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Abstract

A planar point set S is an (i, t) set of ghost chimneys if
there exist lines H0, H1, . . . ,Ht−1 such that the orthog-
onal projection of S onto Hj consists of exactly i + j
distinct points. We give upper and lower bounds on the
maximum value of t in an (i, t) set of ghost chimneys,
showing that it is linear in i.

1 Introduction

Once upon a time in Japan, there was a power plant
with four chimneys called “ghost chimneys” (obake en-
totsu, or お化け煙突); see Figure 1. Although these
chimneys were dismantled in 1964, they are still famous
in Japan, with toys, books, manga, and movies refer-
encing them (Figure 2). They are considered a kind of
symbol of industrialized Japan in the old, good age of
the Showa era [Ada09].

One of the reasons why they are famous and are called
“ghost chimneys” is that they could be seen as two chim-
neys, three chimneys, or four chimneys depending on
the point of view. This phenomenon itself was an ac-
cident, but it raises several natural questions. What
interval of integers can be realized by such chimneys?
How many chimneys do we need to realize the inter-
val? How can we arrange the chimneys to realize the
interval?

More precisely, we consider the following problem:
given an integer i, what is the maximum value t(i)
such that there exists a set of points S ⊂ R2 and
a set H0, H1, . . . ,Ht(i)−1 of lines where, for each j ∈
{0, 1, . . . , t(i)− 1}, the orthogonal projection of S onto
Hj consists of exactly i + j distinct points? We prove
the following result:

Theorem 1 For any integer i ≥ 1, 2i ≤ t(i) ≤ 123.33i.
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Figure 1: The ghost chimneys in Japan, part of the
Senju Thermal Power Station (1926–1964) maintained
by the Tokyo Electric Power Company. [Used with per-
mission from Adachi City.]

Figure 2: Hello Ghosty

In addition to Theorem 1, we show that t(1) = 2,
t(2) = 5, t(3) = 9, and t(4) ≥ 12. These results show
that neither the lower bound nor the upper bound of
Theorem 1 is tight for all values of i. Theorem 1 is
an immediate consequence of Lemma 1 and Lemma 4,
which we prove in the next two sections, respectively.
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These ghost-chimney problems relate more generally
to understanding what orthogonal projections a single
2D or 3D shape can have. In 2D, some closely re-
lated problems have been considered in [Ski90, MPv08].
Past explorations into structures in 3D, known vari-
ously as 3D ambigrams, trip-lets, and shadow sculp-
tures, have focused on precise, usually connected projec-
tions [KvWW09, MP09]. Our work was originally mo-
tivated by considering what happens with disconnected
projections of unspecified relative position.

2 The Lower Bound

Lemma 1 For each integer i ≥ 1, there exists a set
S = S(i) of 3i − 1 points and a set H0, H1, . . . ,H2i−1

of lines such that, for each j ∈ {0, 1, . . . , 2i − 1}, the
orthogonal projection of S onto Hj has exactly i + j
distinct values.

Proof. The point set S consists of the points of an
i × 3 grid with the bottom-right corner removed; see
Figure 3. For even j, Hj is a line of slope j/2. For
odd j, Hj is a line of slope −(j + 1)/2. �

3 The Upper Bound

Our upper-bound proof is closely related to Székely’s
proof of the Szeméredi–Trotter Theorem [Szé97]. We
make use of the following version of the Crossing
Lemma, which was proved by Pach, Radoicić, Tardos,
and Tóth [PRTT04]:

Lemma 2 (Crossing Lemma) Let β = 103/6, γ =
1024/31827, and let G be a graph with no self loops, no
parallel edges, v vertices, and e > βv edges. Then

cr(G) ≥ γ · e
3

v2
.

Lemma 3 Let t = αi, let S be a set of r points, and let
H0, H1, . . . ,Ht−1 be a set of lines such that the orthog-
onal projection of S onto Hj gives exactly i+ j distinct
values. Then, t ≤ 34 or r ≤ max{4, 2/α+ 2 + α/2}i/γ.

Proof. Each projection direction Hj defines a set Lj of
i + j parallel lines, each of which contains at least one
point of S. Let G be the geometric graph that contains
the points in S plus t additional points p0, p1, . . . , pt−1.
Two vertices in S are connected by an edge in G if and
only if they occur consecutively on some line in

⋃t−1
j=0 Lj .

Additionally, each vertex pj is connected to each of the
i + j lexically largest points on each of the lines in Lj .
See Figure 4.

The graph G has t + r vertices and tr edges. Ob-
serve that we have a drawing of G so that the only
crossings between edges occur where lines in L intersect

p0p1 p2

Figure 4: The graph G for a set of points with i = 9
and t = 3.

each other. The total number of intersecting pairs of
lines in L is

X =
t−1∑
j=1

(i+ j) ·
j−1∑
k=0

(i+ k)

≤
t−1∑
j=1

(i+ j)(ij + j2/2)

≤
t−1∑
j=1

(i2j + 3ij2/2 + j3/2)

≤ i2t2/2 + it3/2 + t4/8 .

Applying Lemma 2, we learn that either

tr ≤ β(t+ r) , (1)

or

X ≥ cr(G) ≥ γ (tr)3

(t+ r)2
. (2)

In the former case, we rewrite (1) to obtain

t ≤ β(t/r + 1) ≤ 2β ≤ 34 + 1/3 ,

so t ≤ 34 (since t is an integer).
In the latter case, we expand (2) to obtain

i2t2/2 + it3/2 + t4/8 ≥ γ (tr)3

(t+ r)2
.

Substituting t = αi gives

i

(
1

2α
+

1
2

+
α

8

)
≥ γ r3

(t+ r)2
≥ γr/4 ,

where the second inequality follows from the fact that
t ≤ i+ t− 1 ≤ r. Rewriting to isolate r finally gives

r ≤
(

2
α

+ 2 +
α

2

)
i/γ .

We finish the proof by observing that, for α > 2, the
inequality r ≤ 4i/γ obtained by setting α = 2 is stronger
and still applies. �
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Figure 3: The set S(i) for i = 9 and the projection directions that yield i, i+ 1, . . . , i+ 4 distinct points.

Lemma 4 For all integers i ≥ 1, t(i) ≤ 123.33i.

Proof. Observe that i+t−1 ≤ r. Therefore, for i ≥ 18,
the lemma follows by applying Lemma 3 with α = 2.
For i ∈ {1, 2, . . . , 17}, the lemma follows by setting α =
35/i. �

4 Small Values of i

In this section we give some tighter bounds on t(i) for
i ∈ {1, 2, 3, 4}.

Lemma 5 t(1) = 2, and t(2) = 5.

Proof. Point sets achieving these bounds are the 1× 2
and the 2 × 3 grid, respectively; see Figure 5. That
these point sets are optimal follows from the fact that
the existence of H0 and H1 implies that the points of
S lie on the intersection of i parallel lines with another
set of i+ 1 parallel lines. Thus, |S| ≤ i(i+ 1), so t(i) ≤
|S| − i+ 1 ≤ i2 + 1. �

Notice that the proof of Lemma 5 implies that, for
any i, t(i) ≤ i2 + 1. The following lemma shows that,
for i ≥ 3, t(i) ≤ i2. Of course, this upper bound is
tighter than Lemma 4 for i ≤ 123.

Lemma 6 t(3) = 9.

Proof. The point set S(4) described in the proof of
Lemma 1 results in 3 distinct points when projected
onto a vertical line, therefore t(3) ≥ 9.

H0

H1

H0

H1 H2

H3

H4

(a) (b)

Figure 5: Point sets showing that (a) t(1) ≥ 2 and
(b) t(2) ≥ 5.

For the upper bound, refer to Figure 6. By an affine
transformation, we may assume that H0 is vertical and
H1 is horizontal. Thus, the points of S are contained
in the intersection of 3 horizontal lines with 4 vertical

H0

H1 `

Figure 6: The proof of Lemma 6.
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Figure 7: A (4, 12) set of ghost chimneys.

lines. This establishes that |S| ≤ 12, so t(3) ≤ 10.
To see that |S| < 12, assume otherwise and consider
any line ` that is neither horizontal nor vertical. By a
reflection through a horizontal line, we may assume that
` has positive slope, so that every point on the bottom
row and right column of S has a distinct projection onto
`, so S projects onto at least 6 distinct points on `. In
particular, this implies that there is no line H2 such that
S projects onto 5 distinct points on H2. �

Lemma 7 12 ≤ t(4) ≤ 15.

Proof. The point set and lines H0, H1, . . . ,H10 that
show t(4) ≥ 12 are shown in Figure 7. (H11 is omitted
since any sufficiently general line will do.)

To see that t(4) ≤ 15, we argue as in the proof of the
second half of Lemma 6. This establishes that |S| ≤ 20.
If |S| ∈ {19, 20} then the number of distinct projections
of S onto ` is at least 7, but this contradicts the existence
of H2. Thus, we must have |S| ≤ 18, to t(4) ≤ 15. �

5 Conclusions

We have given upper and lower bound on the largest
possible value of t, as a function of i, in an (i, t) set of
ghost chimneys. These bounds differ by only an (ad-
mittedly large) constant factor. Reducing this factor
remains an open problem. For small values of i, we
have shown that t(1) = 2, t(2) = 5, t(3) = 9, and
12 ≤ t(4) ≤ 18.

Another open problem is the generalization of these
results to three, or higher, dimensions. Given an integer
i, what is the maximum value t(i) such that there exists
a set of points S ⊂ Rd and a set H0, H1, . . . ,Ht(i)−1 of
hyperplanes where, for each j ∈ {0, 1, . . . , t(i)− 1}, the
orthogonal projection of S onto Hj consists of exactly
i+ j distinct points?
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