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Abstract

Let S be a set of points in the plane in general posi-
tion. A triangulation of S will be called even if all the
points of S have an even degree. We show how to con-
struct a triangulation of S containing at least ⌊ 2n

3 ⌋−3
points with even degree; this improves slightly the

bound of ⌈ 2(n−1)
3 ⌉ − 6 by Aichholzer et. al. [1]. Our

proof can be easily adapted to give, through a long
case analysis, triangulations with ⌊ 4n

5 ⌋ − c vertices
with even degree.

1 Introduction

Let S be a set of n points on the plane in general
position, and let Conv(S) denote the convex hull of
S. A triangulation of S is a plane graph G whose
vertex set is S, and having 2n + i − 3 edges, where
i is the number of elements of S in the interior of
Conv(S). A triangulation of S is called even if all
the vertices of S have an even degree.

Even triangulations are used in several problems.
Our original motivation to study them, arises from
applications of them to several Art Gallery prob-
lems [6]. In particular Hoffman and Kriegel proved
that every 2-connected bipartite plane graph can al-
ways be completed to an even triangulation [3]. Com-
bined with Whitney’s theorem this result implies that
a plane triangulation is 3-colorable if and only if all of
its vertices have an even degree, see Lováz for a nice
proof of this result [4]. Hoffman and Kriegel then
used the previous result to prove that any orthogonal
polygon with holes, can always be guarded with at
most ⌊n

3 ⌋ vertex guards [3].
In a different setting, while studying the existence

of monochromatic empty quadrilaterals, Aichholzer
et. al. [2] obtained some results regarding the exis-
tence of triangulations of point sets S, such that the
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putación, Universidad Nacional Autónoma de México,
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degrees of the vertices of the triangulations satisfy
some parity constrains imposed in advance on the
elements of S. They proved that for a given parity
assignment to the elements of S, there is always a tri-
angulation that satisfies approximately half of these
constrains. That result was later improved in 2009 by

Aichholzer et. al. [1] to ⌈ 2(n−1)
3 ⌉ − 6. In this paper

we give a new proof of this result. Our proof can be
easily extended (with a long case analysis) to prove
that any set of n points in general position always
has a triangulation with at least ⌊ 4n

5 ⌋− c even degree
vertices, c a constant. In what follows, S will always
denote a set of n points on the plane in general posi-
tion, n ≥ 3.

2 A triangulation with ⌊ 2n
3 ⌋ − 3 even vertices.

We will prove the following theorem:

Theorem 1 For any set S of n points on the plane

in general position, there is a triangulation such that

at least ⌊ 2n
3 ⌋ − 3 elements of S have even degree.

Our proof is constructive; given a set S of n points,
we show how to construct a triangulation of S with
⌊ 2n

3 ⌋ − 3 points with even degree.
Suppose that there is a unique element p0 of S

with the lowest y-coordinate. Order the elements
of S − p0 radially around it. Split the elements of
S − p0 into groups S1, S2, . . . of four elements each
(except perhaps for the last subset), according to
their order around p0, and calculate the Conv(S1 +
p0),Conv(S2 + p0), . . .; the edges of these convex
hulls will belong to the final triangulation, (see Fig-
ure 1).

We then triangulate the region Conv(S) −
{Conv(S1+p0)∪Conv(S2+p0), . . .} any which way,
obtaining a geometric graph G0 on S. Each point on
the boundary of the union of our slices is labelled
with ⊕ or ⊖ if they have even or odd degree in G0.

Next we process the points in S1, S2, . . ., from left
to right in such a way that when an Si is processed,
two of the first three elements in it (according to their
radial order around p0) have even degree. This will
prove our result. Suppose then that we have already
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p0

Figure 1: Slices.

processed S1, . . . , Sk−1. We show now how to process
Sk.

Let Uconv(Sk) be the upper convex hull of
Sk, that is the path formed by the vertices on
Conv(Sk) − p0. Three cases arise according to the
size of Uconv(Sk); it has four, three, or two vertices
(see Figure 2).

p0 p0 p0

Figure 2: Possible upper convex hulls.

Case 1: Suppose first that Uconv(Sk) has four ver-
tices labelled p1, . . . , p4. There are 24 = 16 different
possible possibilities for the degree parities of the ver-
tices of Sk in G0. Since we will only fix the parities of
p1, p2, and p3, we can ignore the parity of p4, it will
be taken care of when we process the next slice. Thus
we just have to deal with only 23 = 8 possibilities.

⊖⊖⊖⊛ ⊕⊖⊖⊛

⊖⊖⊕⊛ ⊕⊖⊕⊛

⊖⊕⊖⊛ ⊕⊕⊖⊛

⊖⊕⊕⊛ ⊕⊕⊕⊛

Observe that if we complete a triangulation of the
interior of Conv(Sk) of Sk by joining p0 to p2 and p3,
the parities of p2 and p3 will change, (see Figure 3).
If the parities of these vertices were ⊖⊖⊖⊛, ⊕⊖⊖⊛,
⊕ ⊖ ⊕ ⊛ or ⊕ ⊕ ⊖⊛, two of p1, p2, p3 would end up
with even parity.

If instead we connect p4 to p1 and p2, only the
parities of p1 and p2 will change (see Figure 4). This
takes care of cases ⊖⊖⊕⊛ and ⊖ ⊕⊕⊛.

Finally, if we connect p1 to p3 and p4 the parity
changes in these vertices would solve cases ⊖ ⊕⊖⊛

and ⊕⊕⊕⊛, see Figure 5.

p0 p0

Figure 3: Changing the parity of p2 and p3.

p0 p0

Figure 4: Changing the parity of p1 and p2.

p0 p0

Figure 5: Changing the parity of p3.

Case 2: Suppose next that Uconv(Sk) has three
vertices labelled p1, p2, p3. In this case, we only have
22 = 4 possibilities for the degrees parities of p1 and
p2, namely:

⊖⊖ ⊛ ⊕⊖ ⊛

⊖⊕ ⊛ ⊕⊕ ⊛

If we connect the remaining point, say p, of Sk in
the interior of Conv(Sk) to p0, p1, p2, and p3, the
parities of p1 and p2 change, and p ends with degree
four. This solves cases ⊖⊖⊛, ⊕⊖⊛ and ⊖⊕⊛ (see
Figure 6).

The case ⊕⊕⊛ is harder to solve. Let ℓ be the line
passing through p1 and p3. Two possibilities arise: p

is below, or above ℓ. The first case is solved triangu-
lating the interior of Sk as shown in Figure 7(a). For
the second case, two more sub-cases arise: p lies to
the right or to left of the line joining p0 to p2. In the
first sub-case we triangulate as in Figure 7(b).

The second sub-case is harder to solve, and will be
dealt with in Section 3.

Case 3: Suppose that Uconv(Sk) has two vertices
labelled p1, p2. We have only two possibilities for the
parity of p1, ⊖ or ⊕. Let p and q be the elements of
Sk in the interior of Conv(Sk). If the line through
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p0 p0

Figure 6: Changing the parity of p1, p2 with even
degree p.

p0 p0

(a)

p0 p0

(b)

Figure 7: Solution to two of the three possibilities
when we have the case ⊕⊕ ⊛.

p and q intersects the line segments joining p0 to p2,
and p1 to p2, then triangulate the interior of Sk as in
Figure 8 or Figure 9, according to the parity of the
degree of p1.

p0 p0

Figure 8: Case ⊕.

A similar solution applies when the line through
p and q intersects the line segments joining p0 to p1

and p2. The last, and harder case, is when the line
through p and q intersects the line segments joining
p1 to p0 and p2. This case is again solved in Section 3.

This concludes the proof of Theorem 1.

p0 p0

Figure 9: Case ⊖.

3 The bad cases

Two cases remain to be solved, those depicted in Fig-
ure 10. We only outline how to solve these cases,
as their complete solution involves a long and unen-
lightening case analysis. A complete list of all cases to
solve and to ensure that any set of points has ⌊ 2n

3 ⌋−3
points have an even degree is available online at [5].

p0 p0

Figure 10: The bad cases.

To solve these cases, we proceed as follows: If while
finding the subsets S1, . . . we detect an Sj belonging
to either of our bad cases, we modify our subsets as
follows: We join Sj with Sj+1, and solve instead for
Sj ∪ Sj+1. Notice that this will change the region
Conv(S)−{Conv(S1 + p0)∪Conv(S2 + p0), . . .} to
be triangulated.

Observe that Uconv(Sj ∪Sj+1 + p0) may have up
to six vertices. As before, we want to triangulate the
interior of Sj ∪ Sj+1 + p0 such that at least four out
of the first six vertices of Sj ∪Sj+1 have even degree.
As before, the last vertex of Uconv(Sj ∪ Sj+1 + p0)
will be taken care of in the next slice. We show how
this can be done in a concrete example in Figure 11;
the remaining cases are available at [5].

Figure 11: A bad case solved.
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4 Conclusion

We proved that for any point set S on the plane in
general position, can be triangulated in such a way
that the number of vertices with even degree in our
triangulation is at least ⌊ 2n

3 ⌋−3. The constant arises
when our last slice is a bad slice, or has less than
four vertices. We point out that using a long, tir-
ing, and unenlightening case analysis, our method can
be easily to the case when each Sk has six elements
(plus p0). This yields triangulations of S with at least
⌊ 4n

5 ⌋ − c points with even degree. In fact, we believe
that if we were to consider subsets Si of S with more
elements, and perform a huge case analysis, improve-
ments on the bounds obtained here would arise. An
interesting open problem is that of finding a different,
shorter, and simpler proof of our results. In fact, we
believe that the next conjecture, posed first in [2] is
true:

Conjecture 1 For any set of n points S in general

position, there always exists a triangulation in which

n − o(n) elements of S have even degree.

In fact, we believe that there is a triangulation of
S in which, all but a constant number of elements of
S have even degree.

We point out that our proof easily adapts to solve
the more general Parity Constraints Problem intro-
duced in [1]. In this problem we assign to each el-
ement of S a parity. In [1] the prove that for any
given parity assignment to the elements of S, there
is always a triangulation of S that satisfies at least

⌈ 2(n−1)
3 ⌉ − 6 parities. By manipulating properly the

parity assignment to the elements of S, our results
yield the same values obtained here for even triangu-
lations.
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