CCCG 2010, Winnipeg MB, August 9-11, 2010

Stable Roommates and Geometric Spanners

Paz Carmi*

Abstract

In this paper we devise a new geometric spanner based
on a generalization of the known Stable Roommates al-
gorithm. This spanner is on the “path” between the
Yao graph and Yao-Yao graph, and as such it can be
computed in a distributed manner and has a bounded
degree as the Yao-Yao graph, while on the other hand,
it has the same stretch factor bound as the Yao graph.

1 Introduction

The Stable Roommates problem is the problem of find-
ing a stable matching for a set X — a matching in which
there are no two elements z,y € X that prefer each
other over their matches. More precisely, given a set X
of 2n people, where each person has ranked all the oth-
ers with a unique number between 1 and n — 1 in order
of preference, a matching is a set of n pairs {z,y} C X,
such that there are no two persons who would both
rather have each other over their current matched room-
mates. If there are no such persons, the matching is
called stable.

Geometric representation of the problem has already
been introduced in [1], where a participant is repre-
sented as a point in a metric space, and his preference
list as a sorted list of the other participants by nonde-
creasing order of their distances from him. They showed
how the stable roommates problem can be easily solved
in O(nlogn) time. Our geometric problem is a bit dif-
ferent. We approve a point to have more than one room-
mate as long as they come from different "regions” with
respect to the point. Another way to look at it is as a
different geometric representation of the generalization
of the Stable Roommates problem, where the partici-
pants are cones around all the points and the matching
is restricted to pairs that contain a common edge. Note
there may be cones without a match. The principle
guiding the preferences of each cone will be given in the
next section.

In [7], Yao has defined the Yao graph Y} as follows.
At each point p, any k equally-separated rays with apex
p define k cones of equal angles. In each cone, the short-

*Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel.

fDepartment of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel. Research is partially supported by Lynn and
William Frankel Center for Computer Science.

Lilach Chaitman'

est edge {p, ¢} among all edges incident to point p (if
there are any) is added to Y. The resulting graph is
treated as an undirected graph and called Yao graph.
It is known that the Yao graph for k > 6 is a t-spanner
(recently shown for k = 4 by Bose et al. [3]). In [6],
Wang and Li have defined the Yao-Yao graph Y,,Y; as
a subgraph of the directed Yao graph where the directed
edges are pruned as follows. At each node p, in each
cone only the shortest incoming edge among all the in-
coming edges is kept. The resulting graph is treated as
an undirected graph. Various properties of Y,,Y; have
been established, but the question whether Y, Y} is a
t-spanner remains open.

Here, we show a spanner that is on the “path” be-
tween the Yao graph and the Yao-Yao graph in the sense
that it maintains the good properties of both graphs.
More precisely, We give a new local algorithm, ‘Stable
roommates’, for computing a sparse sub-graph of a given
unit disk graph. Given a unit disk graph, the Stable
roommates algorithm is very simple, fully distributed,
performed independently on each node of the unit disk
graph and can be computed in O(n/R * nlogn) time,
where R is the number of processors in the distributed
system. The resulting spanner obtained by this algo-
rithm is a strong t-spanner, has a degree at most k as
Y.oYk, its stretch factor is at most Y; and it contains
the minimum weight spanning tree as its sub-graph. A
spanner is strong when for any pair of points p,q € P,
the spanning path between p and ¢ only contains edges
whose length is at most |pg|.

Moreover, we take a step forward towards answer-
ing the open problem of constructing a t-spanner with
angles greater than a fixed angle 6 in O(nlogn) time.
With minor changes we achieve an additional property
for our t-spanner of having only angles greater than
0 = 2n/k. The only t-spanner that possesses this
property is the greedy t-spanner. However, while our
spanner can be computed in a distributed manner in
O(n/R * nlogn) time, where R is the number of pro-
cessors in the distributed system, the most efficient con-
struction of the greedy t-spanner is sequential with time
complexity O(n?logn) (see [2]) and is more complicated
and less intuitive.

We hope that this result will help to shed some light
on the open problem: Is the Yao-Yao graph a t-spanner
for constant ¢7

We find this result quite surprising in the sense that
the Stable Roommates idea admits a new t-spanner with

2274 Canadian Conference on Computational Geometry, 2010

such good properties as the Yao-Yao graph on the one
hand and on the other hand its stretch factor is easily
shown to match the stretch factor of the Yao graph.

2 Stable Roommates t-spanner

In this section we describe an algorithm that computes
a bounded degree spanner based on a generalization of
the Stable Roommates problem. Given a constant & > 8
and a set of fixed points P, for each p € P, let C, =
{Cpo, Cpys--.,Cp,_, } denote a set of k cones labeled in
clockwise order, with apex p, and angle 8 = 27’7 We
assume the cones are half open half closed.

The approach we take to build such a spanner is
to observe all pairs of points in P and connect two
points p, ¢ € P with an edge iff the corresponding cones
Cp, € Cp and €y, € C; match according to the stable
matching definition. Meaning there are no two cones
in {J,ep Cp that prefer each other over their matches.
The preference list of each cone C,, is defined as follows.
All cones Cy; such that {p,q} ¢ Cp, N Cy, will not be
ranked, since they are forbidden matches. As for the
rest, a cone Cy, will be preferred over the cone C, if
|pr| > |pq|, while ties are broken arbitrarily.

Given a constant k > 8, for each point p, we define a
set of k cones with apex p — C},. For achieving a spanner
with stretch factor ¢, one should choose k = 27/6 such
that ¢t > 1/(cos(f) — sin(#)). In the beginning of the
Algorithm (Algorithm 1), all pairs {p, q} C P are sorted
in nondecreasing order of their distances. An edge {p, ¢}
is added to G if both p and ¢ agree on it. A point
p agrees on an edge {p,q} if the cone C,, € C, that
contains {p, ¢} is empty, i.e. Cp, N E = 0.

Algorithm 1 StableRoommates(P)

Input: A set P of points in the plane.
Output: A Stable Roommates t-spanner G = (P, E).

1: Let L be a sorted list of all pairs {p,q} C P by
nondecreasing order of their distances.

2 E— 0

3: for each edge {p,q} € L (* in the sorted order *)
do

4. Let Cp, € Cp and C,; € C, be the cones contain-

ing {p, q}.

if C),NE =0 and C;, N E =0 then
E—EU{{pq}}

Lemma 1 The matching implied by the set of edges E
in the resulting graph G = (P, E) of Algorithm 1 is a
stable matching.

Proof. Assume on the contrary there is a pair of cones
Cp; and Cy, that prefer each other over their matches,
Cy, and Cj, respectively. Meaning {p,q} € Cp, N Cy;

is shorter than {p,7} € C,, and {q,s} € Cy,, however
{p,r} and {q, s} are in E while {p, ¢} is not in E. Since
{p,r} and {q, s} were added to E, necessarily C,, N E
and Cy, N E were empty when the algorithm observed
them. Since {p, ¢} is shorter than {p,r} and {q, s}, it
was observed by the algorithm before {p,r} and {q, s},
and therefore C),, N E and C,; N E were empty at that
time and {p, ¢} should have been added to E, in con-
tradiction to the assumption. O

For a set of points P and two points p,q € P, let D),
denote the disk centered at p and containing ¢ on its
boundary, and let D, denote the disk centered at ¢ and
containing p on its boundary.

Observation 1 If an edge {p,q} is contained in the
minimum spanning tree of the complete euclidean graph
over P, then D, N D, is empty of points.

Lemma 2 The resulting graph of Algorithm 1 G con-
tains the minimum weight spanning tree as its sub-
graph.

Proof. Let {p, ¢} be an edge in the minimum spanning
tree. We will now show it is also contained in G. Con-
sider the cones C), € C,, and C,; € C, containing {p, ¢}.
Let p’ and ¢’ be the two intersection points of the bound-
aries of D), and D,. Since the angle between {p, ¢}, and
each one of {{p,p'}, {p.¢'} . {¢,p'} {q,¢'}} is 7/3 > 0,
if there was a point r € C), such that |rp| < |pg| then
r € D, N Dy, and the same holds for C),,. However, by
Observation 1, since {p, ¢} is in the minimum spanning
tree, D, N Dy is empty of points. Therefore p and ¢
must have ”agreed” on adding {p, ¢} to G. O

2.1 Bounded degree

Lemma 3 The degree of the graph G = (P,E) con-
structed by Algorithm 1 is bounded above by k.

Proof. k cones C), are defined for each point p € P.
Consider the edges E), incident to p that are added to
E during Algorithm 1. Each edge e € E, is added to
E only if the cone in C,, containing e is empty. Thus
|Ep| < [Cp| = k. U

2.2 Spanning ratio

In this section we show that the spanning ratio of the
resulting subgraph is bounded. We use Lemma 6.4.1
from [5] by Giri Narasimhan and Michiel Smid that ar-
gues the following: Let ¢, 8, and w be real numbers,
such that 0 < § < 7/4, 0 <w < (cos(d) —sin(f))/2 and
t > 1/(cos(f) —sin(0) — 2w). Let p, q,r, and s be points
in R, such that:

L.p#q,r#s,
2. Z(pg,rs) <90,

CCCG 2010, Winnipeg MB, August 9-11, 2010

3. |rs| < |pq|/(cos(6)), and
4. |pr| < wlrs|.

Then |pr| < |pq|, |sq| < |pq|, and t|pr| + |rs| + t|sq| <
tlpql.

Lemma 4 The resulting graph of Algorithm 1 is a
strong t-spanner with t = m.

Proof. Let G = (P, E) be the output graph of Algo-
rithm 1. Let d¢(p, ¢) denote the length of the shortest
path between p and ¢ in G. To prove the Lemma we
show that for every pair {s,p} € P, da(s,p) < t|spl,
and the t-path connecting them contains only shorter
edges than |sp|. We prove the above by induction on
the rank of the distance |{s, p}|, i.e., the place of {s,p}
in a nondecreasing distances order of all pairs of points
in P.

Base case: Let s, p be the closest points in P. Then the
edge {s, p} has been added to F during the first iteration
of the loop in step 3, and therefore dc(s,p) = |sp| and
clearly this path does not contain edges longer than |sp.
Induction hypothesis: Assume for every pair {r,q} €
P with distance shorter than |sp|, the Lemma holds.
The inductive step: If {s,p} € E, we are done. Oth-
erwise, w.l.o.g. assume {s,p} € C;, and {s,p} € Cp;
then, there exists either an edge {s,r} € Cs, N E, such
that [sr| < |sp|, or an edge {p,r} € Cp, N E, such
that [pr| < |sp|. Assume w.l.o.g. that there exists an
edge {s,r} € Cs, N E, such that |sr| < |sp|. Since
L(sr,sp) < 0 < xw/4, |rp| < |sp|. By the induction hy-
pothesis we get d¢(r, p) < t|rp|, and the t-path connect-
ing r and p contains only edges shorter than |rp|. Ap-
plying Lemma 6.4.1 with w = 0, we get dg(s,p) < t|sp|
and the corresponding ¢-path (goes through {s,r}) con-
tains only edges shorter than |sp|. O

Observation 2 Algorithm 1 can be applied on
UDG(P), while observing the edges of UDG(P) instead
of all pairs in P, resulting in a t-spanner of the
UDG(P) with the same properties.

Proof. By Lemma 4 the resulting ¢-spanner of Algo-
rithm 1 is strong ¢-spanner. Since the existence of an
edge {s,p} in a UDG(P) implies the existence of an edge
between every pair {r, ¢} s.t |rq| < |sp|, the t-paths con-
necting edges of UDG(P) constructed by Algorithm 1
applied on P exist also in the resulting graph of Algo-
rithm 1 applied on UDG(P). O

3 Distributed algorithm for Stable Roommates ¢-
spanner

Consider a distributed system with R processors. In this
section we show a distributed algorithm with O(n/R *
logn) running time that, given a set of points P and a

constant k > 8, computes the same t-spanner as Algo-
rithm 1 using a localized construction method.

The distributed algorithm chooses the edges accord-
ing to the same principle as in Algorithm 1, the shortest
edge that both cones (corresponding to different end-
points) agree on will be added to E. However, instead
of scanning all pairs sequentially, each point will be re-
sponsible for the edges incident to it. Every point p
will hold a list of all the other points sorted in nonde-
creasing order of their distances from it {q1, g2, ..., ¢n—1}
and attempt to add edges {{p, 1}, {p, 2} s (P> Gu-1}}
one after another. An attempt to add an edge {p,q} €
Cp, NCy; will succeed if all the previous attempts of the
other endpoint ¢ to add edges in €y, failed and it has
reached p in its list.

For simplicity of presentation we assumed that all
edges in a cone are of different lengths; however, even
if this is not the case, we can solve it using a known
method in distributed computing such as wait and no-
tify. Notice that Step 7 in Algorithm 4 terminates, since
we are in the distributed setting.

Algorithm 2 StableRoomates(P)

Input: A set of points P.

Output: A Stable Roommates t-spanner G = (P, E’).
E 0

: for each p in P (* in distributed behavior *) do
DistributedInit(p)

: for each p in P (* in distributed behavior *) do
DistributedEdgeSelction(p)

AN e

Algorithm 3 DistributedInit(p)
Input: A point p € P.
Output: A sorted list of P\{p}, List(p).

1. List(p) < Sort P\{p} by nondecreasing order of
their distances from p.

Lemma 5 The resulting graph G = (P, E) of Algo-
rithm 1 and the resulting graph G' = (P,E") of Algo-
rithm 2 are identical.

Proof. Similarly to Algorithm 1, Algorithm 2 chooses
at most one edge from every cone to be added to E'.
Moreover, the edges are chosen by the same principle —
the shortest edge whose cones on both sides agree” on
is added to E. Therefore, £ = E’ and G = G’. O

Observation 3 The running time of Algorithm 2 is
O(n/R*nlogn).

Proof. Each p € P sorts all the other n — 1 points
in O(nlogn) time. Since it is done on each proces-
sor in parallel we have O(n/R % nlogn) sorting time

2274 Canadian Conference on Computational Geometry, 2010

Algorithm 4 DistributedEdgeSelction(p)
Input: A point p € P.
Output: The spanner edges in E’ contributed by p.

1. while (List(p) # 0) do

2: {p,q} «— TOP(List(p))
/* TOP(List(p)) is the first element of List(p) */

3: Remove {p,q} from List(p)

4. Let Cp, € Cp and C,; € C, be the cones contain-
ing {p,q}

5. if Cp, N E’' # () then

: Go back to 1

7. while (|[TOP(List(q))| < |{p,¢}|) do (nothing)
/* distributed behavior ensures while-loop termi-
nation */

8 if Cyy NE' = () then

E'— B'U{{p,q}}

©

of all points. For each p € P the running time of
DistributedEdgeSelction method (Algorithm 4) is O(n)
since each point waits at most O(n) iterations in the
while loop. Thus we get the overall running time is
O(n/R xnlogn). O

Theorem 6 Given a set P of points in the plane, or
alternatively a unit disk graph, and a constant k > 8, a
t-spanner based on a generalization of the Stable Room-
mates problem with the following properties, can be com-
puted in O(n/R *xnlogn) time:

1. Stretch factort =

2. Strong t-spanner.

3. Contains the minimum spanning tree as its sub-
graph.

4. Bounded degree k.

1 —
os(0)—sin(8) ’ where 0 = 27 /k.

3.1 Angles greater than ¢

By making minor changes we can achieve a t-spanner
whose angles are all greater than # and still has all the
above properties. The only change needed is using dy-
namic cones instead of predefined ones. The boundaries
of a dynamic cone are defined by the first edge e added
to it. Then it is initialized to be a union of two cones,
each one on a different side of e with angle 6, meaning
every cone has an angle 20. Note two cones may inter-
sect and therefore the conditions which refer to the two
cones containing an edge {p, ¢}, each one corresponds to
different endpoint, may now refer to at most four cones,
at most two cones correspond to each endpoint. Before
a cone is initialized it is defined to be empty from edges.

The only t-spanner that is known to have the above
property is the greedy t-spanner. However, the most
efficient way known to compute the greedy t-spanner
is a sequential construction in O(n?logn) time and it

Phasel: Phase2:
The edge {p, ¢} is added The edge {p,7} is added
by the Algorithm by the Algorithm

and new cone is defined
(with blue dotted
boundaries).

and new cone is defined
(with black dashed
boundaries).

Figure 1: Illustrating the change described in Subsec-
tion 3.1.

is very complicated (see [2]), as opposed to the sim-
ple and intuitive local algorithm we suggested here that
can be computed by R-processors distributed system in
O(n/R x nlogn) time. Note although there is also an
approximate greedy Algorithm with O(n log? n) running
time by Das and Narasimhan, great angles are not guar-
anteed in that construction (see [4]).

Theorem 7 Given a set P of points in the plane or
alternatively a unit disk graph and a constant k > 8,
a t-spanner with all the properties of the Stable room-
mates t-spanner (Theorem 6) and additional property of
having only angles grater than 0, where 6§ = 27/k, can
be computed in O(n/R +nlogn) time.

References

[1] E. M. Arkin, S. W. Bae, A. Efrat, K. Okamoto,
J. S. B. Mitchell, and V. Polishchuk. Geometric sta-
ble roommates. Inf. Process. Lett., 109(4):219-224,
20009.

[2] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and
M. H. M. Smid. Computing the greedy spanner in
near-quadratic time. In SWAT, pages 390—401, 2008.

[3] P. Bose, M. Damian, K. Douieb, J. O’Rourke,
B. Seamone, M. H. M. Smid, and S. Wuhrer.
Pi/2-angle yao graphs are spanners. CoRR,
abs/1001.2913, 2010.

[4] G. Das and G. Narasimhan. A fast algorithm for
constructing sparse Euclidean spanners. Int. Jour-

nal on Computational Geometry and Applications,
7(4):297-315, 1997.

[5] G. Narasimhan and M. Smid. Geometric Spanner
Networks. Cambridge University Press, New York,
NY, USA, 2007.

[6] Y. Wang and X.-Y. Li. Distributed spanner with
bounded degree for wireless ad hoc networks. In
IPDPS ’02: Proc. of the 16th International Paral-
lel and Distributed Processing Symposium, page 120,
2002.

[7] A. C.-C. Yao. On constructing minimum spanning
trees in k-dimensional spaces and related problems.
SIAM J. Comput., 11(4):721-736, 1982.

