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1 Introduction

Point configurations and convex polytopes play central
roles in computational geometry and discrete geometry.
For many problems, their combinatorial structures, i.e.,
the underlying oriented matroids up to isomorphism,
are often more important than their metric structures.
For example, the convexity, the face lattice of the con-
vex hull and all possible triangulations of a given point
configuration are determined by its combinatorial struc-
ture. One of the most significant merits to consider com-
binatorial types of them is that there are a finite number
of them for any fixed sizes (dimension and number of
elements) while there are infinitely many those objects.
This enables us to enumerate those objects and study
them through computational experiments (for example,
see [1, 2, 12]).

Despite its merits, enumerating combinatorial types
of point configurations is known to be a quite hard task.
In fact, they do not admit good combinatorial charac-
terizations unless P = NP [20]. On the other hand, this
problem can be overcome in an abstract combinatorial
setting of oriented matroids, denoted by OMs shortly.
In fact, Finschi and Fukuda [12] performed a large-scale
enumeration of OMs including non-uniform ones and of
high rank. Aichholzer, Aurenhammer and Krasser [1],
and Aichholzer and Krasser [2] enumerated a large class
of rank-3 uniform OMs, non-degenerate configurations
in the abstract setting.

Now, to obtain all possible combinatorial types of
point configurations from OM catalogues OM(r, n), the
set of all OMs of rank r on n elements, we only need to
extract those OMs that are acyclic and realizable. For-
mally, the realizability problem is to decide whether a
given OM can be realized by a vector configuration or
not, which is the most crucial part to detect the combi-
natorial types of point configurations. It is as difficult
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n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

r = 3
1
(1)

2
(1)

4
(1)

17
(4)

143
(11)

4,890
(135)

461,053
(4,382)

95,052,532
(312,356)

unknown
(41,848,591)

r = 4
1
(1)

3
(1)

12
(4)

206
(11)

181,472
(2,628)

unknown
(9,276,601)

r = 5
1
(1)

4
(1)

25
(1)

6,029
(135)

unknown
(9,276,601)

r = 6
1
(1)

5
(1)

50
(1)

508,321
(4,382)

Table 1: The numbers of reorientation classes of simple
OMs (n: the number of elements, r: rank) (the numbers
enclosed by brackets are those of uniform OMs) [12, 1, 2]

as the Existential Theory of the Reals (ETR), the prob-
lem to decide whether a given polynomial equalities and
inequalities with integer coefficients has a real solution
or not [20]. Although it is a very hard task to solve
ETR in general, the realizability problem for small size
instances appears to be tractable by exploiting sufficient
conditions of realizability or those of non-realizability.

1.1 Brief history of related enumeration

The enumeration of realizable OMs has a long history.
Realizable OMs of rank 3 on up 11 elements has been
enumerated in [17, 15, 24, 14, 1, 2] and those of rank
4 on 8 elements in [7]. For non-uniform OMs, those of
rank 3 on up to 8 elements were decided in [16].
The enumeration of combinatorial types of convex

polytopes also has a long history. All combinatorial
types of d-polytopes with n vertice can be enumerated
efficiently if d ≤ 3 or n ≤ d + 3 [17, 10]. On the other
hand, the enumeration is known to be quite difficult for
d ≥ 4 and n ≥ d + 4 [25]. For those cases, the enu-
merations were performed for n = 4, d = 8 case [4], and
n = 4, d = 9 and simplicial case [3].

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

d = 2
1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

d = 3
1
(1)

2
(1)

7
(2)

34
(5)

257
(14)

2606
(50)

d = 4
1
(1)

4
(2)

31
(5)

1294
(37)

unknown
(1142)

d = 5
1
(1)

6
(2)

116
(8)

unknown
(unknown)

Table 2: The numbers of convex polytopes (the numbers
enclosed by brackets are those of simplicial polytopes)
(n: the number of vertices, d: dimension)

However, there is no large database of these objects
including degenerate ones or of high dimension cur-
rently. Many problems in combinatorial geometry re-
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main open especially for high dimensional cases or de-
generate cases, and thus a database of combinatorial
types for higher dimensional or degenerate ones will be
of great importance. For example, characterizing the
f -vectors of d-polytopes is a big open problem for d ≥ 4
while the same questions for 3-polytopes and for simpli-
cial polytopes have already been solved [17].
Since Finschi and Fukuda developed a database of

OMs [11, 12] containing non-uniform ones, the realiz-
ability classification of larger oriented matroids includ-
ing non-uniform case has begun. Various existing cer-
tificates [8, 26, 26, 9, 18] and new certificates [13, 22, 19]
were applied to OM(4, 8) and OM(3, 9) [13, 21, 22,
23, 19]. However, there are 4803 oriented matroids in
OM(4, 8) and 8548 oriented matroids in OM(3, 9) whose
realizability has remained unknown as shown in Fig-
ure 1.
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Figure 1: Classifications of OM(4, 8) & OM(3, 9) w.r.t.
certificates [13, 21, 22, 23, 19]

1.2 Our contribution

In this paper, we propose a new realizability certificate,
motivated by a solvability sequence method [8]. Using
it, we manage to realize all realizable OMs in OM(4, 8)
and OM(3, 9) except for 3 irrational ones [23] and 8
other OMs. Combining these results and hand com-
putations, we complete the classification of OM(4, 8),
OM(3, 9) and OM(6, 9).

Theorem 1.1

(a) Among 181, 472 OMs in OM(4, 8) (reorientation
class), 177, 486 OMs are realizable and 3, 986 are
non-realizable.

(b) Among 461, 053 OMs in OM(3, 9) (reorientation
class), 460, 779 OMs are realizable and 274 are non-
realizable.

(c) Among 508, 321 OMs in OM(6, 9) (reorientation
class), 508, 047 OMs are realizable and 274 are non-
realizable.

As a byproduct, we obtain the following results.

Theorem 1.2

(a) There are 15, 287, 993 2-dimensional point configu-
rations on 9 elements, 105, 128, 749 5-dimensional
point configurations on 9 elements and 10, 559, 305
3-dimensional point configurations on 8 elements.

(b) There are 47, 923 5-dimensional polytopes with 9
vertices.

2 Oriented matroids and the realizability problem

In this section, we review basic facts about oriented
matroids. For further, details about oriented matroids,
see [5].
Let P = (p1, . . . , pn) be a point configuration in Rr−1.

Then we define a map χ : {1, . . . , n}r → {+,−, 0} by

χ(i1, . . . , ir) := sign(det(vi1 , . . . , vir )),

where v1 :=

(
p1
1

)
,. . . ,vn :=

(
pn
1

)
∈ Rr are the as-

sociated vectors of p1, . . . , pn. We consider the map χ
as the combinatorial type of P , satisfying the following
properties.

Definition 2.1 (Chirotope axioms)
Let E be a finite set and r ≥ 1 an integer. A chirotope
of rank r on E is a mapping χ : Er → {+1,−1, 0} which
satisfies the following properties.

(a) χ is not identically zero.

(b) χ(iσ(1), . . . , iσ(r)) = sgn(σ)χ(i1, . . . , ir)
for all i1, . . . , ir and every permutation σ, where

sgn(σ) :=
∏

i>j
σ(i)−σ(j)

i−j .

(c) For all i1, . . . , ir, j1, . . . , jr ∈ E such that
χ(js, i2, . . . , ir) · χ(j1, . . . , js−1, i1, js+1, . . . , jr) ≥ 0
for s = 1, . . . , r, we have
χ(i1, . . . , ir) · χ(j1, . . . , jr) ≥ 0.

We define an oriented matroid , an OM shortly, as a pair
of a finite set E and a chirotope χ : Er → {+1,−1, 0}
satisfying the above axioms. If |E| = n, we call the pair
(E, {χ,−χ}) a rank-r OM with n elements. It is called
a uniform OM if χ(i1, . . . , ir) ̸= 0 for all 1 ≤ i1 < · · · <
ir ≤ n.
Every vector configuration has the underlying OM,

but the converse is not true because “non-realizable”
OMs exist.
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Definition 2.2 Given a rank-r OM M =
(E, {χ,−χ}) with n elements, the realizability problem
for (E, {χ,−χ}) is to decide whether the following poly-
nomial system has a real solution or not,

sign(det(vi1 , . . . , vir )) = χ(i1, . . . , ir), (1)

for v1, . . . , vn ∈ Rr and 1 ≤ i1 < · · · < ir ≤ n.

If M arises from a vector configuration, M is said to be
realizable, otherwise non-realizable. Acyclic realizable
OMs corresponds completely to the combinatorial types
of point configurations. We do not explain acyclicity
here. For details, see [5].

3 Our method to decide realizability

We decide realizability of OMs by solving the polyno-
mial systems (1). This problem is as hard as solving
ETR asymptotically, however, the system for realizabil-
ity contains various kinds of redundancies, and can be
solved exploiting special structures of them for small
size instances.
First, we apply techniques used in [8, 22] to sim-

plify the polynomial systems. Then we eliminate
square-free variables, motivated by a solvability se-
quence method [8]. We consider the following elimi-
nation rule similarly to [8].

Proposition 3.1 Let l1, l2 ≥ 0 be integers and Li, Rj

rational functions for i = 1, . . . , l1 and j = 1, . . . , l2.
Then the feasibility of polynomial system:{

y < Ri(x1, . . . , xn) (i = 1, . . . , l1),

y > Lj(x1, . . . , xn) (j = 1, . . . , l2)

is equivaluent to that of the following polynomial system:

Lj(x1, . . . , xn) < Ri(x1, . . . , xn) (i = 1, . . . , l1, j = 1, . . . , l2).

The solvability sequence method applies this elimina-
tion rule under bipartiteness condition [8] for determi-
nant systems. We consider here the rule for general
polynomial inequalities to eliminate more variables.
We note that an elimination rule for systems contain-

ing equalities can also be considered easily by substitu-
tion operations. A variable y appearing in the propo-
sition can be seen as redundant. We try to eliminate
as many variables of this type as possible. To apply
this elimination rule to as many variables as possible,
we consider the following additional rule, which we call
a branching rule.

Proposition 3.2 Let k1, k2 ≥ 0. Then polynomial sys-
tem:{
Ai(x1, . . . , xn)y < Bi(x1, . . . , xn) (i = 1, . . . , k1),

Aj(x1, . . . , xn)y = Bj(x1, . . . , xn) (j = k1 + 1, . . . , k1 + k2)

is feasible if and only if one of the following polynomial
systems is feasible.

sign(Ai(x1, . . . , xn)) = s(i) (i = 1, . . . , k1 + k2),

y < Bi(x1,...,xn)
Ai(x1,...,xn)

(i ≤ k1, s(i) = +),

y > Bi(x1,...,xn)
Ai(x1,...,xn)

(i ≤ k1, s(i) = −),

Bi(x1, . . . , xn) > 0 (i ≤ k1, s(i) = 0),

y =
Bj(x1,...,xn)
Aj(x1,...,xn)

(j > k1, s(j) ̸= 0),

Bj(x1, . . . , xn) = 0 (j > k1, s(j) = 0),

for s : {1, . . . , k1 + k2} → {+,−, 0}.

We note here that the solvability sequence method con-
sider special cases where the sign of Ai are known in
advance for all i = 1, . . . , k1 + k2.
One can eliminate a square-free variable y by applying

the branching rule and then the elimination rule for y
and obtain 3k1+k2 polynomial systems with n variables

and at most
k2
1

4 +k1+k2 constraints. Using the branch-
ing rule, we can formulate a problem to give realizations
as a kind of tree search problems as follows. Starting
from the root node, which consists of the original poly-
nomial system, we expand nodes using the elimination
rules and the branching rule repeatedly. If we eliminate
all variables at some node and obtain a consistent sys-
tem, we prove the feasibility. It can be viewed as an
extension of the solvability sequence method.
In addition, we try to prove the feasibility of polyno-

mial systems such as x2 − 2xy + y2 > 0 and a3 − b3 >
0, a3 − 2b3 < 0. These systems are clearly feasible, but
there exist no efficient and unified algorithm to prove
the feasibility known to the authors. We propose to use
random assignments to variables in order to prove the
feasibility. That is, we decide whether we arrive at goal
nodes or not using the random assignments instead in
the above tree search. In this setting, we define the cost
of each node x by c(x) := (log23)k1+k2, where k1, k2 are
the parameters appearing in Proposition 3.2, and apply
the iterative lengthening search to it by increasing the
limit of the total cost by 1.

4 Experimental results

We apply our method to OM(4, 8) and OM(3, 9). For
random assignments, we consider the uniform distribu-
tion of {n/100 | n = 1, 2, ..., 10, 000}m, where m is the
number of variables and try random assignments 1000
times at every node. Our method manages to find real-
izations of all realizable OMs in OM(4, 8) and OM(3, 9)
except for 3 irrational ones and 8 other OMs. In order
to generate realizations for the 8 OMs, we added some
hand computations and then applied our method. As a
result, we obtained complete classification of OM(4, 8),
OM(3, 9). In addition, the classification of OM(6, 9) was
obtained by the duality of OMs [5] (Theorem 1.1).
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From these results, we obtain the combinatorial types
of point configurations (Theorem 1.2) by generating re-
labeling classes of acyclic realizable OMs. We extract
realizable matroid polytopes from them and compute
the face lattices to obtain combinatorial types of poly-
topes (Theorem 1.2).

5 Conclusion

In this paper, we complete the classification of OM(4, 8),
OM(3, 9) and OM(6, 9), which almost reaches the limit
of today’s computational environments. Our Java pro-
grams and the classification results are available at
http://www-imai.is.s.u-tokyo.ac.jp/~hmiyata/

oriented matroids/index.html
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