
CCCG 2008, Montréal, Québec, August 13–15, 2008

Linear-Size Meshes∗

Gary L. Miller† Todd Phillips‡ Donald Sheehy§

Abstract

Most modern meshing algorithms produce asymptoti-
cally optimal size output. However, the size of the opti-
mal mesh may not be bounded by any function of n. In
this paper, we introduce well-paced point sets and prove
that these will produce linear size outputs when meshed
with any “size-optimal” meshing algorithm. This work
generalizes all previous work on the linear cost of bal-
ancing quadtrees. We also present an algorithm that
uses well-paced points to produce a linear size Delau-
nay mesh of a point set in Rd.

1 Introduction

The goal of meshing is to discretize a geometric domain.
Such discretizations are necessary for a variety of appli-
cations, notably including the finite element method.

We consider the case of meshing a point set P ⊂ Rd of
size n to produce a “quality” simplicial complex, where
quality is a technical condition we describe in Section 3.
The vertices of the output include the input set P and
some number of Steiner points added to achieve quality.

The most powerful theoretical tool for analyzing
meshing algorithms comes from Ruppert[9] in his work
on Delaunay refinement meshing in R2. Define lfsP (x),
the local feature size at a point x in the domain, to
be the distance to the second nearest point in P . The
following theorem is the standard generalization of Rup-
pert’s results to d-dimensions.

Theorem 1 The number of number of vertices in any
optimal-size quality mesh of a domain Ω ⊆ Rd is
Θ(
∫

x∈Ω
1

lfs(x)d dx).

Several known meshing algorithms ([9, 2, 10, 3]
to mention a few) witness to the upper bound in
Theorem 1, terminating with meshes that are O(1)-
competitive.

There is a marked absence of n in Theorem 1. In
fact, the size of the optimal mesh may not be bounded

∗This work was partially supported by the National Science
Foundation under grant number CCF-0635257.

†Department of Computer Science, Carnegie Mellon Univer-
sity, glmiller@cs.cmu.edu

‡Department of Computer Science, Carnegie Mellon Univer-
sity, tp517@cs.cmu.edu

§Department of Computer Science, Carnegie Mellon Univer-
sity, dsheehy@cs.cmu.edu

by any function of n. A guarantee of optimal size output
is not a guarantee that output will even be polynomial
size. This leads one to believe that perhaps optimality
should not be the last word in mesh size analysis.

In this paper, we attack this problem from two direc-
tions. First, we show a general condition on point sets
for which it is possible to show that the optimal mesh
will have linear size. Second, we present an algorithm
called LinearMesh, that produces a linear size mesh
of any point set by weakening the quality guarantees
in regions where the Ruppert lower bound requires a
superlinear number of Steiner points.

2 Previous Work

Previous work in simplicial meshing can be roughly di-
vided into two categories, structured and unstructured
as typified by quadtree methods and Delaunay refine-
ment respectively. Structured meshing algorithms are
characterized by three main properties: a fixed coordi-
nate system, strict control over where Steiner points are
added, and predefined mesh templates for filling boxes
or other common shapes. These three properties sim-
plify the implementation and analysis of the algorithms,
but at a cost. Unstructured meshing algorithms pro-
duce meshes that are independent of the coordinate sys-
tem, allow complete freedom for Steiner point insertion,
and have well-defined topology without predefined tem-
plates.

Much recent work has sought to bridge the gap be-
tween these two paradigms[4, 3, 5].

In this paper, we present two unstructured general-
izations of previous results from quadtree meshing. The
cost of balancing a quadtree with n boxes is O(n)[8]. We
present a general class of point sets, of which quadtree
vertices are a special case, and for which any qual-
ity meshing algorithm will only use a linear number of
Steiner points. The algorithm we present in this paper is
an unstructured generalization of a quadtree algorithm
of Bern et al [2]. The key to both results is a powerful
new analytic technique that allows us to analyze opti-
mal mesh size in terms of n without relying on the fixed
structure of the quadtree.

3 Well-paced and well-spaced points

We present some standard definitions and introduce two
new ones, namely θ-medial points and θ-well-paced ex-

20th Canadian Conference on Computational Geometry, 2008

tensions of point sets.
Let Ω ⊆ Rd be some compact, convex set representing

the domain to be meshed. For a point p, denote the
distance of p to its nearest neighbor by rp. The gap ball
of a point p is the largest empty ball with center in Ω
and p on its surface. Let Rp denote the radius of the
gap ball of p. A point set P is ρ-well-spaced if for every
point p ∈ P , Rp

rp
≤ ρ.

Say that a point x is θ-medial with respect to a point
set P if NNP (x) ≥ θ lfsP (x) where NNP (x) denotes
the nearest neighbor of x in P . A 1-medial point is
equidistant from both nearest neighbors and is thus on
the medial axis of P . In general, medial points are near
the medial axis where near is defined in terms of θ.

An ordered point set p1, . . . , pn ⊂ Ω is a θ-well-paced
extension of a set Q if each pi is θ-medial with respect to
{p1 . . . , pi−1}∪Q. We call the ordered points pi θ-well-
paced. The term “well-paced” is motivated by the way
large changes in the local feature are paced out over the
sequence of insertions, because any one insertion can
only change lfs by a constant factor depending on θ.

In unstructured Delaunay meshing, the topology of
the mesh is determined by the location of the points so
it is customary to speak of a mesh and a set of points
interchangeably. Moreover, properties of point sets have
a natural correlation with properties of meshes. For this
paper, we will say that a quality mesh is simply the
triangulation of a well-spaced point set. Usually, mesh
quality is defined in terms of some properties of the
mesh triangles, but for all of the meshing algorithms we
are considering, quality and well-spaced are equivalent
notions.

4 Two examples of well-paced point set extensions

The two classic methods for adding points to a mesh
are splitting quadtree cells and adding circumcenters
of Delaunay triangles. Both methods fit neatly in the
theory of well-paced points. In fact, both methods pro-
duce 1-well-paced extensions of a constant sized mesh.
In Section 5, we show how to bound the cost of meshing
such point sets.

Consider the following very simple quadtree construc-
tion. Start with a single box. At each step, pick some
box and split it in half along each axis. When viewed
as a cell-complex, the vertices or 0-faces in this con-
struction form a 1-well-paced extension of the vertices
of the initial box. Each time we split a box, we split
the corresponding faces in increasing order by dimen-
sion. The edge bisectors are 1-medial because the two
nearest neighbors must be the endpoints. Likewise, the
points splitting higher dimensional faces have nearest
neighbors on each lower dimensional face and all are
equidistant, so every insertion is 1-medial.

Our second example of a well-paced point set is the

case of circumcenter meshes. Start with some Delaunay
triangulation of a point set Q ⊂ Rd. At each step,
pick a Delaunay triangle and add its circumcenter. The
d + 1 nearest neighbors of a circumcenter at the time
of insertion are all the same distance away (they are
on the circumsphere), so the circumcenter is 1-medial.
Thus, any sequence of circumcenter insertions forms a
1-well-paced extension of Q.

5 The cost of going from well-paced to well-spaced

Running a meshing algorithm on a point set P will add
Steiner points until the resulting set P ′ is well-spaced.
The cost of cleaning a point set P , denoted by Cost(P)
is defined as |P ′|, the size of the well-spaced output. In
this section, we prove that adding an n point well-paced
extension of Q will only increase the cost of cleaning by
O(n). In Section 4, we showed that inserting points in a
quadtree a special case of well-paced points. Balancing
a quadtree involves splitting cells to achieve well-spaced
vertices. Thus, the result of this section generalizes pre-
vious work on the linear cost of balancing quad trees [8].

In particular, if the cost of cleaning Q is O(1) (as is
the typical case when Q is a well-spaced bounding box,)
then the output mesh will have size O(n).

Theorem 2 If P is a θ-well-paced extension of Q, then
Cost(Q ∪ P) = O(Cost(Q) + |P |).

Proof. The proof will be by induction on n = |P |.
Let lfs(i) be the local feature size function induced by
Q ∪ {p1, . . . , pi}. Let Ψi = c1

∫
x∈Ω

1
lfs(i)(x)d dx, where

c1 is the constant from the upper bound in Theo-
rem 1. In general, c1 will depend on the particu-
lar meshing algorithm used. Theorem 1 says that
Cost(Q ∪ {p1, . . . , pi}) ≤ Ψi and Ψ0 = O(Cost(Q)),
the base of our induction.

By induction, we assume Ψn−1 ≤ Cost(Q)+c2(n−1)
for some constant c2. It will suffice to show that Ψn −
Ψn−1 < c2. We can split the Ruppert sizing integral as
follows.

Ψn = c1

∫
x∈Ω

1

lfs(n)(x)d
dx (1)

≤ Ψn−1 + c1

∫
x∈U

1

lfs(n)(x)d
− 1

lfs(n−1)(x)d
dx (2)

where U ⊆ Ω is the set of all points for which the local
feature size was changed by the insertion of pn. Let
R = rpn . The following two inequalities hold for all
x ∈ U , the first is trivial and the second follows from
the definition of well-paced points.

lfs(n)(x) ≥ |pn − x|, and (3)

lfs(n−1)(x) ≤ |pn − x|+ R

θ
. (4)

CCCG 2008, Montréal, Québec, August 13–15, 2008

We use these inequalities to compute the integral above
using spherical coordinates. Since the integrand is pos-
itive everywhere, we can upper bound the integral by
integrating over all of Rd instead of just U :

Ψn−Ψn−1 ≤ c1

∫
x∈U

1
(|x|)d

− 1
(|x|+ R

θ)d
dV, (5)

≤ c1

∫ ∞

0

∫
Sr

(
1
rd
− 1

(r + R
θ)d

)
dAdr, (6)

≤ c1sd

∫ ∞

0

(
1
rd
− 1

(r + R
θ)d

)
rd−1dr, (7)

where Sr is the sphere of radius r and sd is the surface
area of the unit d-sphere. In the ball of radius R

2 around
pn the lfs is at least R

2 , so the contribution of this region
is to Ψn at most some constant c3.

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

R
2

(
1
rd
− 1

(r+ R
θ)d

)
rd−1dr (8)

By the change variable yR/θ = r and simplifying we
get:

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

θ
2

(
(y + 1)d − yd

y(y + 1)d

)
dy (9)

≤ c3+ c1sd

d−1∑
i=0

(
d

i

)∫ ∞

θ
2

yi

yd+1
dy (10)

≤ c3 + c1sdd
2

(
d

d/2

)
(2/θ)d (11)

The last inequality follows from the fact that each in-
tegral is bounded by d(2/θ)d. Choosing c2 larger than
this constant completes the proof. �

One interpretation of this theorem is that the amor-
tized increase in the cost of cleaning a point set is con-
stant if you add a θ-medial point.

Corollary 3 If Q is a well-spaced point set and P is a
well-paced extension then Cost(Q ∪ P) = O(|Q|+ |P |).

Proof. Follows from the above theorem and the linear
cost of cleaning points that are already well-spaced. �

6 Algorithm LinearMesh

Psuedocode for the algorithm LinearMesh is shown
in Figure 1. The algorithm takes a set of points I as
input and outputs a superset of points L, such that the
Delaunay triangulation of L is linear in the size of I.

The first call is to a simple routine BoundingBox
that will calculate the diameter of I and place a bound-
ing box around I that is a constant factor β larger in

size. The bounding box is constructed with a constant
number of vertices Nβ . The bounding box controls the
area where new points will be added, and controls in-
teraction with recursive sub-calls.

The WHILE loop then selects a subset of I and adds
it to P . The selection of θ-medial points makes sure
that P is well-paced. The call to DelaunayRefine
can invoke any Delaunay refinement algorithm that will
accept as input points in a bounding box and produce
an optimal quality mesh S. Acceptable algorithms are
prevalent in the literature [2, 9, 10, 3].

The FOREACH loop now partitions the remaining
points from I − P into clusters Iv around the vertices
v ∈ S. Each cluster is then meshed recursively, and
these points Lv (along with S) are all added together to
form L. This is illustrated in Figure 2(d).

6.1 Linearity of LinearMesh

To show that the output of LinearMesh is only linear
in the input I, we must first show that it generates only
a linear number of vertices.

First, the well-paced pointset P has size Nβ + |I ∩P |.
Considering S, by Theorem 2, |S| ∈ O(|P |) ∈ O(|I∩P |).
Now consider the recursive partition. Inductively, the
cluster submeshes have size Lv ∈ O(Iv), so their union
has total size O(|I−P |). It follows that the final answer
has |L| ∈ O(|I|).

Recall that in three or more dimensions, the number
of edges in Del(L) may be Ω(|L|dd/2e), so we must argue
that |Del(L)| is only linear in |L|. We claim that the
degree of every vertex in Del(L) will be constant. We
make use of an established theorem about well-spaced
points [7, 3]:

Theorem 4 If S is a well-spaced point set, then every
vertex of Del(S) has constant degree, so that |Del(S)| ∈
O(|S|) with constants depending on dimension and qual-
ity of the well-spacing.

This theorem guarantees us that every vertex in
Del(S) has constant degree (see Figure 2(e)). Next, L
was constructed by substituting each Lv for its parent v.
Define G as a contraction of Del(L) obtained by collaps-
ing all the vertices of Lv into v (for every choice of v).
Intuitively, this contracted graph G should be almost
exactly the same as Del(S). (Contracting the graph in
Figure 2(f) happens to give exactly Figure 2(e)).

G is not precisely Del(S); its edge structure could be
slightly perturbed. The standard “gap-ratio” analysis
technique employed in [7, 10, 3] can show that G still
has constant degree.

Furthermore, it is straightforward to see the degree
of a vertex in Del(L) is at most Nβ times as large as its
degree in G. Thus Del(L) has constant degree, and so
|Del(L)| ∈ O(|L|).

20th Canadian Conference on Computational Geometry, 2008

LinearMesh(I)
RETURN {} IF I == {}
Initialize P =BoundingBox(I)
WHILE ∃p ∈I−P such that p is θ-medial w.r.t. P

Add p to P
ENDWHILE
Initialize L = S =DelaunayRefine(P)
FOREACH v ∈ S

Iv = {p ∈ I such that NNS(p) = v}
Lv = LinearMesh(Iv)
Add Lv to L

ENDFOR
RETURN L

Figure 1: Pseudocode for LinearMesh.

6.2 Output Quality

Besides linearity, we can also guarantee that simplices
in the the output triangulation have bounded circum-
radius to longest edge ratio (R/E). In two dimensions,
this is equivalent to bounding the largest mesh angle
away from π, which guarantees the quality of the mesh
with regards to interpolation [1]. One might hope that
in higher dimensions, this condition would guarantee
no large dihedral angles, and indeed it does come close,
with only the unfortunate exception of allowing sliver
tetrahedra. We could imagine a variant involving tech-
niques from [6] that might achieve this guarantee while
adding only linearly many new vertices.

7 Conclusions

We have presented a powerful new tool for analyzing
quality simplicial meshing algorithms.

In addition our algorithm, LinearMesh, is a fully
unstructured method for producing linear size meshes
of point sets in Rd. Two potential extensions to this
work are to conform to more complex inputs and to use
common post processing procedures to improve quality
guarantees such as in [6].

It is our hope that this work will fuel new research into
optimal (or mostly optimal) quality meshing algorithms
with polynomial size output.

References

[1] I. Babuška and A. K. Aziz. On the Angle Condition in the Fi-
nite Element Method. SIAM Journal on Numerical Analysis,
13(2):214–226, Apr. 1976.

[2] M. Bern, D. Eppstein, and J. R. Gilbert. Provably Good
Mesh Generation. Journal of Computer and System Sciences,
48(3):384–409, June 1994.

[3] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi Re-
finement. In Proceedings of the 15th International Meshing
Roundtable, pages 339–356, Birmingham, Alabama, 2006. Long
version available as Carnegie Mellon University Technical Report
CMU-CS-06-132.

(a) (b)

(c) (d)

(e) (f)

Figure 2: Stages of LinearMesh: (a) Input points I.
(b) A well-paced subset P is constructed (bounding box
not shown). (c) A well-spaced superset S is constructed.
(d) L is S augmented with recursive clusters Lv. (e) The
quality mesh of S. (f) Final mesh of L where degree
could be larger by a factor of Nβ .

[4] F. Labelle. Sliver removal by lattice refinement. In N. Amenta
and O. Cheong, editors, Symposium on Computational Geom-
etry, pages 347–356. ACM, 2006.

[5] F. Labelle and J. R. Shewchuk. Isosurface stuffing: fast tetra-
hedral meshes with good dihedral angles. ACM Trans. Graph.,
26(3):57, 2007.

[6] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay
meshed in 3D. In Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 28–37. ACM Press,
2001.

[7] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. On the
radius–edge condition in the control volume method. SIAM J.
Numer. Anal., 36(6):1690–1708, 1999.

[8] D. Moore. The cost of balancing generalized quadtrees. In SMA
’95: Proceedings of the Third Symposium on Solid Modeling
and Applications, pages 305–312, 1995.

[9] J. Ruppert. A Delaunay refinement algorithm for quality 2-
dimensional mesh generation. J. Algorithms, 18(3):548–585,
1995. Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA) (Austin, TX, 1993).

[10] A. Üngör. Off-centers: A new type of steiner points for comput-
ing size-optimal guaranteed-quality delaunay triangulations. In
Proceedings of LATIN, 2004.

