
CCCG 2009, Vancouver, BC, August 17–19, 2009

The Bichromatic Rectangle Problem in High Dimensions

Jonathan Backer∗ J. Mark Keil†

Abstract

Given a set of blue points and a set of red points in d-
dimensional space, we show how to find an axis-aligned
hyperrectangle that contains no red points and as many
blue points as possible. Our algorithm enumerates the
set of relevant hyperrectangles (inclusion maximal axis-
aligned hyperrectangles that do not contain a red point)
and counts the number of blue points in each one. The
runtime of our algorithm depends on the total number
of relevant hyperrectangles. We prove asymptotically
tight bounds on this quantity in the worst case. The
techniques developed directly apply to the maximum
empty rectangle problem in high dimensions.

1 Introduction

We show how to solve instances of the bichromatic shape
problem: find a figure of a certain shape that con-
tains no red points and as many blue points as possi-
ble. Specifically, we present an efficient solution to the
bichromatic axis-aligned hyperrectangle problem. The
restriction to axis-aligned shapes is common in the liter-
ature. As is customary, we assume that hyperrectangles
are axis-aligned, unless otherwise noted, to save space.
Two other common conventions that we follow are the
use of d to denote dimension and n to denote the total
number of red and blue points.

Recently, Aronov and Har-Peled posed the bichro-
matic problem for a variety of shapes [2], including
squares and rectangles. In their paper, they present an
(1+ε)-approximation algorithm for the bichromatic ball
problem that runs in O(n⌈d/2⌉(ε−2 log n)⌈d/2+1⌉) time,
for dimensions d ≥ 3.

Eckstein et al. explore the bichromatic problem for
hyperrectangles in high-dimensions, a problem moti-
vated by data-analysis [7]. They show that the bichro-
matic hyperrectangle problem is NP-hard, for arbi-
trarily high dimensions. They also present a simple
O(n2d+1) time algorithm, for any fixed dimension d. As
this runtime grows exponentially in d, they develop a
heuristic algorithm suitable for high dimensions. In a
subsequent paper, Liu and Nediak propose a O(n2 log n)

∗Department of Computer Science, University of

Saskatchewan, jonathan.backer@usask.ca
†Department of Computer Science, University of

Saskatchewan, keil@cs.usask.ca

time and O(n) space algorithm for the two-dimensional
bichromatic rectangle problem [10].

The bichromatic shape problem is a natural variant
of the maximum empty shape problem: find a figure of
a certain shape that is contained in a given bounding
box, contains no red points, and has as large a vol-
ume as possible. The techniques used to solve these
two different problems are quite similar. The enumera-
tion approach used in this paper was previously applied
to the maximum empty rectangle problem in two and
three dimensions [11, 13, 12, 5]. In a separate paper [3],
we solve the two-dimensional bichromatic square and
rectangle problems in O(n log n) and O(n log3 n) space
respectively. Our approach uses techniques previously
applied to the maximum empty square and rectangle
problems [4, 1]. All of the techniques just mentioned
require at least linear storage, which makes them un-
suitable for large data sets. Edmonds et al. describe
a heuristic solution to the maximum empty rectangle
problem that typically requires much less space [8].

For completeness, we also mention the maximum dis-
crepancy problem, which is similar to the bichromatic
shape problem: find a figure of a certain shape that
maximises the difference between the number of con-
tained blue points and number of contained red points.
Dobkin et al. solve the maximum discrepancy problem
for rectangles in O(n2 log n) time [6]. In their paper,
they relate various discrepancy problems to problems
in machine learning and computer graphics.

2 Preliminaries

By hyperrectangle, we mean a Cartesian product of d
closed intervals

∏d
i=1

[ai, bi]. Let E be any hyperrectan-
gle enclosing all of the red and blue points. We say that
a hyperrectangle is feasible, if it is contained in E and
no red point lies in its interior. To solve the bichromatic
hyperrectangle problem, we only need to consider feasi-
ble hyperrectangles. By relevant hyperrectangle (RHR),
we mean a feasible hyperrectangle that is not properly

contained in any feasible hyperrectangle. Clearly, some
RHR solves the bichromatic hyperrectangle problem.

A side of a RHR is a region of its boundary most
extreme in some co-ordinate axis (i.e. boundary points
such that the ith co-ordinate equals ai or bi). Clearly,
there are 2d sides to an RHR. We say that a side is
supported, if its interior touches a red point or E. A
property of RHRs that we repeatedly exploit is that



21st Canadian Conference on Computational Geometry, 2009

each side of a RHR is supported: if some side S is un-
supported, we can push S out while keeping the RHR
feasible, contradicting that the RHR is maximal.

In Section 3, we bound the number of RHRs in
the worst case. This complements a prior bound of
O(n logd−1 n) RHRs on average [5], under modest as-
sumptions on the input (essentially that the red points
are chosen independently).

In Section 4, we show how to enumerate all RHRs
and count the number of blue points contained in each
one. Such enumeration can also be used to solve the
maximum empty rectangle problem. In three dimen-
sions, our enumeration is asymptotically slower by a
log n factor than the algorithm by Datta and Soundar-
alakshmi [5], in the worst case. However, our enumera-
tion is much simpler, it has the same asymptotic average
case run time, and it generalises to higher dimensions.

3 Number of Relevant Rectangles

We now prove the following result conjectured in [5].

Theorem 1 For any fixed dimension d, there are

Θ(nd) RHRs, in the worst case.

3.1 Worst-case Lower Bound

In this section, we arrange n red points so that there
are at least (n/d)d RHRs that contain the origin. This
result is a generalisation of a 3D construction [5]. As
an enclosing hyperrectangle E, we take the width two
hypercube centred at the origin.

Let x+
i be the unit vector in the positive direction

of the ith co-ordinate axis, for 1 ≤ i ≤ d. Define x−
i

analogously. We first partition these 2d vectors into d
pairs so that if x+

i is paired with either x+
j or x−

j , then

x−
i is paired with neither x+

j nor x−
j . Figure 1 illustrates

the odd and even cases of one pairing scheme.

x1 x2 x3 x4 x5 x6x1 x2 x3 x4 x5

+

−

Figure 1: Partitions for d = 5 and d = 6.

For each pair of vectors α and β contained in a par-
tition, we evenly place ⌊n/d⌋ red points along the line
segment between α and β. In the projection onto the
plane P defined by α and β, most of the red points are
placed at the origin, ⌊n/d⌋ points are placed on the −α
axis, and ⌊n/d⌋ points are placed on the −β axis (see
Figure 2).

Let H be any RHR in R
d that contains the origin.

To visualise H, consider its projection H ′ into P (see

Figure 2). Let T denote the side of H furthest in direc-
tion α. The top side T ′ of H ′ is the projection of T into
P . If we were to push T in or out, T ′ would slide up
or down. Moreover, H would remain feasible, as long
as T ′ did pass through a red point. Finally, T would be
supported if and only if T ′ were supported (assuming
H still contained the origin). Similar observations hold
with respect to side R of H furthest in direction β and
the right side of H ′. Figure 2 illustrates the projection
of ⌊n/d⌋ + 1 feasible, supported placements of T and
R. These placements do not affect the placement of any
of the other sides of H. Therefore, there are at least
(⌊n/d⌋ + 1)d RHRs containing the origin.

α

β

H′

Figure 2: Potential upper right corners of H ′ form a
staircase.

3.2 Worst-case Upper Bound

In this section, we prove that there are O(nd) RHRs by
induction on d. The base case where d = 1 is trivial.

First, we bound the number of RHRs that are sup-
ported by E on at least one side. Let H be a RHR,
and let the top and bottom of H refer to its extreme
sides in the dth dimension. Suppose that the top of H
touches E (the other cases are similar). Let R be the
region between the two hyperplanes coinciding with the
top and bottom of H. To apply our inductive hypoth-
esis, we project everything contained in R into d − 1
dimensions (drop the dth co-ordinate). Note that the
projection of H is a (d − 1)-dimensional RHR. Hence,
there are O(nd−1) RHRs supported by E on the top,
for each of the O(n) possible bottoms.

Second, we bound the number of RHRs that are sup-
ported by red points on each side. We do this by (a)
mapping each such RHR to one of O(nd) kernels and
(b) arguing that at most 4d RHRs map to a single ker-
nel. Our argument is simplified by assuming that the
co-ordinates of the red points in each axis are unique. It
is possible to symbolically perturb the set of red points
so that this condition holds.

To define our mapping, we choose an arbitrary order
of the 2d sides of a d-dimensional hyperrectangle (see
Figure 3). Given a RHR H, we visit each side of H in
order. If a side contains a red point on its interior, we



CCCG 2009, Vancouver, BC, August 17–19, 2009

1

2

3

4
H

′

Figure 3: Deflation of a RHR in the given order the
sides.

push it in until a point occurs on its boundary. When
this process finishes, we are left with a kernel H ′, where
every side touches a red point, but only on that side’s
boundary. Let P be the set of red points touching H ′.
Then |P | ≤ d because (a) each side of H touches at most
one red point (by uniqueness of point co-ordinates) and
(b) each point of P touches at least two sides. Hence,
there are O(nd) possible H ′ because H ′ is the smallest
hyperrectangle containing P and |P | ≤ d.

Given H ′, we can recover H by visiting the sides of H ′

in reverse order and pushing each side out until its in-
terior touches a red point. This requires knowing which
sides to inflate. There are 22d such possibilities.

This counting argument was inspired by an argument
applied to a related problem [9].

4 Enumerating Relevant Hyperrectangles

In this section we prove the following theorem.

Theorem 2 For any fixed dimension d, we can solve

bichromatic rectangle problem in O(k logd−2 n) time and

O(k+n logd−2 n) space, where k is the number of RHRs.

The core of our approach is an efficient enumeration
of all RHRs. The details are simplified by assuming
that the co-ordinates of the red points in each dimen-
sion are unique. This can be imposed with a symbolic
perturbation of the point set.

To find RHRs, we sweep R
d from −∞ to ∞ with a

hyperplane P that is orthogonal to the dth axis. We re-
fer to the sides of P that extend towards ∞ and −∞ in
the dth axis as above and below respectively. Similarly,
we refer to the sides of a hyperrectangle that are paral-
lel to P and closest to ∞ and −∞ as top and bottom
respectively.

Let E′ be the region of the bounding hyperrectan-
gle E that lies below P . As we sweep, we ensure that
we have discovered all of the RHRs with respect to E′

(i.e. the RHRs that result from taking E′ as the bound-
ing hyperrectangle and restricting our attention to the
red points inside of E′). To do this, we maintain a list
L of all of the RHRs with respect to E′ that touch P .
We represent each such RHR by how each of its sides is
supported (i.e. by which red point or side of E′). Oc-

casionally, we must add to and delete from L. All such
events occur when P passes through a red point.

Let r1, r2, . . . denote the red points sorted in increas-
ing order of dth co-ordinate. We now describe how to
update L as P passes through ri. Let P+ and P− be
sweep planes lying just above and below ri respectively
(see Figure 4). Let L+ and L− be the lists associated
with P+ and P− respectively. The RHRs common to
both L− and L+ are not supported by ri on any bound-
ary.

Let Di be the set of RHRs in L− such that ri lies
directly above the top of each one. By our assumption
of co-ordinate uniqueness, ri supports the top of each
RHR in Di when the sweep plane reaches ri. So Di

is the set of RHRs deleted from L+. To compute Di,
we perform an orthogonal range query whenever a new
RHR H is discovered. Specifically, we add H to Dj ,
where rj is the red point with the lowest index that lies
directly above the bottom of H. If there is no such rj ,
we add H to a special set D∞. We can locate rj in

O(logd−1 n) time by using a range tree with fractional
cascading. Such a tree requires O(n logd−1 n) time and
space to construct.

Let Ai be the set of RHRs in L+ that are supported
on some side by ri. Clearly, Ai is the set of RHRs
added to L+. Let Ha be a RHR of Ai. Then ri does
not support the top of Ha, which is supported by P+. If
ri supports the bottom of Ha, then Ha is the region of
E above ri and below P+. Otherwise, Ha corresponds
to some RHR of Di as follows (see Figure 4): Let H ′

be the result of pushing the top of Ha down so that it
coincides with P−. When the sweep plane is at P−,
the top of H ′ is supported by the plane, but one other
side is not. There is at most one such unsupported side
because the co-ordinates of the red points are unique.
Push this one side out until it hits an obstacle. This
results in a RHR Hd that belongs to Di.

Ha

Hd

ri

P
+

P
−

H
′

Figure 4: An added hyperrectangle Ha corresponds to
a deleted hyperrectangle Hd (illustrated in 2D).

This correspondence between RHRs of Ai and RHRs
of Di suggests a procedure for generating Ai from Di.
Let Hd be a RHR of Di. Let S be one of the (d−1) axis-
aligned hyperplanes through ri that is perpendicular to
P . For each such S, split Hd along S, which results
in two pieces. For each piece, check if it is properly
supported on all all but two sides: the side coincident



21st Canadian Conference on Computational Geometry, 2009

with S (which will be supported by ri) and the side
coincident with P− (which will be supported by P+).
If a piece is properly supported add it to Ai. Otherwise,
discard it. This process can be executed in O(|Di|) time,
for any fixed d.

The set of all RHRs are
⋃

i Di. We can count the
number of blue points contained in each one using a
range tree with fractional cascading. Note that we do
not need to compute L explicitly (it can be constructed
from the Di). We only used it to simplify the descrip-
tion of our algorithm. Let k be the number of RHRs.
Clearly, n ∈ O(k) because each red point supports the
bottom of at least one RHR. It is straightforward to ver-
ify that this sweep-plane algorithm takes O(k logd−1 n)
time and O(k + n logd−1 n) space.

This sweep plane algorithm is similar to an algorithm
for finding maximal negative orthants [9].

4.1 Saving a Logarithmic Factor

A simple observation allows us to shave a dimension off
of our red-point range tree: When we query the red-
point range tree for a point lying above the bottom of
a RHR, we know that the desired point rj lies above
the sweep plane. Hence, the height of the bottom is
irrelevant, if we remove red points from the range tree
as the sweep plane passes over them.

Likewise, a simple observation allows us to shave a
dimension off of our blue-point range tree: The number
of points in a RHR is the number of blue points directly
above the bottom minus the number of blue points di-
rectly above the top. This allows us to perform a sep-
arate sweep to count the number of blue points in each
RHR. Similarly, we remove points from the blue-point
range tree as the sweep plane passes over them.

With these slight modifications, our algorithm takes
O(k logd−2 n) time and O(k + n logd−2 n) space.

5 Open Problems

In 2D, the bichromatic rectangle and maximum empty
rectangle problems can be solved without examining all
of the RHRs. In the worst case, these algorithms per-
form much better asymptotically than the enumeration
algorithms. At the core of these non-enumeration algo-
rithms is a fundamental observation that does not seem
to generalise to higher dimensions. Still, the gap be-
tween worst case run times in 2D suggests that we can
do better than enumeration in three or higher dimen-
sions. This remains an outstanding open problem.

References

[1] A. Aggarwal and S. Suri. Fast algorithms for com-
puting the largest empty rectangle. In Proceedings

of the third annual Symposium on Computational

Geometry, pages 278–290. ACM New York, NY,
USA, 1987.

[2] B. Aronov and S. Har-Peled. On Approximating
the Depth and Related Problems. SIAM Journal

on Computing, 38(3):899–921, 2008.

[3] J. Backer and J. Keil. The bichromatic square and
rectangle problems. Technical Report 2009-01, Uni-
versity of Saskatchewan, 2009.

[4] B. Chazelle, R. Drysdale, and D. Lee. Comput-
ing the largest empty rectangle. SIAM Journal on

Computing, 15:300, 1986.

[5] A. Datta and S. Soundaralakshmi. An efficient al-
gorithm for computing the maximum empty rect-
angle in three dimensions. Information Sciences,
128(1-2):43–65, 2000.

[6] D. Dobkin, D. Gunopulos, and W. Maass. Comput-
ing the maximum bichromatic discrepancy, with
applications to computer graphics and machine
learning. Journal of Computer and System Sci-

ences, 52(3):453–470, 1996.

[7] J. Eckstein, P. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its
application to data analysis. Computational Opti-

mization and Applications, 23(3):285–298, 2002.

[8] J. Edmonds, J. Gryz, D. Liang, and R. Miller. Min-
ing for empty spaces in large data sets. Theoretical

Computer Science, 296(3):435–452, 2003.

[9] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin.
Counting colors in boxes. In Proceedings of the

eighteenth annual ACM-SIAM Symposium on Dis-

crete algorithms, pages 785–794. Society for Indus-
trial and Applied Mathematics Philadelphia, PA,
USA, 2007.

[10] Y. Liu and M. Nediak. Planar case of the maxi-
mum box and related problems. In Proceeding of

the Canadian Conference on Computational Geom-

etry, pages 11–13, 2003.

[11] A. Naamad, D. Lee, and W. Hsu. Maximum empty
rectangle problem. Discrete Appl. Math., 8(3):267–
277, 1984.

[12] S. Nandy and B. Bhattacharya. Maximal empty
cuboids among points and blocks. Computers and

Mathematics with Applications, 36(3):11–20, 1998.

[13] M. Orlowski. A new algorithm for the largest empty
rectangle problem. Algorithmica, 5(1):65–73, 1990.


