ∈ V, dTapx

(v) ≥ 2 · dE(v). Thus,

|B| = |Mb| + 2 · |MST |.

Theorem 4 Tapx can be converted to an embroidery
tour for G(V,E) with back edges of length ≤ 3 · OPTB.

Proof. By similar arguments as in the proof of Theo-
rem 3, we can convert Tapx to an embroidery tour with
|B| ≤ |Mb| + 2 · |MST |. Now, OPTB = |Bopt| ≥ |Mb|,
since in Topt, Bopt is one b-matching satisfying b(v) =
dE(v) and Mb is a minimum-weight b-matching. Also
OPTB ≥ |MST |, since Topt must span all of the con-
nected components of G(V,E). Note that MST here is
a minimum spanning tree on the connected components
of G(V,E ∪Mb), which has smaller cost as compared to
the minimum spanning tree on connected components of
G(V,E). Thus, 3 ·OPTB ≥ |Mb|+2 · |MST | ≥ |B|. �

2.3 Independent Segments

In the case that the edges E do not share endpoints
(i.e., they form a set of possibly intersecting line seg-
ments), OPTT can be approximated using the 3/2-
approximation algorithm for the rural postman: If the
approximating tour uses two consecutive back edges,
then we simply shortcut, replacing the two edges
with one shorter back edge. This results in a 3/2-
approximation for OPTT .

3 Embroidery with Steiner Points

It may be possible to use a shorter thread if we allow a
front edge to be split into two or more subsegments by
placing Steiner points judiciously along it. In fact, by
placing a Steiner point arbitrarily close to an endpoint
(vertex) of a front edge, we can make the length of back
edges arbitrarily close to zero; see Figure 3. We say
that such a Steiner point doubles the vertex where it is
placed.

Figure 3: Placing a Steiner point near a vertex.

3.1 One Connected Component

Lemma 5 There exists an optimal embroidery tour
Topt (allowing Steiner points) for a connected G(V,E)
that does not have Steiner points on edges other than
those near endpoints that double vertices.

Proof. If s is a Steiner point interior to an edge e ∈
E, with back edges e(a, s), e(s, b) ∈ B incident to s,
then we can simply replace these two edges with a single
(back) edge e(a, b) (and remove Steiner point s) without
increasing the cost of tour |Topt|. See Figure 4. �

Figure 4: An optimal tour T exists without having a
Steiner point s interior to an edge.

Lemma 6 There exists an optimal tour Topt (allowing
Steiner points) for a connected G(V,E) that does not
have two back edges ei, ej ∈ B incident to a common
vertex v ∈ V .

Proof. Similar to the proof of Lemma 5. �
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Since an optimal embroidery tour Topt is an Euler cy-
cle (by definition of T ), the sum of front and back edge
degrees for each vertex is even. Thus, all odd-degree
vertices v ∈ V (if any present) have one back outgoing
edge, and even-degree vertices do not have any outgoing
back edges (using Lemma 5, 6). Therefore, an optimal
solution is a union of front edges and back edges con-
stituting minimum-weight perfect matching edges built
on odd-degree vertices. The problem hence reduces to
finding a minimum-weight perfect matching in a com-
plete graph (of odd-degree vertices in this case), which
can be solved in time O(n3).

3.2 Multiple Connected Components

Clearly, the same NP-hardness reduction for the non-
Steiner version applies also if we allow Steiner points.

Approximating OPTT . The idea is very similar to
Section 2.2, except that the graph G′(V ′, E′) (defined
over different components) has edge weights w(i, j) =
minu∈ G(Vi,E),w∈ G(Vj ,E) dist(u,w),∀e(i, j) ∈ E′ (where
u,w are edges). We refer to this minimum spanning tree
on this new graph G′(V ′, E′) as MSTSt. As before, we
add a copy of front edges, F in this case (since each edge
e from E that contains one or more Steiner points, gets
split and is put as two ore more segments in F ) and two
copies of each MSTSt edge to B. Note that |F | = |E|,
as F exactly covers E. Let Tapx = F ∪ B. Thus,

|Tapx| = 2 · |E| + 2 · |MSTSt|

Theorem 7 Tapx can be converted to an embroidery
tour (allowing Steiner points) for G(V,E) with length
≤ 2 · OPTT .

Proof. We note that every time we introduce a Steiner
point, we create a new vertex v′ with dF (v′) = 2. Since
the introduction of a Steiner point is only because of
some MSTSt edge and because we double the MSTSt

edge, dTapx
(v′) ≥ 2 · dE(v′) for all new Steiner points

v′. Excluding other details (which are similar to those
in Theorem 3), Tapx can be converted to an embroidery
tour without increasing its cost.

Also, as before, OPTT = |Topt| ≥ |E| + |MSTSt|.
Thus, 2 · OPTT ≥ 2 · (|E| + |MSTSt|) ≥ |Tapx|. �

Approximating OPTB. This idea is also very similar
to Section 2.2, except that, instead of Mb, it uses a
perfect matching M on odd-degree vertices in G(V,E).
It also uses MSTSt defined in Section 3.2. We add a
copy of each edge of M and two copies of each MSTSt

edge to B. Let Tapx = F ∪B, where F is the front edge
cover of Steiner point split edges in E. Then,

|B| = |M | + 2 · |MSTSt|.

Theorem 8 Tapx can be converted to an embroidery
tour (allowing Steiner points) for G(V,E) with back
edges of length ≤ 3 · OPTB.

Proof. We apply shortenings to B as in Lemmas 5, 6.
The result is a perfect matching of odd-degree vertices of
G(V,E). Thus, OPTB ≥ |M |, since the cost of any per-
fect matching is at least as much as the cost of the mini-
mum weight perfect matching. Also OPTB ≥ |MSTSt|,
since Topt must span all of the connected components of
G(V,E). Thus, 3 ·OPTB ≥ |M |+2 · |MSTSt| ≥ |B|. �

3.3 A PTAS

By using the m-guillotine method for geometric network
approximation [5], we obtain a PTAS for the problem:

Theorem 9 The embroidery problem with Steiner
points and an arbitrary input graph G has a PTAS for
OPTT .

3.4 OPTSt vs OPTNSt

We analyze how much one actually gains by allowing
Steiner points to be inserted on front edges:

Theorem 10 OPTSt ≥
1
2OPTNSt.
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