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Abstract

An n-town, n ∈ N, is a group of n buildings, each oc-
cupying a distinct position on a 2-dimensional integer
grid. If we measure the distance between two buildings
along the axis-parallel street grid, then an n-town has
optimal shape if the sum of all pairwise Manhattan dis-
tances is minimized. This problem has been studied for
cities, i.e., the limiting case of very large n. The optimal
shape can be described by a differential equation. No
closed-form solution is known. We show that optimal
n-towns can be computed in time polynomial in n.

1 Introduction

Selecting an optimal set of locations is a fundamental
problem not just in real estate, but also in areas of com-
puter science. In grid computing, allocating a task re-
quires selecting n processors from a given grid [2], and
the average communication overhead corresponds to the
average Manhattan distance between processors [7], so
finding an optimal layout for n processors is precisely
the problem of determining an optimal n-town. This
problem is surprisingly tricky, with no known polyno-
mial algorithm for computing an optimal n-town.

Motivated by the problem of storing records in a
2-dimensional array, Karp et al. [5] studied strategies
that minimize average access time between successive
queries; among other results, they described an opti-
mal solution for the continuous version of our problem:
What shape of area 1 minimizes the average Manhattan
distance between two interior points? Independently,
Bender et al. [1] solved this problem in the setting of a
city, inspiring the subtitle of this paper.

Other related work by Krumke et al. [6] considers
the discrete problem of selecting a subset of k points
from a set of n points to minimize their average pair-
wise distance. They prove a 2-approximation for met-
ric distances and prove hardness of approximation for
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Figure 1: Optimal towns for n = 2, . . . , 21. All optimal
solutions are shown, up to symmetries; the numbers in-
dicate the total distance between all pairs of points.

arbitrary distances. Bender et al. [2] solve the geomet-
ric version of this problem, giving an efficient processor
allocator for Cplant, a Sandia National Labs supercom-
puter, and a PTAS for minimizing the average Man-
hattan distance. For the reverse problem of maximizing

the average Manhattan distance, see [3]. Fekete et al. [4]
consider the city-center problem: For a given city, find a
point that minimizes the average Manhattan distance.

We solve the n-town problem with an O(n7.5)-time
dynamic-programming algorithm. We also present com-
putational results and discuss discretization effects.

2 Preliminaries

We want to find a set of n distinct points from the in-
teger grid Z×Z such that the sum of all pairwise Man-
hattan distances is minimized. A set S ⊂ Z × Z of
cardinality n is an n-town. An n-town S is optimal if

∑

{s,t}∈S×S

‖s− t‖1

is minimum. We call this sum the cost of S and denote it
by c(S). We define the x-cost cx(S) as

∑

{s,t}∈S×S |sx−
tx|, where sx is the x coordinate of s; y-cost cy(S) is
the sum of all y distances, and c(S) = cx(S) + cy(S).
For two disjoint sets S and S′, we define c(S, S′) =
∑

{s,s′}∈S×S′ ‖s− s′‖1.



Without loss of generality, we consider optimal towns
around the origin and use the following notation: For
an n-town S, the set Ci = {(i, x) ∈ S : x ∈ Z} is the
ith column of S and the set Ri = {(x, i) ∈ S : x ∈ Z} is
the ith row of S.

A town S is convex if the set of grid points in the
convex hull of S equals S. The proofs of the following
two lemmas are omitted due to lack of space.

Lemma 1 An optimal n-town is convex.

Lemma 2 In every optimal n-town S, the centers of all

rows of odd length lie on a common vertical line Vo. The

centers of all rows of even length lie on a common line

Ve that has distance 1
2 from Vo. A corresponding state-

ment holds for the centers of odd and even columns that

lie on horizontal lines Ho and He of distance 1
2 . More-

over, without changing its cost, we can place S such that

Ho and Vo are mapped onto the x axis and y axis, re-

spectively, and He and Ve lie in the negative halfplanes.

Fig. 2 shows the lines from the previous lemma. In the
following we assume the preceding symmetry property.
For an n-town S, let the width of S be w(S) =
maxi∈Z |Ri| and the height of S be h(S) = maxi∈Z |Ci|.
Lemma 3 For every optimal n-town S,

w(S) > h(S)/2 − 2 and h(S) > w(S)/2 − 2.

Proof. Let S be an n-town, w = w(S), and h = h(S).
Let t = (0, l) be the topmost and (k, 0) be the rightmost
point of S. Let r = (k+ 1, 0). We show that c((S \ t) ∪
r) < c(S) if w ≤ h/2−2 and, thus, S is not optimal. We
estimate the change in cost c(r, S)− c(t, S)− |k+ l+ 1|
column by column. Comparing the costs in S and (S \
t) ∪ r shows that c(r, Ci) − c(t, Ci) ≤ c(r, C0) − c(t, C0)
for all i. We reduce the total cost by reducing it for C0:

c(r, C0) − c(t, C0)

=

⌊h−1

2
⌋

∑

i=1

i+

⌈h−1

2
⌉

∑

i=1

i+ h(k + 1) −
h−1
∑

i=1

i

≤ h

2
(1 − h

2
) + h(k + 1)

We know that 2k ≤ w − 1 because of Lemma 2. The
above term is nonpositive if w ≤ h/2 − 2. Hence, by
replacing t with r we gain at least |l + k + 1| ≥ 1. �

Lemma 4 For every optimal n-town we have

max{w(S), h(S) } = O(
√
n).

Proof. Let w = w(S) and h = h(S). We know from
Lemma 3 that w > h/2− 2. Let H be the set of all grid
points in the convex hull of the topmost, rightmost, bot-
tommost, and leftmost point of S. Because of Lemma 1,
all points in H belong to S. Because H consists of at
most n points, we have

n ≥ |H | ≥ wh/2−h > (h/2−2)h/2−h . �
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Figure 2: The lines Vo, Ve, Ho, and He from Lemma 2.
The rectangle Rw and the set of points above and below
it with cardinality Uw and Dw, respectively. The gray
points are the corner points of Rw. In this example, the
height cw of column w is set to c = 4.

3 Computing Optimal Solutions

We denote by ci = |Ci| the number of selected points in
column i and by c+i and c−i the row index of the topmost
and bottommost selected point in Ci, respectively. Note
that ci = c+i − c−i + 1; see Fig. 2.

Lemma 5 Let S be an optimal n-town containing the

points (i, c+i ) and (i, c−i ). Then all points inside the

rectangle [−i, i] × [c−i , c
+
i ] belong to S. The same holds

for the points (−i, c+−i) and (−i, c−−i) and the rectangle

[−i, i− 1] × [c−−i, c
+
−i].

Proof. If (i, c+i ) and (i, c−i ) are contained in S then, by
Lemma 2, (−i, c+i ) and (−i, c−i ) belong to S as well. By
Lemma 1 all points inside the convex hull of these four
points are contained in S. The same arguments hold for
the second rectangle. �

Now we describe the dynamic program. It starts with
the initial empty grid and chooses new columns alter-
nating from the set of columns with nonnegative and
with negative column index, i.e., it chooses the columns
according to the index sequence 0,−1, 1,−2, 2, . . .. Let
w ≥ 0 be the index of the currently chosen column and
fix cw to a value c. We describe the dynamic program
for columns with nonnegative index; columns with neg-
ative index are handled similarly.

We know from Lemma 5 that, in every op-
timal solution, every point inside the rectangle
Rw = [−w,w] × [c−w , c

+
w ] is selected. We define

cost(w, c,∆UR
w ,∆DR

w ,∆UL
w ,∆DL

w , Uw, Dw) as the mini-
mum cost of a town with columns −w, . . . , w of height
ci ≥ c for −w ≤ i ≤ w and cw = c where Uw points
lie above the rectangle Rw, having a total distance



∆UL
w and ∆UR

w to the upper-left and upper-right cor-
ner of Rw, respectively, and Dw points lie below Rw,
having a total distance ∆DL

w and ∆DR
w to the lower-

left and lower-right corner of Rw. For a given n, we
are looking for the n-town with minimum cost where
(2w + 1)c + Uw + Dw = n. Next we show that
cost(w, c,∆UR

w ,∆DR
w ,∆UL

w ,∆DL
w , Uw, Dw) can be com-

puted recursively.
Consider the current column w with cw = c. The cost

from all points in this column to all points above Rw,
in Rw, and below Rw can be expressed as

∑c+

k=c−(∆UR
w + (c+ − k) · |Uw|)

+
∑w

i=−w

∑c+

j=c−
∑c+

k=c− [(w − i) + |k − j|]

+
∑c+

k=c−(∆DR
w + (k − c−) · |Dw|) .

We can transform this into

c · (∆UR
w + ∆DR

w + Uw · c+ −Dw · c−)

+ c− · (Dw − Uw) · ((c+ 1) mod 2)

+
(

c2w + c3−c
3

)

· (2w + 1) − c3−c
6 (1)

which, obviously, depends only on the parameters
w, c, ∆UR

w , ∆DR
w , Uw, and Dw (the two param-

eters ∆UL
w , ∆DL

w are needed if we consider a col-
umn with negative index). We denote (1) by
dist(w, c,∆UR

w ,∆DR
w ,∆UL

w ,∆DL
w , Uw, Dw) and state the

recursion for the cost function:

cost(w, c,∆UR
w , . . . ,∆DL

w , Uw, Dw)

= dist(w, c,∆UR
w , . . . ,∆DL

w , Uw, Dw) (2)

+ min
c−w≥c

{cost(−w, c−w,∆
UR
−w, . . . ,∆

DL
−w, U−w, D−w)}

Because of Lemma 5 it suffices to consider only previ-
ous solutions with c−w ≥ c. In the step before, we con-
sidered the rectangle R−w = [−w,w − 1] × [c+−w, c

−
−w].

Hence, the parameters with index −w can be computed
from the parameters with index w as follows:

U−w = Uw − 2w · (c+−w − c+),

D−w = Dw − 2w · (c− − c−−w),

∆UR
−w = ∆UR

w −
w

∑

i=−w

c+

−w
∑

j=c++1

[

(w − i) + (j − c+)
]

− [Uw − U−w] · (c+−w − c+ + 1),

∆DR
−w = ∆DR

w −
w

∑

i=−w

c−
−w

∑

j=c−−1

[

(w − i) + (c− − j)
]

− [Dw −D−w] · (c− − c−−w + 1).

The parameters ∆UL
−w and ∆DL

−w can be computed
analogously.

The cost function is initialized as follows:

cost(0, c, 0, 0, 0, 0, 0, 0) =

{

c3−c
6 0 ≤ c ≤ 2

√
n+ 4 + 4,

∞ otherwise.

The bound on c is shown in the proof of Lemma 4.

Theorem 6 An optimal n-town can be computed by dy-

namic programming in O(n15/2) time.

Proof. We have to fill an eight-dimensional array
cost(w, c,∆UR,∆DR,∆UL,∆DL, U,D). Let Cmax de-
note the maximum number of occupied rows and
columns in an optimum solution. By Lemma 4, we know
that Cmax = O(

√
n).

The indices w and c range over an interval of size
Cmax = O(

√
n). Let us consider a solution for some

fixed w and c. The parameters U and D range between
0 and n. However, we can restrict the difference between
U and D that we have to consider: If we reflect the
rectangle R = [−w,w] × [c−, c+] about its horizontal
symmetry axis, the U points above R and the D points
below R will not match exactly, but in each column,
they differ by at most one point, by Lemma 2. It follows
that |U − D| ≤ Cmax = O(

√
n). (If the difference is

larger, such a solution can never lead to an optimal n-
town, and hence we need not explore those choices.) In
total, we have to consider only O(n · √n) = O(n3/2)
pairs (U,D).

The same argument helps to reduce the number of
quadruples (∆UL,∆UR,∆DL,∆DR). Each ∆-variable
can range between 0 and n · 2Cmax = O(n3/2). How-
ever, when reflecting around the horizontal symmetry
axis of R, each of the at most Dmax differing points
contributes at most 2Cmax = O(

√
n) to the difference

between the distance sums ∆UL and ∆DL. Thus we
have |∆UL − ∆DL| ≤ Cmax · 2Cmax = O(n), and simi-
larly, |∆UR − ∆DR| = O(n)

By a similar argument, reflecting about the vertical
symmetry axis of R, we conclude that |∆UL − ∆UR| =
O(n) and |∆DL − ∆DR| = O(n). In summary, the to-
tal number of quadruples (∆UL,∆UR,∆DL,∆DR) that
the algorithm has to consider is O(n3/2) · O(n) ·O(n) ·
O(n) = O(n9/2). In total, the algorithm processes
O(

√
n) · O(

√
n) · O(n3/2) · O(n9/2) = O(n7) octuples.

For each octuple, the recursion (2) has to consider at
most Cmax = O(

√
n) values c−w, for a total running

time of O(n15/2). �

4 n-Towns, Cities, and n-Block Cities

When considering n-towns for large values of n, we
converge towards the continuous weight distributions
of cities. However, the arrangements of buildings in
many cities are discretized in a different sense: An n-
block city is the connected union of n axis-aligned unit



n = 58 c(s) = 8243

Φ = 0.6434

Ψ = 0.6546

n = 59 c(S) = 8604

Φ = 0.6436

Ψ = 0.6545

n = 60 c(S) = 8968

Φ = 0.6432

Ψ = 0.6539

Figure 3: Optimal n-towns for n = 58, 59, 60; the values
Φ and Ψ refer to n-town and corresponding n-block city.

squares (“city blocks“), i.e., a polyomino with area n;
see Fig. 4. In the following, we discuss the exact rela-
tionship between n-towns and n-block cities.

Scaling a shape S by a factor of d increases the to-
tal cost by a factor of d5, i.e., by a factor of A2.5 for
an area of A. This motivated Bender et al. [1] to use

the expression D(S) := c(S)
A(S)2.5 as a scale-independent

measure for the quality of the shape of a city, e.g., any
square Q gets the same value

D(Q) =
2

a5

∫ a

0

∫ a

0

|x1 − x2| dx2dx1 =
2

3
.

A circle C yields D(C) = 512
45π2.5 ≈ 0.6504 and the opti-

mal shape achieves a value of ψ = 0.650 245 952 951 . . .
When comparing n-towns and n-block cities, we need

to account for the discretization effect. E.g., a 1-town
has an average distance of 0, as all the weight is concen-
trated in a single point, while a 1-block city has a value
of 2/3, just like any other square. We can compute the
resulting cost for n-block cities by adding an appropri-
ate adjustment term ∆(S) to the corresponding c(S)
for n-towns. Using the notation of Section 3, a straight-
forward computation shows that this term is ∆(S) =
1
3 (

∑

i c
2
i +

∑

j r
2
j ). As we noted above, any n-town is en-

closed in a bounding box of size Θ(
√
n)×Θ(

√
n); hence,

∆(S) ∈ Θ(n1.5). The dynamic programming formula-
tion of Section 3 can be modified to compute optimal
n-block cities, but we have not done this.

When considering the continuous weight distributions
of n-block cities, we have to account twice for each pair
of discrete block centers; hence, the appropriate mea-

sure for the quality of an n-town is Φ(S) = 2c(S)
n2.5 . The

measure for the corresponding n-block city is Ψ(S) =
2c(S)+∆(S)

n2.5 . Thus, the relative difference is Θ( 1
n ).

In Figure 4, we show the corresponding values for the
small examples from Figure 1; Figure 3 shows the val-
ues for larger n. (Going from n-towns to n-block cities
breaks some ties; we show only the Ψ-optimal solutions
among the Φ-optimal solutions.) This shows how Φ(S)
and Ψ(S) converge from below and above towards the
optimal city value of about 0.650 245 952 951.

Φ = 0.5724

Ψ = 0.7036

Φ = 0.5862

Ψ = 0.6788

Φ = 0.5966

Ψ = 0.6776

Φ = 0.5925

Ψ = 0.6667

Φ = 0.6094

Ψ = 0.6629

Φ = 0.6171

Ψ = 0.6663

Φ = 0.6304

Ψ = 0.6639

Φ = 0.6295

Ψ = 0.6615

Φ = 0.5132

Ψ = 0.727

Φ = 0.567

Ψ = 0.6804

Φ = 0.6072

Ψ = 0.6725

Φ = 0.618

Ψ = 0.6761

Φ = 0.6191

Ψ = 0.6654

Φ = 0.6211

Ψ = 0.6616

Φ = 0.6243

Ψ = 0.6671

Φ = 0.6277

Ψ = 0.6652

Φ = 0.63

Ψ = 0.6654

Φ = 0.6255

Ψ = 0.6561

Φ = 0.5

Ψ = 0.6667

Φ = 0.3536

Ψ = 0.7071

Figure 4: Values of Φ and Ψ for small Φ-optimal towns.
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