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Abstract

Given a set of points in a Hilbert space that can be
separated from the origin. The slab support vector
machine (slab SVM) is an optimization problem that
aims at finding a slab (two parallel hyperplanes whose
distance—the slab width—is essentially fixed) that en-
closes the points and is maximally separated from the
origin. Extreme cases of the slab SVM include the
smallest enclosing ball problem and an interpolation
problem that was used (as the slab SVM itself) in sur-
face reconstruction with radial basis functions. Here we
show that the path of solutions of the slab SVM, i.e.,
the solution parametrized by the slab width is piecewise
linear.

1 Introduction

Data structures used in fields like graphics, visualization
and learning often have many free parameters. In most
cases a good choice of these parameters is not obvious.
Computational geometry was facing similar problems:
for example when using alpha shapes [Ede95] for surface
reconstruction or in bio-geometric modeling the ques-
tion arises as to what value to choose for alpha. Com-
putational geometry [Ede95, ELZ02, GCPZ06] gave an
answer to this question that can be seminal also for the
aforementioned areas of computer science, namely, do
not compute the solution for a fixed more or less well
chosen value of the parameter, but compute the whole
spectrum of structures and then look for good solutions
in this spectrum. One method to determine a good
structure is topological persistence pioneered by Edels-
brunner, Harer and Zomorodian [ELZ02].

Here we investigate an optimization problem that has
its roots in machine learning and was also applied in
various forms to the surface reconstruction problem.
The problem is called slab support vector machine (slab
SVM) [SGS04] and takes as input a set of data points
in a Hilbert space that can be separated from the ori-
gin and aims at finding a slab (two parallel hyperplanes
whose width is essentially fixed as δ > 0) that encloses
the points and is maximally separated from the origin.
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The slab SVM has found applications in surface re-
construction [SGS04], and quantile estimation and nov-
elty detection [SS02]. In these applications the data
points reside in d-dimensional Euclidean space but are
mapped by a feature map into another (often infinite
dimensional) Hilbert space. The structure of the slab
SVM is such that the feature map does not have to
be given explicitly, but only implicitly through a posi-
tive kernel: the dual optimization problem of the slab
SVM depends only on the pairwise inner products of
the data points. A positive kernel can be used to re-
place these inner products without changing the nature
(convex quadratic program) of the optimization prob-
lem.

The parameter we are interested in is δ, which essen-
tially fixes the width of the slab. In the applications,
it is difficult to tell beforehand what a good choice of δ
is. Hence in the spirit of the computational geometry
approach we want to compute the solution to the slab
SVM for all values of δ. Once we have this spectrum of
solutions other methods can be employed to find good
choices for δ. Here we do not want to discuss how such
methods could look like, but focus on the structure of
the solution spectrum. We show that the solution path
of the slab SVM, i.e., the solution parametrized by δ
is piecewise linear. Our arguments provide a complete
geometric characterization of the turning points (nodes)
of the solution path.

Our results are in spirit similar to results of Hastie
et al. [HRTZ04] who obtained the piecewise linearity
of the solution of the classification support vector ma-
chine [SS02]. Though both results give piecewise linear
solution paths, the parameters are different in nature
and so are the means to establish the results. Our proof
is of geometric nature, whereas Hastie et al. use alge-
braic arguments.

2 The slab SVM

Given data points X = {x1, . . . , xn} ⊂ H, where H
is a Hilbert space with inner product 〈·, ·〉, such that
the data points can be separated from the origin by a
hyperplane, i.e., there exists w ∈ H\{0} and ρ 6= 0 such
that

〈w, xi〉 ≥ ρ for all i = 1, . . . , n.

The distance of the hyperplane {x ∈ H : 〈w, x〉 = ρ}
to the origin of H is given as ρ/‖w‖, where the norm of
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w in H is defined as usual by ‖w‖ =
√

〈w, w〉.
The slab SVM is the following convex quadratic op-

timization problem that aims at finding the slab (the
space between two parallel hyperplanes) with width
δ/‖w‖ that contains all the data points and minimizes
1

2
‖w‖2−ρ, i.e., essentially maximizes the distance of the

slab to the origin (see also Figure 1):

minw,ρ
1

2
‖w‖2 − ρ

s.t. ρ ≤ 〈w, xi〉 ≤ ρ + δ for all i = 1, . . . , n
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Figure 1: The geometric set-up for the slab SVM.

Note that the slab SVM problem is always feasible
since (w, ρ) = (0, 0) is always contained in the constraint
polytope.

The Lagrangian dual to this problem can be derived
from the saddle point condition for the Lagrangian

L(w, ρ, α, β) =
1

2
‖w‖2 − ρ −

n
∑

i=1

αi(〈w, xi〉 − ρ)

+

n
∑

i=1

βi(〈w, xi〉 − ρ − δ),

where αi, βi ≥ 0. The saddle point condition gives
∂L/∂w = 0 which implies w =

∑n

i=1
(αi − βi)xi and

∂L/∂ρ = 0 which implies
∑n

i=1
(αi−βi) = 1 from which

the dual follows

minα,β
1

2

∑n
i,j=1

(αi − βi)(αj − βj)〈xi, xj〉 + δ
∑n

i=1
βi

s.t. αi, βi ≥ 0 for all i = 1, . . . , n.
∑n

i=1
(αi − βi) = 1

In most applications [SS02] the data points are ob-
tained from applying a feature map φ to input data
points y1, . . . , yn ∈ R

d, i.e., xi = φ(yi) ∈ H, where the
feature map is not given explicitly, but implicitly in form
of a positive kernel function k : R

d × R
d → R, i.e.,

〈xi, xj〉 = 〈φ(yi), φ(yj)〉 = k(xi, xj).

and H is the kernel reproducing Hilbert space. Since
the dual of the slab SVM only depends on the inner
products of the data points, we can replace 〈xi, xj〉 by
k(xi, xj). A popular positive kernel is the Gaussian

k(xi, xj) = exp

(

−
‖xi − xj‖

2

2σ2

)

,

which is an example of a so called radial basis function
kernel, i.e., a kernel that only depends on the distance
‖xi − xj‖. The data points xi = φ(yi) are linearly in-
dependent and the Gram matrix

(

k(xi, xj)
)

associated
with the Gaussian kernel is positive, i.e., it has full rank
and thus is invertible. In the following we always assume
that the data points xi are linear independent.

3 Surface reconstruction

Figure 2: An example surface reconstruction (Max-
Planck Head: 2022 points) using the slab SVM for a
fixed (small) value of δ.

Let us briefly recapitulate how the slab SVM can be
used directly for surface reconstruction [SGS04]. Given
are sample points y1, . . . , yn ∈ R

3 from a smooth surface
embedded into R

3. These sample points are mapped
into the feature space associated with the Gaussian ker-
nel. The reconstruction is given implicitly as f−1(0),
where f : R

3 → R is the kernel expansion

f(x) = 〈w, φ(x)〉−ρ =

n
∑

i=1

(αi−βi) exp

(

−
‖xi − x‖2

2σ2

)

−ρ,

where x ∈ R
3, φ(·) is the feature map associated with

the Gaussian kernel, and α and β are the solutions to
the dual SVM. Note that ρ can also be computed from
the solution to the slab SVM (or its dual). See Figure
2 for an example and also note that especially in the
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presence of noise one probably does not want to have an
interpolating solution (as one gets it from the slab SVM
for δ = 0 and a related method proposed in [CBC+01]),
but would like to allow small slack in terms of a small
value of δ > 0. Note that the slab SVM works the same
for surface reconstruction in dimensions beyond three.

4 States and events

For a given value of δ ∈ (0,∞) let (w, ρ) be the optimal
solution of the slab SVM. We associate states with the
data points xi, i = 1, . . . , n:

(1) lower supporting, if 〈w, xi〉 = ρ

(2) upper supporting, if 〈w, xi〉 = ρ + δ

(3) non-supporting, if neither lower- nor upper sup-
porting

An event occurs when while decreasing δ the state
of any data point changes. We distinguish two types
of events: a supporting data point becomes non-
supporting, or a non-supporting data point becomes
supporting. We call the first type of event a lose event
and the second type of event a gain event.

5 The Solution Path

From the constraints
∑n

i=1
(αi − βi) = 1 and αi, βi ≥ 0

of the dual of the slab SVM we can conclude that there
exists αi > 0. This in turn allows us to conclude using
the Karuhn-Kuhn-Tucker condition αi

(

〈w, xi〉 − ρ
)

= 0
that for any δ there always exists a lower supporting
data point. For a given δ′, let xi be a lower supporting
data point. The continuous dependence of the coeffi-
cient αi on the parameter δ implies that αi > 0 for
some neighborhood of U(δ′) ⊂ (0,∞). Hence xi is a
lower supporting data point for all δ ∈ U(δ′). We use
this insight to locally, i.e., for δ ∈ U(δ′), transform the
slab SVM into an equivalent distance problem. Note
that we have ρ = 〈w, xi〉. Thus we can write the objec-
tive function of the slab SVM as

1

2
‖w‖2 − ρ =

1

2
‖w‖2 − 〈w, xi〉 =

1

2
‖w − xi‖

2 −
1

2
‖xi‖

2.

Since 1

2
‖xi‖

2 is constant, i.e., does not depend on w or
ρ, we can drop it from the objective function. This gives
if we set w′ = w− xi and reformulate the constraints in
the new variable w′ accordingly the following version of
the slab SVM:

minw,ρ
1

2
‖w′‖2

s.t. 0 ≤ 〈w′, xj − xi〉 + 〈xi, xj〉 − ‖xi‖
2 ≤ δ

for j 6= i

This problem asks for the shortest vector w′ in the con-
straint polytope or equivalently the distance of the con-
straint polytope to the origin. Note that this distance
problem is also always feasible, i.e., the constraint poly-
tope does not become empty. To see this observe that
w′ = −xi is always in the polytope. The gain and lose
events can be nicely illustrated for the distance problem,
see Figure 3.

w’ w’

Figure 3: The lower (non-moving) constraints are shown
by thick solid lines and the upper (moving) constraints
are shown by thin solid lines. On the left: when the
moving constraint hits w′ this constraint becomes bind-
ing (gain event) and the solution is no longer stationary.
On the right: once the moving constraint becomes or-
thogonal to w′ we lose the non-moving constraint (lose
event).

The formulation of the slab SVM as a distance prob-
lem allows to make some observations.

Lemma 1 The solution to the slab SVM is unique.

Proof. There is always a unique point in the convex
constraint polytope of an equivalent distance problem
that realizes the distance of the polytope to the ori-
gin. �

Lemma 2 There exists a δ0 such that for all δ > δ0

the solution to the slab SVM is stationary, i.e. does not
vary with δ.

Proof. The proof is via the distance problem. Let xi

be one of the (lower) supporting data points of the open
slab SVM. We use this xi to formulate the distance
problem. The solution of the distance problem at δ = ∞
is finite (we can conclude this from the properties of the
open slab SVM). Coming from small values of δ the
constraint polytopes of the distance problem for these
values of δ sweep the constraint polytope of the distance
problem at δ = ∞. Since the solution to the latter is
finite the sweep needs to hit the point that realizes this
finite distance at some finite value δ0 of δ. That is, for
all δ > δ0 the point xi is lower supporting for the slab
SVM and we can conclude that the solution of the slab
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SVM can be derived from this stationary solution of the
distance problem as w = w′ + xi and ρ = 〈w, xi〉. �

Lemma 3 For all 0 < δ < δ0 the slab SVM has an
upper supporting data point.

Proof. By the proof of Lemma 2 we have that at δ0, the
slab SVM needs to have an upper supporting data point,
because only the upper constraints sweep the constraint
polytope of the distance problem at δ = ∞. Assume
there exists 0 < δ < δ0 such that at δ the slab SVM
has no upper supporting data point. Let ∆ be the set
of all δ with this property and let δ′ = sup ∆. At δ′

the slab SVM needs to have an upper supporting data
point. To see this note that there exists a data point xj

that is upper supporting at δ+ε for all sufficiently small
ε > 0. At δ′ we can derive a distance problem that is
equivalent to the slab SVM for some neighborhood of δ′.
The data point xj needs to be upper supporting also for
this distance problems at δ′ + ε for all sufficiently small
ε > 0. The constraint hyperplane given by

〈w′, xj − xi〉 + 〈xi, xj〉 − ‖xi‖
2 = δ′ (1)

for the data point xj has all the constraint hyperplanes
given by

〈w′, xj − xi〉 + 〈xi, xj〉 − ‖xi‖
2 = δ′ + ε (2)

on one side. The latter hyperplanes all contain a point
that realizes the solution of the corresponding distance
problem. By the continuity of the distance problem in
δ any sequence in the latter point set converges to the
solution of the distance problem at δ′. Hence this solu-
tion needs to be contained in the constraint hyperplane
given by Equation (1) and xj is an upper supporting
data point for both the distance- and the slab SVM
problem at δ′. By our assumption there needs to ex-
ist some neighborhood U of δ′ such that the distance
problem does not have an upper supporting data point
for all δ ∈ U ∩ (0, δ′). This means that the family of
hyperplanes given by Equation (2) sweeps with ε → 0,
i.e., at δ′, out of the constraint polytope given by the
constraints

〈w′, xj − xi〉 + 〈xi, xj〉 − ‖xi‖
2 = 0.

But this can only happen if the constraint polytope of
the distance problem grows while sweeping the hyper-
plane given by Equation (2) from δ′ + ε to δ′ − ε, which
is a contradiction. �

Corollary 1 For all 0 < δ < δ0 the solution to the slab
SVM is non-stationary.

We can conclude that the solution path of the slab
SVM is piecewise linear (since w′ the point that realizes
the distance of the constraint polytope to the origin is
a piecewise linear curve parametrized by δ).

Theorem 4 The solution path of the slab SVM, i.e.,
the optimal coefficients αi and βi (in the dual) and w
and ρ (in the primal) are piecewise linear functions of
δ.

Corollary 2 The optimal solution w to the slab SVM
is a piecewise linear path that connects the point closest
to the origin on the convex hull (solution at δ = ∞) of
the data points with the point closest to the origin on
the affine hull (solution at δ = 0) of the data points.

6 Conclusions

Theorem 4 characterizes the solution path, but does
not immediately suggest an algorithm to compute
it. But algorithms for parametrized convex quadratic
programs (such as the slab SVM) are known, see for
example [Rit81].
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