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Abstract

We investigate experimentally the Domatic Partition
(DP) problem, the Independent Domatic Partition
(IDP) problem and the Idomatic partition problem in
Random Geometric Graphs (RGGs). In particular,
we model these problems as Integer Linear Programs
(ILPs), solve them optimally, and show on a large set
of samples that RGGs are independent domatically full
most likely (over 93% of the cases) and domatically full
almost certainly (100% of the cases). We empirically
confirm using two methods that RGGs are not idomatic
on any of the samples. We compare the results of the
ILP-based exact algorithms with those of known color-
ing algorithms both centralized and distributed. Color-
ing algorithms achieve a competitive performance ratio
in solving the IDP problem [11, 10]. Our results on the
high likelihood of the “independent domatic fullness”
of RGGs lead us to believe that coloring algorithms can
be specifically enhanced to achieve a better performance
ratio on the IDP size than [11, 10]. We also investigate
experimentally the extremal sizes of individual domi-
nating and independent sets of the partitions.

1 Introduction and Motivation

The domatic partition (DP) problem is a classical prob-
lem in graph theory whose goal is to partition a graph
G into disjoint dominating sets. The domatic number
d(G) is the maximum number of dominating sets in such
a partition [3]. The concept has an important appli-
cation to energy conservation and sleep scheduling in
Wireless Sensor Networks (WSN) [16, 15, 7, 9, 11, 10]
which are often modeled in practice as Random Geomet-
ric graphs (RGGs). A random geometric graph G(n, r)
is defined by n vertices uniform in the unit square with
an edge between any two vertices of V within Euclidean
distance r of each other. An RGG simply induces a
uniform probability distribution on a Unit Disk Graph
(UDG). A variation of the DP problem is the Indepen-
dent Domatic Partition (IDP) problem which seeks to

∗Department of Computer Science, Southern
Methodist University. Dallas, TX 75275-0122,
{dmahjoub,matula}@lyle.smu.edu

†Engineering Management, Information, and Systems Depart-
ment, Southern Methodist University. Dallas, TX 75275-0122,
aleskovs@lyle.smu.edu

partition a graph G into disjoint independent dominat-
ing sets. The independent domatic number dind(G) is
the maximum size of such a partition.

For any graph G, dind(G) ≤ d(G) ≤ δ(G) + 1 where
δ(G) denotes the minimum degree in G. If d(G) =
δ(G)+1 and/or dind(G) = δ(G)+1, then G is called do-
matically full (DF) and/or independent domatically full
(IDF) respectively [3]. A graph whose vertices V can
be strictly partitioned into disjoint independent domi-
nating sets is termed indominable [1] or idomatic [3].
The idomatic number id(G) is the partition’s maximum
size. Notice that the DP, IDP and idomatic problems
are all NP-complete in general graphs [2, 4, 8] and also
believed to be so in UDGs [13].

The study described herein is motivated by the desire
to empirically verify the existence of the upper bound
of δ + 1 disjoint independent dominating sets in RGGs
(which model Wireless Sensor Networks). Namely, are
random geometric graphs independent domatically full
in practice?

Moreover, we experimentally study the “domination
chain” γ(G) ≤ i(G) ≤ β0(G) in RGGs. The “domina-
tion chain” is a relation between graph parameters that
is satisfied in any graph G [3], where γ(G) is the size of
the minimum dominating set (MDS) termed the domi-
nation number, i(G) is the size of the minimum indepen-
dent dominating set (MIDS) termed the independence
domination number and β0(G) is the size of the maxi-
mum independent set (MaxIS) termed the independence
number. Finding these values are NP-complete prob-
lems in general graphs and Unit Disk Graphs [3, 12].

2 Our Contributions

In this paper, our main contributions are:
-We solve the IDP problem optimally and show that

over 93% of the RGG instances are independent domat-
ically full and 100% of the instances are domatically
full. The high likelihood of the existence of an opti-
mal partition of δ + 1 independent dominating sets in
typical RGGs suggests that coloring algorithms can be
fine-tuned to achieve a better performance ratio [11, 10].

-We confirm by Smallest Last (SL) coloring [14] for
a large sample of RGG instances that χ(G) ≥ ω(G) >
δ(G) + 1, hence these graphs cannot be idomatic [1].
In addition, we formulate the idomatic partition prob-
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lem as an ILP and confirm through experiments that all
graphs of the sample are not idomatic.

-We experimentally study the node packing in the sets
of the IDP solution and also report on the domination
chain values and compare the results obtained by ILP
algorithms and coloring algorithms with the asymptotic
bounds based on “optimal” triangular lattice packing.

We believe this study answers relevant questions for
practitioners and also stimulates further research on the
approximability of the IDP problem in UDGs and RGGs
and on the asymptotic behavior of domination and do-
matic properties in RGGs.

3 Algorithms

IDP Formulation. Given a graph G = (V,E) and the
set K = {1, ..., δ +1}, we formulate the IDP problem as
the following Integer Linear Program (ILP):

maximize

δ+1∑

k=1

uk

s.t. xk
u+

∑

v:(u,v)∈E

xk
v ≥ uk ∀u ∈ V, k ∈ K (1)

xk
v + xk

u ≤ 1 ∀u, v ∈ V : (u, v) ∈ E, k ∈ K (2)
δ+1∑

k=1

xk
u ≤ 1 ∀u ∈ V (3)

uk ∈ {0, 1}, xk
u ∈ {0, 1} ∀u ∈ V, k ∈ K (4)

where uk=1 if dominating set Sk = {u|xk
u = 1}

is selected in the IDP and uk=0 otherwise. Constraint
(1) expresses domination, (2) independence, (3) node
disjointness, i.e. a node can be part of at most one
set, and (4) variable integrality. We also formulate
the idomatic partition problem as an ILP where we
maximize the size of the independent domatic partition
as well as the total number of packed nodes in the sets
of the partition. The exact algorithms for the MDS,
MIDS and MaxIS problems are also modeled as ILPs.
Coloring Heuristics. We use 5 centralized graph
coloring heuristics [11] and 4 distributed ones [10] to
experimentally approximate the IDP problem.

4 Experimental Results

In this paper, ILP models are solved optimally using
CPLEX 10.0 installed on a Dual Quad Core Intel Xeon
X5570 with 72 GB RAM running CentOS Linux 2.6.18.
Each core is clocked at 3.00 GHz. The coloring algo-
rithms are implemented in C#.Net (Microsoft Visual
Studio 2005) on an Intel Core 2 Duo E8400 processor
clocked at 3.00 GHz with 3 GB RAM running Win-
dows Vista Enterprise SP1. Our data set consists of
15 graphs generated randomly with δ ∈{5,10,20} and
n ∈{50,100,200,400,800}. Results for each (δ, n) pair
are averaged over 20 RGG instances, except for the

(δ = 20, n = 800) case where we average over 10 in-
stances, given that the running times of the ILP models
were prohibitively long. This provides a sample of 290
test RGG instances that we choose all to be connected.
An RGG instance of parameters (δ, n) is selected as fol-
lows: First, we generate all n vertices’ (x,y) coordinates
i.u.d in the unit square then we sort in non-decreasing
order all possible n(n − 1)/2 edges by their Euclidean
distance. Following an evolutionary random graph gen-
eration paradigm [5], we add the edges to the graph
one-by-one in increasing length until the minimum de-
gree over all n vertices equals δ. The edge length that
achieves the desired δ represents r of the graph G(n, r).
The values of δ are picked to be representative of WSNs
modeled as RGGs where typical node degrees cannot
be too high. The exact ILP-based algorithms have a
running time that can be exponential in the size of the
input, whereas the coloring heuristics achieve a compet-
itive performance ratio on RGGs in polynomial time.

4.1 Domination and Independence in RGGs

Table 1 reports the exact values of the domination chain
parameters γ(G), i(G) and β0(G) by solving the ILP
models of the MDS, MIDS and MaxIS problems. For
indicative purposes, we report the average radius r cal-
culated over the set of 20 r values selected to achieve
the desired δ for each one of the 20 RGG instances rep-
resentative of a given (δ, n) pair. Based on a triangular
lattice packing argument, we showed in [9, 11] lower and
upper bounds on the size of a maximal (dominating) in-
dependent set, which we denote respectively as itr and

βtr
0 . Namely, itr = 1

3 .[1/(r2
√

3
2 )] and βtr

0 = 1/(r2
√

3
2 ).

We also use βn(r) = (1 + 1/r)2 as the absolute upper
bound on the size of a maximum independent set in a
random geometric graph G(n, r) [9].

We observe that itr ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ βtr
0 ≤

βn(r). However, in certain cases, e.g. (δ = 10, n = 50),
we have β0(G) > βtr

0 . In other words, the computed ex-
act value of the independence number β0(G) is greater
than the expected triangular lattice-based upper bound
βtr

0 . We attribute this to a boundary effect in the unit
square which produces a value of βtr

0 smaller than if we
had an infinite unbounded lattice. Furthermore, we re-
port that in 288 cases out of 290 (99.3%), γ(G) = i(G).
By Theorem [3], if G is a graph containing no induced
subgraph isomorphic to K1,3 (i.e. G is claw-free), then
γ(G) = i(G). We verified, however, that all graphs
have, in fact, at least one claw. This is simply an em-
pirical verification that the theorem is a conditional but
not a biconditional.
Table 2 shows the extremal sizes of individual indepen-
dent dominating sets obtained in the IDP partitions.
For lack of space, we only show the results of the ILP
exact model and those of two greedy coloring heuristics:
Smallest Last (SL), a centralized topology-based algo-
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rithm that first orders the vertices recursively by delet-
ing minimum degree vertices, and then assigns colors in
the reverse “smallest last” order [14]; and Distributed
Lexicographic (DLX), a distributed geometry-aware al-
gorithm that assigns colors distributively respecting the
order of the vertices’ x coordinates (with ties broken ac-
cording to the y coordinates) [10]. iILP , βILP , iSL, βSL,
iDLX and βDLX represent the minimum and maximum
size among all independent dominating sets obtained in
the IDP partition solution by the ILP model, SL and
DLX coloring methodology respectively. In Table 2, we
observe that coloring heuristics pack more vertices in
any single set than ILP, i.e. βSL and βDLX are closer
to the upper bounds β0(G) or βtr

0 than βILP is.

Table 1: Domination chain values.

δ, n, r itr γ(G) i(G) β0(G) βtr
0 βn(r)

5,50,0.41 2.40 3.65 3.65 7.20 7.20 12.1
5,100,0.30 4.70 6.10 6.10 12.6 14.3 20.3
5,200,0.19 10.8 12.1 12.2 26.2 32.4 39.6
5,400,0.14 18.4 19.9 19.9 44.5 55.3 62.7
5,800,0.10 40.4 40.4 40.4 91.0 121 126

10,50,0.52 1.40 2.50 2.55 4.90 4.28 8.50
10,100,0.38 2.60 4.00 4.00 8.65 7.95 13.1
10,200,0.26 5.70 7.15 7.15 16.4 17.2 23.5
10,400,0.19 10.5 12.6 12.6 29.3 31.8 38.9
10,800,0.13 23.2 25.2 25.2 59.9 69.8 76.9

20,50,0.72 0.70 1.15 1.15 3.90 2.20 5.70
20,100,0.51 1.40 2.80 2.80 5.50 4.30 8.67
20,200,0.37 2.80 4.10 4.10 9.95 8.50 13.8
20,400,0.26 5.50 7.30 7.30 17.4 16.7 23.0
20,800,0.18 11.4 14.3 14.3 35.7 34.3 41.6

Table 2: Min/Max independent dominating sets sizes.

δ, n iILP βILP iSL βSL iDLX βDLX

5,50 3.90 5.10 4.55 6.10 4.40 6.45
5,100 7.20 9.05 9.50 10.9 8.85 11.8
5,200 14.5 17.7 19.7 22.0 20.5 23.4
5,400 23.1 26.5 34.7 37.2 35.7 40.4
5,800 47.1 52.4 74.8 77.3 77.3 82.5

10,50 2.60 3.90 2.80 4.35 2.80 4.65
10,100 4.20 6.10 5.45 7.40 5.40 8.05
10,200 7.90 10.2 11.6 13.7 10.8 14.8
10,400 13.6 16.6 21.4 24.5 21.2 26.5
10,800 28.7 33.1 45.9 49.6 47.0 52.6

20,50 1.15 3.00 1.15 2.95 1.15 3.25
20,100 2.85 3.95 3.10 4.85 3.15 5.35
20,200 4.15 6.30 5.85 8.45 5.85 9.30
20,400 7.65 10.2 11.7 14.9 11.5 16.2
20,800 15.7 20.4 23.1 27.5 22.4 29.3

Table 3: Non independent domatically full instances.

(5, 100) (5, 800) (10, 50) (20, 50) (20, 100)
95%(1) 90%(1) 95%(1) 40%(1,6) 85%(1)

4.2 Independent Domatic Partitions in RGGs

We report that all 290 experimented RGG instances
were domatically full and 271 (over 93%) were in-
dependent domatically full (IDF). Namely, the cases
(5, 50), (5, 200), (5, 400), (10, 100), (10, 200), (10, 400),
(10, 800), (20, 200), (20, 400) and (20, 800) were all IDF.
Table 3 shows the (δ, n) pairs where some instances
are not IDF. For each (δ, n) pair, we report the per-
centage of random instances that are IDF, the second
value(s) between parentheses denotes the number of sets
(or min and max number of sets) that are missed com-
pared to the upper bound (δ + 1). For example, in the
(δ = 20, n = 50) case, 40% of the 20 instances were IDF,
the lowest gap from δ + 1 is one set, and the highest is
6 sets. The pattern we observe is that when δ is very
close to n (a highly dense graph), the graph has a higher
chance not to be independent domatically full.

We define the IDP packing ratio as the portion of
nodes of V in the dind(G) independent dominating sets.
Figure 1a shows the evolution of the ratio as n grows
for various δ. For a fixed δ, the ratio decreases with
increasing n, and it increases for fixed n as δ increases.
We derive from [1] that if χ(G) ≥ ω(G) > δ(G)+1 then
G is not idomatic. We use ωSL(G) as a lower bound on
the clique number obtained by Smallest Last coloring
[11] and report that in all samples, ωSL(G) > δ(G) + 1,
therefore the graphs are not idomatic. We also confirm
this observation by solving the ILP model of the Ido-
matic partition problem. We define the Idomatic gap
as the ratio of the maximal clique value ωSL over δ + 1
and conjecture that the closer the ratio is to 1, the more
likely the graph is to be idomatic. We observe that the
Idomatic gap is correlated with the IDP packing ratio.
Intuitively, the larger the Idomatic gap is, the lower is
the IDP packing ratio. Figure 1b shows the evolution
of the Idomatic gap as n grows for various δ. Figure
1c shows the performance ratio on dind(G) obtained by
SL and DLX. We observe that the ratio decreases as n
increases and it is generally higher for the same n when
δ increases. Notice that these ratios are obtained as a
by-product of the coloring algorithms whose purpose is
unrelated to approximation of the IDP problem.

5 Conclusion and Future Work

We have shown experimentally that RGGs are domat-
ically full in all instances and independent domatically
full in 93% of the instances. Strongly chordal (SC)
graphs are provably domatically full [2, 6]. Further re-
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Figure 1: Performance of the Independent Domatic and Idomatic Partitions for various δ.

search related to this work includes the problem of de-
termining whether the experimented graphs are strongly
chordal which would explain their domatic fullness. A
more general question is are RGGs strongly chordal with
high likelihood? Another direction we are pursuing is
how do we enhance the coloring algorithms to improve
their performance ratio in solving the IDP problem.

We would like to thank Dr. Jeffery L. Kennington for
several helpful discussions on the ILP models.
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