
CCCG 2008, Montréal, Québec, August 13–15, 2008

Competitive Search for Longest Empty Intervals

Peter Damaschke∗

Abstract

A problem arising in statistical data analysis and pat-
tern recognition is to find a longest interval free of data
points, given a set of data points in the unit interval.
We use the inverse length of the empty interval as a pa-
rameter in the complexity bounds, since it is small in
statistically relevant cases. For sorted point sets we get
nearly optimal strategies. While the asymptotic com-
plexities are trivial, achieving an optimal number of op-
erations appears to be difficult. Constant factors can be
of practical interest for huge data sets. We derive de-
terministic and randomized upper and lower bounds.
Matching bounds and smooth trade-offs between the
different operations (reads, comparisons, subtractions)
are open questions. For unsorted point sets, the com-
plexity is at least linear. Therefore we also use statistical
inference to get approximate solutions in sublinear time.
We also point out some extensions to multidimensional
analogues of the problems.

1 Introduction

Given a set of n data points in a finite-size part of a
geometric space, we call a subset of this space (with
prescribed shape) free of data points an empty region.
Searching for largest empty regions is a natural problem
in, e.g., data mining [10, 11]. It has been considered for
rectangles in the plane [1, 2, 5, 8, 12] and boxes in d
dimensions. Usually, the complexity of algorithms is
expressed as a function of input size n. However, empty
regions are statistically relevant only if they are large
compared to the expected size if the data point set were
drawn from a uniform distribution. Then, large empty
regions may be found faster than in the worst case. Thus
it is sensible to measure complexity as a function of both
n and a parameter inverse to the size of the empty re-
gion. Here we study, as a first step, the 1-dimensional
case: empty intervals between n data points in the unit
interval. While the worst-case complexity is trivially
Θ(n), the parameterized problem has a different nature.
Still, its optimal asymptotic complexity is easy to de-
termine by standard arguments, but the exact number

∗Department of Computer Science and Engineering, Chalmers
University, 41296 Göteborg, Sweden, email: ptr@cs.chalmers.se.
Supported by the Swedish Research Council (Vetenskapsr̊adet),
grant no. 2007-6437, “Combinatorial inference algorithms – pa-
rameterization and clustering”.

of operations appears to be a surprisingly difficult ques-
tion. Constant factors can make a difference in practice,
not for a single instance, but when huge data sets with
many instances are processed. Analyzing the number
of operations (e.g., comparisons) without ignoring con-
stant factors is quite common for sorting, searching, and
order statistics.

We state our problem Longest Empty Interval
more formally. A sorted set of real numbers 0 = x0 <
x1 < . . . < xn = 1 is given. An empty interval is an
interval delimited by two consecutive xi, xi+1. We can
access xi through index i in constant time. (The xi

are either stored in an array or delivered by an oracle.)
Our goal is to find a longest empty interval, that is,
one with largest difference maxi(xi+1 − xi). This can
be trivially done by n read operations (reads for short),
subtractions, and comparisons, respectively, and linear
time is optimal due to an obvious adversary argument.
Define r := 1/ maxi(xi+1− xi). Supposing that a “very
long” empty interval is expected, with r � n, we want
an algorithm that takes advantage of the small r.

Throughout the paper, logarithms are base 2. We call
the xk values data points. In our complexity bounds we
neglect minor-order terms. To avoid clumsy notation we
also silently suppress factors 1 + o(1) where o(1) tends
to 0 as n grows.

We show that Longest Empty Interval can be
solved optimally with r log(n/r) reads. However, in
order to keep the number of other operations within
O(r log(n/r)) we need some more reads. We have to
add factor 2 (deterministic) or 1.4427 (randomized). We
also study the case of unsorted data point sets, called
Longest Empty Interval (unsorted). Amazingly,
n and r almost switch their roles: We give an algo-
rithm with roughly n log r comparisons, while the num-
ber of reads is trivially n. We remark that a rather obvi-
ous RAM algorithm using n equidistant buckets solves
Longest Empty Interval (unsorted) in O(n) time,
but for comparison-based algorithms Θ(n log r) is opti-
mal, and the simple scheme also fails for similar prob-
lems in higher dimensions. The problem is also known
as max gap and has an Ω(n log n) lower bound in the al-
gebraic decision tree model [3, 9]. Our algorithms do not
assume prior knowledge of r. Another practical advan-
tage is their simplicity, however, several details leading
to the constant factors are a bit tricky, and there re-
main gaps between the current upper and lower bounds.
In the unsorted case, approximate solutions, i.e., large



20th Canadian Conference on Computational Geometry, 2008

regions with few data points, can still be obtained in
sublinear time. We give a grid-based method to an-
alyze the performance of an obvious sampling method.
The last section informally discusses extensions to other
geometric set families.

We conclude the introduction with some motivations
and further related literature.

In the sorted case one may argue that the longest
empty interval could have been computed on the fly,
when the set has been sorted, and this makes up a
minor part of the calculations. But what if distances
in our huge sorted point sets have not been computed
earlier, simply because there was no interest in such
analysis? Then we want to solve the actual problem
as efficiently as possible. There may also arise machine
learning problems where we know that some unknown
“empirical” function is monotone, values are not explic-
itly stored but can be queried by experiments, and we
are mainly interested in large jumps of this function.

In fact, Longest Empty Interval exhibits striking
similarities to a well-known problem in combinatorial
search: competitive group testing [6, 7]. The classical
group testing problem asks to find r defective elements
out of n elements. Here the computational primitives
are group tests: We may query arbitrary subsets Q, and
the test says whether Q has some defective. In the ad-
ditive model of group testing, a test returns the number
of defectives in Q. In the more general weighted ver-
sion, defectives have weights, and a group test returns
the sum of weights. Group testing has an asymptotic
complexity of Θ(r log(n/r)) tests, even if the set is lin-
early ordered and query sets Q must be intervals, i.e.,
contiguous subsets. However, if r is not known in ad-
vance, it is very difficult to figure out the constant factor
[6, 7]. The similarity between Longest Empty Inter-
val and group testing is explained by the observation
that we can “measure” the distance between two data
points by two reads and one subtraction. Thus, O(1)
operations correspond to “something like” an interval
group test. On the other hand, of course, our prim-
itive operations are different, and we are also looking
for a different type of object. Although the techniques
are somewhat similar, we cannot simply transfer known
results for group testing to our problem.

In [4] we gave algorithms for finding at most s dis-
joint intervals of maximum total length that contain at
most p data points (s, p are fixed parameters). Finding
longest empty intervals in sorted point sets is part of
the preprocessing. Then, it is proved that the optimal
solutions are composed of such intervals from a certain
candidate set whose size depends only on s and p, and it
can be computed by dynamic programming. Only the
time for preprocessing depends on n, therefore we save
a significant fraction of the overall running time by log-
time preprocessing. In range prediction applications as

in [4], the data points come as previously sorted sets.
Some aspects addressed in this work are also apparent

in [11], but more from a heuristic and machine learning
perspective.

2 The Sorted Case

Theorem 1 Longest Empty Interval can be solved
using r log(n/r) reads, and this bound is optimal.

Proof. An adversary may divide the data points into
r sets of roughly n/r consecutive data points, and hide
an empty interval slightly shorter than 1/r in every sub-
set. Then, the searcher has to find the (indices of) data
points delimiting these long empty intervals, in order
to be able to compare their lengths and determine the
longest one. Hence the searcher is forced to do binary
search in every subset. This shows the lower bound.

The proposed algorithm maintains, in a linked list,
the ordered sequence of data points xk already read.
In every step we take two consecutive data points in
this list with currently largest distance, say xa and xb,
read the data point xb(a+b)/2c and insert it in our list.
We stop as soon as a + 1 = b. Since xb − xa is the
maximal distance in the sequence, we have found the
longest empty interval at this moment.

To analyze the number of reads, think of this split-
ting process as a binary tree of segments of data points,
in the obvious sense. One read is associated with ev-
ery non-leaf node. Consider the tree upon termination
of the algorithm. A long node represents an interval of
length at least 1/r, other nodes are called short. We
prune the tree as follows. Any pair of short leaf siblings
is removed, making their parent a leaf. The parent node
is always long, since the algorithm has considered inter-
vals by decreasing lengths and stopped at 1/r. After
pruning, one read is associated with every long node.
Since the leaves represent pairwise disjoint intervals, at
most r leaves are long nodes. Every long non-leaf node
is on some path from the root to some long leaf (oth-
erwise we could continue pruning). It follows that all
reads are associated with nodes on paths to at most r
of the leaves. The path length in the tree is trivially
bounded by log n. At most r nodes have depth log r,
and the remaining subpaths from level log r to the leaves
have length at most log n− log r. Since at most r such
paths exist, we get the claimed bound. �

However we have to worry about the other operations,
too. Upon every read we also need two subtractions to
get the lengths of the two new intervals. Thus, the
method needs 2r log(n/r) subtractions. The catch is
that we need to know the longest interval for the next
split. Using a heap for at most r interval lengths (the
current leaves of the tree), we make, for every read, up
to 4 log r length comparisons to include the two new



CCCG 2008, Montréal, Québec, August 13–15, 2008

interval lengths in the heap (and also 5 log r copy oper-
ations in the heap). Thus the method in this form costs
4r log r log(n/r) comparisons. An optimal number of
reads is good if data access is very expensive, e.g., if
data reside in some external memory. But usually the
costs of reads, comparisons, and subtractions should be
similar. Thus we will next aim at O(r log(n/r)) oper-
ations in total, with small constant factors. We now
propose a method that still uses repeated halving, but
on the range of values rather than indices. The number
of reads is only doubled.

Theorem 2 Longest Empty Interval can be solved
using 2r log(n/r) reads, 2r log(n/r) comparisons, and
O(r) subtractions.

Proof. In the jth phase (j = 1, 2, 3 . . .), we declare
every i/2j (i odd, 0 < i < 2j) a grid point. For every
new grid point g, binary search finds k with xk ≤ g <
xk+1. We call [xk, xk+1] the empty interval around g.
We compute the lengths of empty intervals around all
grid points and determine the longest one.

Let p be the exponent with 1/2p ≤ 1/r < 1/2p−1.
Then, a longest empty interval (of length 1/r) contains
a grid point in phase p. Since we have computed the
lengths of empty intervals around all grid points, 1/r
is among these values, and it is the maximum length.
Since every empty interval without grid points is en-
tirely between two consecutive grid points, its length is
at most 1/2p ≤ 1/r, hence we know at this moment that
a longest empty interval is found.

In order to find the empty interval around any new
grid point introduced in phase j, it suffices to do binary
search on the data points between the two neighbored
old grid points. (Recall that we already know the indices
of the leftmost and rightmost data point in this range.)
Since all these search spaces do not overlap, we perform
2j−1 binary search procedures on a total of n elements in
phase j. By concavity of log, the total number of search
steps in phase j is maximized if all search spaces have
equal size n/2j−1. Summation over all phases yields the
number of operations:

∑p
j=1 2j−1(log n

2j−1 + O(1)) =
2p(log n− p + O(1)).

The worst case is 1/r < 1/2p−1, with an arbitrarily
small difference. Now 2p < 2r yields the upper bound of
2r log(n/r) search steps. Every search step requires one
read and one comparison. Subtractions are only used
to compute the lengths of empty intervals around the
O(r) grid points. Only O(r) comparisons are needed to
determine the maximum length among them. �

The worst case in the above analysis suggests that
randomization on the grid size might improve the con-
stant factor in the number of reads. In fact, we obtain:

Theorem 3 Longest Empty Interval can be solved
using an expected number of (1/ ln 2)r log(n/r) reads,

(1/ ln 2)r log(n/r) comparisons, and O(r) subtractions.
(Remark: 1/ ln 2 < 1.4427.)

Proof. We sample a random t ∈ [1, 2) according to
some probability density function q that we specify be-
low, multiply the grid point distances by t, and continue
deterministically as in Theorem 2. For formal clarity:
We construct the grid on an interval of length t including
[0, 1], but then we ignore all grid points outside [0, 1].

As in Theorem 2, let p be the exponent with 1/2p ≤
1/r < 1/2p−1. If t ≤ 2p/r then we also have
t/2p ≤ 1/r < t/2p−1. Now we argue, as in Theo-
rem 2, that an empty interval of length 1/r is identi-
fied in phase p. However, since grid points outside the
unit interval are ignored, we perform only 2j−1/t bi-
nary search procedures on disjoint subsets of a set of
n elements, in phase j. The total number of search
steps in phase j is maximized if all search spaces have
equal size tn/2j−1. Summing over all phases we get
1
t

∑p
j=1 2j−1

(
log tn

2j−1 + O(1)
)

= 2p

t (log n− p + O(1)).
If t > 2p/r then t/2p+1 ≤ 1/r < t/2p. Still we can

argue as above, but with p + 1 in the role of p, which
yields the result (2/t)2p(log n− p + O(1)).

Define x := 2p/r, and note that 1 ≤ x < 2.
We express the number of reads as (x/t)r log(n/r) if
t ≤ 2p/r, and 2(x/t)r log(n/r) if t > 2p/r. Specif-
ically, we use density q(t) = 1/(t ln 2) for sampling.
(In fact, q is a density function, due to

∫ 2

1
dt/t =

ln 2). Thus we obtain in front of r log(n/r) the fol-
lowing expected factor: x

(∫ x

1
1
t q(t)dt + 2

∫ 2

x
1
t q(t)dt

)
=

x
ln 2

(∫ x

1
1
t2 dt + 2

∫ 2

x
1
t2 dt

)
= x

ln 2

(
1
1 −

1
x + 2

x −
2
2

)
=

1
ln 2 . The other bounds follow as in Theorem 2. �

It remains open, even in the randomized case,
whether r log(n/r) reads are sufficient together with
O(1)r log(n/r) other operations. More generally, a
smooth trade-off between reads and comparisons would
be nice. Apparently this would require to “bridge”
somehow between repeated halving on the range of in-
dices and values.

3 The Unsorted Case

In order to solve Longest Empty Interval (un-
sorted), we have to read all n data points xi, since
any missing xi could fall into the largest empty interval
of the rest of the data set. Hence the number of reads is
not interesting. We focus on comparisons and subtrac-
tions. Trivially, sorting the xi solves the problem by
n log n comparisons and n subtractions, but for r � n
we can avoid sorting and save almost a log n factor:

Theorem 4 Longest Empty Interval (unsorted)
can be solved using n(log r + 3) + 4r comparisons and



20th Canadian Conference on Computational Geometry, 2008

O(r) subtractions, and n log r is a lower bound for the
number of comparisons.

Proof. Again we perform repeated halving on [0, 1], in-
serting grid points i/2j (i odd) in phase j, but this time
we divide the data points recursively into subsets sit-
uated between any two neighbored grid points. If j
phases are needed, this costs altogether nj comparisons
between data points and grid points. After each phase
we check which of the mentioned subsets became empty.
This step is simple: To every new grid point we attach a
discrete variable that tells us whether some data point
went to the left and to the right subset. As soon as
we get some empty subset(s) in our partitioning, we
know that the largest empty interval is formed by the
rightmost data point in some nonempty subset and the
leftmost data point in the next nonempty subset to the
right. All candidates are found by n comparisons in to-
tal, because the linear order of subsets is known, and
minimum resp. maximum search is done on disjoint
subsets. If j is the final phase, at most 2j subtractions
yield the interval lengths, and 2j further comparisons
return the result.

Once more, let p be the exponent with 1/2p ≤ 1/r <
1/2p−1. We detect an empty subset when two grid
points hit the largest empty interval, which happens
in phase j ≤ p + 1. Hence j < log r + 2, furthermore
2j ≤ 2p+1 < 4r. Summation of comparisons in binary
search and candidate selection yields the upper bound.

As for the lower bound, an adversary may split the
unit interval into r pieces of equal size and place r − 1
data points at their borders. If any of these pieces re-
mains free of data points, it is the largest empty interval.
For a data point d define, at any moment, I(d) ⊆ [0, 1]
as the interval of possible values of d’s coordinate ac-
cording to the searcher’s current knowledge. Basically,
the adversary answers to any comparison of d to a point
in [0, 1] so that I(d) keeps at least half of its length.
Then, in order to determine which piece a data point
belongs to, the searcher must compare its coordinate
with log r numbers; comparisons between points are not
more powerful. A slight difficulty is that the adversary
must make sure that no piece becomes disjoint to all
intervals I(d) prematurely, because then the searcher
would know the solution. However, before the searcher
can “empty” a piece P , the adversary “sacrifices” one
data point d with I(d) ⊇ P and places d in the middle
of P . �

A question is whether n log r comparisons is a lower
bound also for randomized strategies.

It is not possible to find exactly the largest empty in-
terval in sublinear time. On the other hand, for statis-
tical inference and data mining, a relaxed optimization
goal is still appropriate: Find a large interval containing
at most a given fraction of data points (as in [4]). Then

we can sample from the data points and estimate the
point numbers in intervals. The question is how reliable
the inferred “sparse” intervals are.

For technical reasons we further modify the problem
statement in two ways, without changing its “essence”:
Firstly, instead of a huge set of data points we assume an
unknown continuous probability distribution on [0, 1] to
sample from. Secondly, instead of searching for an inter-
val with given probability mass q and maximum length
L, we search for an interval with given L and minimum
q. (Note that the length of an interval is “observable”,
whereas probability mass can only be estimated.) Now
we can measure the performance simply by the compet-
itive ratio qA/q, where qA is the probability mass of the
interval selected by the algorithm, and q is the minimal
probability mass among all intervals of length L. We
get the following trade-off, with δ = qA/q − 1:

Theorem 5 Given some L < 1 and an unknown proba-
bility distribution on the unit interval, let q be the mini-
mum probability mass of the intervals of length L. Then
one can, in O(m log m) time, sample an expected num-
ber of m points and specify an interval of length L with
probability mass smaller than (1+ δ)q, subject to an er-
ror probability less than

h

q
(1 + 1/δ) exp

(
−mq

(δ − 2/h)2

4 + 2δ

)
,

for any positive δ and h.

Proof. The algorithm as such is trivial: Sample a num-
ber of points that follows a Poisson distribution with
expectation m, then take an interval A of length L that
contains a minimum number of sampled points. Find-
ing A is straightforward, we just spend O(m log m) time
on sorting. The concern is to analyze the probability
mass of A. (We use the Poisson distribution only be-
cause this greatly simplifies the argument. In practice
we may sample a fixed number m of points instead, the
difference is negligible.)

For any deviation δ and expectation µ we bound the
probability that, given two Poisson distributed random
variables with expectation µ and (1 + δ)µ, the former
variable is not smaller than the latter one, i.e., the order
of sizes is switched. (For the following we may also apply
Chernoff bounds to certain cut-off points, but still we
had to add products of tail probabilities, and the whole
calculation does not seem to become simpler, nor is the
result better. Therefore we prefer a direct way.)

The aforementioned switch probability is clearly

exp(−(2 + δ)µ)
∞∑

j=0

((1 + δ)µ)j

j!

∞∑
i=j

µi

i!
.



CCCG 2008, Montréal, Québec, August 13–15, 2008

Using k = j + i as summation index, substituting i and
observing j ≤ i, we transform this expression into

exp(−(2 + δ)µ)
∞∑

k=0

µk

k/2∑
j=0

(1 + δ)j

j!(k − j)!
.

To be precise, summation limit k/2 should read d(k +
1)/2e, but this “sloppiness” lightens the notation and
will not affect the final bound. We further rewrite the
expression as

exp(−(2 + δ)µ)
∞∑

k=0

µk

k!

k/2∑
j=0

(1 + δ)j

(
k

j

)
.

Stirling’s formula yields
(

k
k/2

)
≈ 2k

√
2/
√

πk. For de-
creasing j < k/2, the binomial coefficients become only
smaller, and a factor 1+δ is lost in each step to a smaller
j, hence the inner sum is bounded by

2k
√

2√
πk

(1 + δ)k/2

(
1 +

1
1 + δ

+
(

1
1 + δ

)2

+ . . .

)

= (1 + 1/δ)
2k
√

2√
πk

(√
1 + δ

)k

.

To get rid of the 1
√

k term we bound
√

2/
√

πk just by 1.
Thus, our probability bound simplifies to an exponential
function:

(1 + 1/δ) exp(−(2 + δ)µ)
∞∑

k=0

(
2µ
√

1 + δ
)k

k!

= (1 + 1/δ) exp(−µ(2 + δ)) exp(2µ
√

1 + δ)

< (1 + 1/δ) exp(−µδ2/(4 + 2δ)).

Back to the main proof, let B be an optimal solution,
that is, an interval of length L with minimum prob-
ability mass q. We split B into h pieces, each with
probability mass q/h. We extend this partition to both
sides of B, that means, we cut off pieces of probability
mass q/h successively to the left and right, starting at
the left and right endpoint of B, respectively. (The last
pieces at both ends of the unit interval may have smaller
probability mass.) Now assume that the selection algo-
rithm has chosen an interval A with probability mass at
least (1 + δ)q. We cut away both ends of A which are,
in general, not complete pieces in our partition. The
shortened interval G ⊂ A has still a probability mass
(1 + δ− 2/h)q or larger. The number of sampled points
in G and B follows a Poisson distribution with expec-
tation m(1 + δ − 2/h)q or larger, and mq, respectively.

If G and B are disjoint, the numbers of sampled points
in G and B are independent random variables. Thus,

the probability of G having no more data points than
B is bounded by (1 + 1/δ) exp(−mq (δ−2/h)2

4+2δ ).
If G intersects B, then G ∩ B has probability mass

iq/h, for some positive integer i < h. The probability of
G having no more data points than B equals the prob-
ability of G \B having no more data points than B \G.
Since the point samples in the two set differences are
independent, we can use the switch probability bound,
with appropriate modifications: We have to replace q
with the probability mass on B \G, which is q′ := h−i

h q.
On the other hand, the deviation is the ratio of prob-
ability masses on G \ B and B \ G, minus 1, which
evaluates to at least h+δh−2−i

h−i − 1 = δh−2
h−i . Thus the

switch probability bound becomes(
1 +

h− i

δh− 2

)
exp

(
−mq

(δh− 2)2

(4 + 2δ)h(h− i)

)
.

In summary, if the algorithm has chosen any interval
A as specified above, then A contains some interval G
according to one of the above cases. Since A has been
selected, A contains no more data points than B, and
neither does G. Thus, we get a bound for the error
probability by summing up the contributions of all pos-
sible G (union bound). Since the absolute value of the
exponent is larger if G intersects B, this case is domi-
nated by the former case with G and B disjoint. Note
that h/q intervals G exist. This finally yields an error
bound h

q (1 + 1/δ) exp(−mq (δ−2/h)2

4+2δ ). �

After a slight refinement of the proof we can replace
factor h

q with the smaller h
L . The free parameter h may

be choosen so as to minimize the error bound. In par-
ticular, taking h = mqδ gives the best asymptotics for
large m. Here we obtain m(1 + δ) exp(−mq δ2

4+2δ ). For
a given sample size m, the bound can also be used to
compute 1 + δ that are achievable with high probabil-
ity, depending on q. For very small q, these δ are large,
however, the “absolute” probability mass q(1+δ) of the
returned interval is more interesting than the competi-
tive ratio in this case.

4 Extensions and Further Research: Other Geomet-
ric Set Families

It remains to improve the various complexity and prob-
ability bounds and to close the gaps. In the main part
of this paper we focused on intervals, but the ideas are
much more general.

One extension is to find several longest empty inter-
vals, as needed in [4]. We state the problem k Longest
Empty Intervals as follows. A sorted set of real num-
bers 0 = x0 < x1 < . . . < xn = 1 and some k < n is
given. Our goal is to find k intervals with the k largest
differences xi+1 − xi. (These differences are not neces-
sarily distinct numbers.) Define 1/r as the kth largest
number in the multiset of all xi+1 − xi.



20th Canadian Conference on Computational Geometry, 2008

Theorem 6 Problem k Longest Empty Intervals
can be solved using r log(n/r) reads, or alternatively
with 2r log(n/r) reads and 2r log(n/r) comparisons, or
with an expected number of (1/ ln 2)r log(n/r) reads and
(1/ ln 2)r log(n/r) comparisons. Problem k Longest
Empty Intervals (unsorted) can be solved using
n(log r + 3) + 4r comparisons

Proof. We get away with r log(n/r) reads as in Theo-
rem 1, where we stop only when the kth largest interval
is found. The analysis relies on the fact that we stopped
at length 1/r, hence the bound (with re-defined r) is the
same. Similar reasoning applies to Theorem 2 and 3,
where we determine the k longest intervals around grid
points, and to Theorem 4, where we wait for k empty
subsets in the partitioning. �

A scheme as in Theorem 4 still works for higher-
dimensional problems, although with some relaxation:
Since we lack total order, we can hardly get optimal
results in o(n log n) time, but we get approximations.
We illustrate the issue for the system of axis-parallel
boxes in, say, the d-dimensional unit hypercube [0, 1]d.
Let 1/r be the volume of some largest empty box B.
(Volume is a meaningful measure in the statistical and
data mining context, as the ratio of volumes is invariant
under stretching of axes.) For any fixed d we have:

Theorem 7 A (1 − 1/s)-approximation to the empty
box with largest volume can be computed in time
O(n(log r + log s)).

Proof. We split the unit hypercube by recursive halv-
ing into smaller and smaller, equally sized hypercubes
called cells. As soon as we have Θ(rd) cells, we can iden-
tify a box of empty cells containing most of B. With
Θ((drs)d) cells, some box of empty cells contains at least
1− 1/s of the volume of B. Note that every data point
can be assigned to the correct cell in a time logarithmic
in the number of cells, and the time for operations with
cells (building empty boxes, etc.) depends only on the
number of cells, but not on n. �

The hidden factors are left as a topic of further re-
search. They depend on d and implementation details.

The sampling approach of Theorem 5 works similarly
for other geometric set families F , once there exists an
efficient algorithm for finding large sets in F with few
data points. A technical difficulty of the analysis is to
define suitable “grids”: For any probability distribution
we need a finite family G so that every set of F has a
subset in G with small loss of probability mass. Granu-
larity can be chosen so as to minimize the union bound.
The cardinality of G appears as a factor, but the loss
affects the negative exponent in the exp term. We give
two examples.

Theorem 8 Given some L < 1, an integer s, and an
unknown probability distribution on the unit interval, let
q be the minimum probability mass of unions of s inter-
vals of total length L. Then one can, in O(sqm2 log m)
time, sample an expected number of m points and specify
s intervals of total length L with total probability mass
smaller than (1+δ)q, subject to an error probability less
than

(h/q)2s−1

(2s− 1)!
(1 + 1/δ) exp

(
−mq

(δ − 2s/h)2

4 + 2δ

)
,

for any positive δ and h.

Proof. We choose s intervals of total length L, contain-
ing the minimum number p of sampled points. To this
end we may fix p and compute s intervals with maxi-
mum total length, in O(spm) time (or alternatively in
O(pm + s2p3) time) as shown in [4]. The suitable p for
length L is found by doubling and binary search, hence
O(log p) guesses are enough. Since p = O(qm) with high
probability, the overall time amounts to O(sqm2 log m).

The analysis proceeds as in Theorem 5, with some
adaptations: The loss is 2s/h rather than 2/h, since we
cut the s intervals at both ends, and the cardinality of
G is smaller than (h/q)2s−1/(2s − 1)!, since s intervals
have 2s endpoints from the grid, but one coordinate is
determined by the other 2s− 1 endpoints and the total
length L. �

Theorem 9 Given some L < 1 and an unknown proba-
bility distribution on the d-dimensional unit hypercube,
let q be the minimum probability mass of the boxes of
volume L. Then one can sample an expected number
of m points and specify a box of volume L with prob-
ability mass smaller than (1 + δ)q, subject to an error
probability less than

1
2

(
h

2q

)2d−1

(1 + 1/δ) exp
(
−mq

(δ − 2d/h)2

4 + 2δ

)
,

for any positive δ and h. The time complexity depends
on the time needed to determine a box of volume L that
contains a minimum number of sampled points.

Proof. We choose a box of volume L, containing the
minimum number of sampled points. The analysis pro-
ceeds again as in Theorem 5, with some adaptations:
In each of the d axis directions we split the hypercube
into h/q slices of probability mass q/h. The loss is 2d/h
rather than 2/h, since we cut a box at its 2d sides. The
cardinality of G is about (h/2q)2d−1/2, since one of the
2d coordinates of a box G is determined by the given
volume L. �

The algorithmic problem mentioned in Theorem 9
seems to be interesting in itself.



CCCG 2008, Montréal, Québec, August 13–15, 2008

For families F like disks or balls, grid construction is
possible, too, but more complex, since “heavy” borders
of sets in F must be sliced.

On the other hand, one has to be careful: We point
out that some prominent set families are structurally too
large to be used as empty regions in data mining. For
example, we can fool the family F of orthoconvex poly-
gons as follows. Consider a distribution on a rectangle
where all probability mass is concentrated on a diagonal.
(This is not an artificial example. Think of two numer-
ical attributes correlated by a linear function). Then, a
largest empty orthoconvex polygon would avoid all data
points but still have probability mass 1. By a similar
argument, the family Fof convex polygons is too large,
as the probability mass could be concentrated on a large
circle.

References

[1] A. Aggarwal, S. Suri. Fast algorithms for computing the
largest empty rectangle, Symp. on Comput. Geometry
1987, 278-290

[2] M.J. Atallah, G.N. Frederickson. A note on finding a
maximum empty rectangle, Discrete Applied Math. 13
(1986), 87-91

[3] M. Ben-Or. Lower bounds for algebraic computation
trees. 15th ACM STOC 1983, 80-86

[4] A. Bergkvist, P. Damaschke. Fast algorithms for find-
ing disjoint subsequences with extremal densities, Pat-
tern Recognition 39 (2006), 2281-2292, abstract in: 16th
ISAAC 2005, LNCS 3827, 714-723

[5] B. Chazelle, L.R.S. Drysdale, D.T. Lee. Computing the
largest empty rectangle, SIAM J. Comp. 15 (1986),
550-555

[6] D.Z. Du, H. Park. On competitive group testing, SIAM
Journal Comp. 23 (1994), 1019-1025

[7] D.Z. Du, G. Xue, S.Z. Sun, S.W. Cheng. Modifications
of competitive group testing, SIAM Journal Comp. 23
(1994), 82-96

[8] J. Edmonds, J. Gryz, D. Liang, R.J. Miller. Mining for
empty rectangles in large data sets, Theor. Computer
Science 296 (2003), 435-452

[9] D.T. Lee, Y.F. Wu. Geometric complexity of some lo-
cation problems, Algorithmica 1 (1986), 193-211

[10] B. Liu, L.P. Ku, W. Hsu. Discovering interesting holes
in data, 15th IJCAI 1997, 930-935

[11] B. Liu, K. Wang, L.F. Mun, X.Z. Qi. Using decision
tree induction for discovering holes in data, 5th Pacific
Rim Int. Conf. on Artificial Intelligence PRICAI-98,
182-193

[12] M. Orlowski. A new algorithm for the largest empty
rectangle problem, Algorithmica 5 (1990), 65-73


