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Guaranteed Voronoi Diagrams of Uncertain Sites
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Abstract

In this paper we investigate the Voronoi diagram that is
induced by a set of sites in the plane, where each site’s
precise location is uncertain but is known to be within a
particular region, and the cells of this diagram contain
those points guaranteed to be closest to a particular site.
We then examine the diagram for sites with disc-shaped
regions of uncertainty, prove that it has linear complex-
ity, and provide an optimal O(n log n) algorithm for its
construction. We also examine the diagram for polygo-
nal regions of uncertainty, and prove that it has linear
complexity as well. We then describe a generalization
of these diagrams, in which each Voronoi cell is associ-
ated with a subset of the sites, and each point in a cell
is guaranteed to be closest to some site in the subset
associated with the cell.

1 Introduction

Suppose we do not know the precise locations of n sites
(n points in the plane) and yet we would like to de-
termine, for every point in the plane, the closest site
to that point. If we know the approximate location of
each site, say, that the ith site lies in a subset Di of the
plane, then we might be able to answer this question
perhaps not for every point but for many points in the
plane. Our goal is to find, for each site i, the set of
points that are guaranteed to be closer to that site than
to any other. In other words, no matter where each site
lies (as long as the jth site is in Dj for every j) the clos-
est site to the point is always site i. For some points,
we cannot guarantee a closest site. These points form a
subset of the plane that we call the ‘neutral zone’.

In this paper, we first formally define the partition of
the plane into cells of guaranteed closest points and the
neutral zone and state some properties of this partition.
We then consider the special case when the uncertain
regions (i.e. the subsets Di) are discs and show that
the complexity of the partition in this case is linear in
the number, n, of sites, and that it can be calculated in
O(n log n) time.

We also consider the case where each Di is a polygon,
and show that the complexity of the resulting partition
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is linear in the total number of polygon edges.
We then consider a finer partition of the neutral zone

into regions of points that we can guarantee are closest
to some site in a set of sites. For example, points that
may be closest to sites 1 or 2 form the region for the
set {1, 2}. We show that the complexity of this finer
partition is at most O(n4) for uncertain discs.

An applet demonstrating these diagrams is available
at http://www.cs.ubc.ca/~jpsember/gv.html.

2 Related work

Voronoi diagrams are a fundamental data structure in
computational geometry; see [2] for a survey. Voronoi
diagrams involving uncertain sites were investigated
with respect to the probabilistic concepts of expected
closest site and probably closest site in [3].

The guaranteed Voronoi diagram of a set of uncer-
tain regions is closely related to the standard Voronoi
diagram of those regions. Thus our results rely heav-
ily on properties of standard Voronoi diagrams such as
diagrams for circles [8] and diagrams for segments [6].

One of the biggest differences between the guaranteed
Voronoi diagram and traditional variants of Voronoi di-
agrams is that the union of the regions associated with
uncertain sites does not cover the plane. The guar-
anteed Voronoi diagram contains a neutral region that
contains those points that are not guaranteed to be clos-
est to any particular site. Zone diagrams also have this
property. In zone diagrams, for a point to be in a site’s
region, it must be closer to the site than to any point
in any other site’s region. The recursive nature of this
definition raises the question of the uniqueness and exis-
tence of zone diagrams; a question that Asano et al. [1]
answered (positively).

Some properties of guaranteed Voronoi diagrams of
uncertain polygons are given in [5], including a proof
of the diagrams’ computability, though no complexity
claims are made.

3 Properties

We are given a set of regions in the plane D =
{D1, . . . , Dn}, called uncertain regions, each containing
a site. Let H(i, j) be the set of points in the plane that
are guaranteed to be at least as close to site i as site j.
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That is,

H(i, j) = {p | ∀x ∈ Di ∀y ∈ Dj d(p, x) ≤ d(p, y)}

where d(·, ·) is Euclidean distance. We denote the
boundary of H(i, j) by 〈i, j〉; formally,

〈i, j〉 = {p | max
x∈Di

d(p, x) = min
y∈Dj

d(p, y)} .

The cell for site i, denoted R〈i〉, is

R〈i〉 =
⋂
j 6=i

H(i, j) . (1)

The boundaries of all such cells R〈i〉 form the guar-
anteed Voronoi diagram for the set D, and we denote it
by V (D).

An edge of 〈i, j〉 in V (D) is a maximal connected set
of points p ∈ 〈i, j〉 that lie on the boundary of cell R〈i〉.

Some properties of V (D) are easy to show.
If every uncertain region is a single point, V (D) is the

standard nearest-point Voronoi diagram for the regions,
which we denote by V ◦(D). In general, for arbitrary
uncertain regions, every cell R〈i〉 of V (D) is a subset of
the corresponding cell R〈〈i〉〉 of V ◦(D).

It is possible for a cell boundary to not be a one-
dimensional curve. Consider Di = {(x, 0) | x ∈ [0, 2]}
and Dj = {(x, 0) | x ∈ [2, 4]}. In this case, 〈i, j〉 is the
halfplane {(x, y) | x ≤ 1}, and R〈i〉 = 〈i, j〉. To gener-
alize, if Dj intersects CHi, the convex hull of Di, then
H(i, j) = 〈i, j〉; and if this intersection is not confined
to vertices of CHi, then H(i, j) = 〈i, j〉 = ∅. From this
point on, we assume that any nonempty intersection of
two regions Di and Dj is not confined to vertices of CHi.

A site whose cell is empty can still influence the cell of
another site. For example, if the interiors of Di and Dj

intersect, then R〈i〉 = ∅, yet an edge of 〈k, i〉 for some
other site k can still appear in V (D).

A connected subset of the plane S is inside-tangent
to another such subset C (or C has inside-tangent S)
if S ⊆ C and the boundary of C intersects S; and S
is outside-tangent to C (or C has outside-tangent S) if
S ∩ C is a non-empty subset of the boundary of C.

Lemma 1 Every point p on an edge of 〈i, j〉 in V (D)
is the center of a unique disc Cp that has inside-tangent
Di, outside-tangent Dj, and intersects the interior of
no Dk ∈ D for k /∈ {i, j}.

Proof. This follows immediately from the definition of
an edge of 〈i, j〉. �

Consider a point p on an edge of 〈i, j〉 in V (D), and
its disc Cp from Lemma 1. Let b be a point of tangency
of Cp with Dj . Define δ(p) to be the (unique) point
on segment pb that is the center of a disc C◦ that has
outside tangent Dj (at the point b) and outside tangent

Di. Since C◦ ⊆ Cp, C◦ also intersects the interior of no
Dk ∈ D for k /∈ {i, j}. Thus δ(p) lies on an edge of the
bisector 〈〈i, j〉〉 between Di and Dj that is part of the
standard Voronoi diagram V ◦(D) for the regions D. In
fact, δ(p) is on the boundary of region R〈〈i〉〉.

Note that if more than one region Dj is outside-
tangent to Cp (or if Dj is tangent to Cp at more than
one point), then there is more than one candidate point
of tangency b. To make δ(p) well-defined, we select a b
according to some total order on possible b’s.

We now show that the ordering of points p on the
boundary of a cell R〈i〉 in V (D) agrees with that of
points δ(p) on the boundary of R〈〈i〉〉 in V ◦(D). To do
this, we will need the following lemma.

Lemma 2 If b is a point on the boundary of disc P
centered at p, and d a point on the boundary of disc Q
centered at q, and line segments pb and qd intersect at
a single point, interior to both, then either b is in the
interior of Q or d is in the interior of P .

Proof. Assume such an intersection point w exists.
Without loss of generality, assume d(w, b) ≤ d(w, d).
By the triangle inequality,

d(q, b) < d(q, w) + d(w, b)
≤ d(q, w) + d(w, d)

which implies b is in the interior of Q. �

We denote a point p being encountered before point q
as we traverse the boundary of a convex region counter-
clockwise (ccw) from starting point s by p ≺s q.

Lemma 3 If p, q, and s are points on the boundary
of cell R〈i〉 (with nonempty interior), and p ≺s q, then
δ(p) ≺δ(s) δ(q).

Proof. Each point p on the boundary of cell R〈i〉 is
mapped to a point δ(p) on the boundary of cell R〈〈i〉〉.
Note that segment pδ(p) does not intersect the interior
of R〈i〉, since for every point p′ on this segment, the disc
with center p′ that has outside-tangent Dj does not con-
tain all of Di except when p′ = p. Note also that this
disc does intersect Di (and no other Dk), thus pδ(p) is
within R〈〈i〉〉. Therefore if p ≺s q and δ(p) �δ(s) δ(q)
then some two of the segments {sδ(s), pδ(p), qδ(q)} in-
tersect. Without loss of generality, assume pδ(p) inter-
sects qδ(q).

By Lemma 1, disc Cp exists which has outside-tangent
some Dj 6=i at b, such that δ(p) ∈ pb. Similarly, disc Cq

exists which has outside-tangent some Dk 6=i at d where
δ(q) ∈ qd. This implies pb intersects qd (since pδ(p) ⊂ pb
and qδ(q) ⊂ qd). The intersection is a single interior
point since p 6∈ qd and q 6∈ pb (otherwise Cp or Cq would
not contain Di), and δ(p) 6= b and δ(q) 6= d (otherwise
Di intersects Dj or Dk, and R〈i〉 has an empty interior).
By Lemma 2, either b is in the interior of Cq or d is in
the interior of Cp, which is a contradiction. �
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4 Uncertain discs

We now consider the case where the uncertain regions
are discs; see Figure 1.

Figure 1: Guaranteed Voronoi diagram

Each disc has a nonnegative radius ri, and a center
Si. Each p ∈ 〈i, j〉 satisfies

d(p, Si) + ri = d(p, Sj)− rj . (2)

Since ri and rj are constants, the points p which satisfy
(2) lie on an arm of a hyperbola with foci at Si and Sj .
If the discs’ radii are both zero, this is the perpendicu-
lar bisector of SiSj ; otherwise, it is the hyperbolic arm
closest to Si.

Some properties of V (D) include the following.
Each cell of V (D) is convex, since the cells are in-

tersections of convex halfplanes bounded by hyperbolic
arms.

It is possible that more than one edge of 〈i, j〉 appears
in V (D).

We will now show that the number of edges in a guar-
anteed Voronoi diagram of n discs is O(n). We will do
this by showing that for each cell R〈i〉 ∈ V (D), there
is a mapping from each edge in R〈i〉 to a distinct edge
in the corresponding cell of V ◦(D), which is known to
have O(n) edges.

Theorem 4 The number of edges in a guaranteed
Voronoi diagram of n uncertain discs is O(n).

Proof. We will show that the number of edges in V (D)
is at most twice the number of edges in V ◦(D). The
theorem then follows from the fact that V ◦(D) has O(n)
edges (property (7) of [8]).

Consider the edges around R〈i〉 in ccw order. We
charge each edge E of 〈i, j〉 ∈ V (D) to the edge F of
〈〈i, j〉〉 on which δ(p) lies, for p the ccw-first point of E
(or any interior point p if E is ccw-infinite). Suppose
two distinct edges E1 and E2 of 〈i, j〉 map to the same
edge F of 〈〈i, j〉〉 in R〈〈i〉〉. Since E1 and E2 are distinct
but both of 〈i, j〉, there must exist an edge E′ of 〈i, k〉
(k 6= j) between them in the ccw traversal of R〈i〉 that
maps to some other edge F ′ of 〈〈i, k〉〉 in R〈〈i〉〉. This
contradicts Lemma 3 since all points of F either precede
or follow the points of F ′ in ccw-order.

Thus each edge in V ◦(D) of 〈〈i, j〉〉 is charged at most
twice: once by an edge of 〈i, j〉, and once by an edge of
〈j, i〉. Hence V (D), like V ◦(D), has O(n) edges. �

We now show how V (D) for a set of discs can be con-
structed by first constructing V ◦(D) for the discs, then
performing a linear-time transformation from V ◦(D) to
V (D).

We can construct I〈i〉, a sequence of neighboring sites
to cell R〈i〉, by starting from an edge containing some
point p on the boundary of R〈i〉 and traversing the
boundary edges in ccw order. We construct I〈〈i〉〉, the
sequence of neighboring sites to cell R〈〈i〉〉, by a similar
ccw traversal, starting from the edge containing δ(p).

Lemma 5 For every cell R〈i〉 ∈ V (D), I〈i〉 is a subse-
quence of I〈〈i〉〉.

Proof. If site j is in I〈i〉 then, since δ(·) maps points
on edges of 〈i, j〉 to points on edges of 〈〈i, j〉〉, j is in
I〈〈i〉〉. Furthermore, the order of sites in I〈i〉 is preserved
in I〈〈i〉〉 since δ(·) preserves this order by Lemma 3. �

Theorem 6 V (D) for n sites can be constructed in
O(n log n) time, and this running time is optimal.

Proof. The running time of any algorithm to construct
V (D) is Ω(n log n), since if the site radii are all zero,
V (D) is the standard Voronoi diagram of n points.

Constructing V ◦(D) for the disc sites D takes
O(n log n) time [4]. We generate the sequence I〈〈i〉〉 of
sites comprising the boundary of cell R〈〈i〉〉 in V ◦(D) for
i = 1, 2, . . . , n from this diagram in linear time by a
simple traversal. From I〈〈i〉〉 we construct the boundary
of R〈i〉 by generating and intersecting the sequence of
hyperbolic arcs it specifies. Lemma 5 ensures that we
consider a correctly ordered super-sequence of the arcs
bounding R〈i〉. This suffices to construct the boundary
of R〈i〉 in time proportional to the length of I〈〈i〉〉.

Since each of the O(n) edges of V ◦(D) appears in two
cell boundaries, the running time for the construction
of the edges of all cells of V (D) is O(n). The time
to construct V (D) is thus dominated by the time to
construct V ◦(D). �

5 Uncertain polygons

We now turn our attention to the case where the re-
gion of uncertainty for each site is a polygon. In this
case, each 〈i, j〉 consists of some number of (possibly un-
bounded) parabolic arcs, each induced by a vertex u of
Di and a vertex1 or open edge v of Dj . We denote such
a parabolic arc by 〈iu, jv〉, and define an edge of 〈iu, jv〉
to be a maximal connected set of points p ∈ 〈iu, jv〉 that
lie on the boundary of cell R〈i〉. We define 〈〈iu, jv〉〉 for

1In this case, the induced parabola degenerates to a line.
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V 4(D), the standard Voronoi diagram of the polygons
D, analogously.

Theorem 7 The number of edges in the guaranteed
Voronoi diagram of D, a set of n polygons with m total
edges, is O(m).

Proof. We show that the number of edges in V (D) is
at most twice the number of edges in V 4(D) plus twice
the complexity of the furthest point Voronoi diagram of
the vertices in Di summed over all i. The theorem then
follows from the fact that V 4(D) has O(m) complexity
[6] and that the total complexity of the furthest point
Voronoi diagrams is O(m) [7].

Let E be an edge of 〈iu, jv〉 on the boundary of R〈i〉
and let p be an interior point of E. Section 3 showed
there must exist a point δ(p) on an edge of 〈〈iw, jv〉〉
where w is a vertex or edge of Di.

Consider the edges around R〈i〉 in ccw order. We
charge each edge E of 〈iu, jv〉 to the edge F of 〈〈iw, jv〉〉
on which δ(p) lies, for p the ccw-first point of E (or any
interior point p if E is ccw-infinite). Now it may hap-
pen that a consecutive sequence of edges around R〈i〉
all map to F . (By Lemma 3, the edges must be consec-
utive if they map to the same F .) Let E1 of 〈iu1 , jv〉
and E2 of 〈iu2 , jv〉 be two successive (adjacent) edges in
this ccw sequence. The point p shared by E1 and E2

lies on an edge of the furthest-point Voronoi diagram
of the vertices of Di that separates the furthest-point
regions for u1 and u2. We charge the edge E2 to this
edge T of the furthest-point Voronoi diagram. We now
show that at most two edges are charged to each T .
Every such p intersecting T is the center of a disc Cp

that has inside-tangent Di (at the two farthest vertices
u1, u2 associated with T ) and outside-tangent Dj . As-
sume by way of contradiction that there are three such
points, p1, p2, p3 in order along T . Observe that Cp2 is
contained within Cp1 ∪ Cp3 ; thus Dj must be outside-
tangent to Cp2 at either u1 or u2 to avoid intersecting
the interior of the other two discs. But then Di ∩Dj is
a nonempty subset of {u1, u2}, both vertices of CHi, a
contradiction.

Thus the number of edges on the boundary of region
R〈i〉 is at most the number of edges on the boundary
of region R〈〈i〉〉 plus twice the number of edges in the
furthest-point Voronoi diagram for the vertices of Di.
The theorem then follows since each edge of V 4(D)
bounds two regions R〈〈i〉〉 and R〈〈j〉〉. �

6 Extension to subsets of closest points

In this section, we look at an extension of the Voronoi
diagram which assigns every point in the plane to a cell,
including points in the neutral zone.

Equation (1) can be generalized so that each point in
a cell is guaranteed to be at least as close to a site in a

particular subset of sites as to any other site. For a set
S ⊆ {1 . . . n}, we define the cell for S (denoted R〈S〉) as

R〈S〉 =
⋃
i∈S

[⋂
j /∈S

H(i, j)
]
−

⋃
S′⊂S

R〈S′〉

where R〈∅〉 = ∅. See Figure 2 for an example of such
a guaranteed subset Voronoi diagram, which we denote
by V {}(D).

Figure 2: Guaranteed subset Voronoi diagram

The cells of V {}(D) are not necessarily connected. In
Figure 2, for instance, the two shaded regions belong to
the same cell.

Lemma 8 The number of edges in a guaranteed subset
Voronoi diagram of n uncertain discs is O(n4).

Proof. The proof follows immediately from the fact
that each edge in V {}(D) is an edge in the arrangement
of the 2 ·

(
n
2

)
possible hyperbolic arcs 〈i, j〉. �
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