
CCCG 2010, Winnipeg MB, August 9–11, 2010

Computing the Straight Skeleton of a Monotone Polygon in O(nlogn) Time

Gautam K. Das∗ Asish Mukhopadhyay† Subhas C. Nandy‡ Sangameswar Patil§ S. V. Rao¶

Abstract

The straight skeleton of a simple polygon is defined
as the trace of the vertices when the initial polygon
is shrunken in self-parallel manner [2]. In this paper,
we propose a simple algorithm for drawing the straight
skeleton of a monotone polygon. The time and space
complexities of our algorithm are O(nlogn) and O(n)
respectively.

1 Introduction

Skeleton like structure is often used for the description
of basic topological characteristics of a 2D object, and
have numerous applications in image processing, com-
puter vision, solid modeling, mesh generation, to name
a few [3, 11]. The medial axis or the skeleton of a simple
polygon P is the locus of the centers of all the circles
inside P that touch the boundary of P in two or more
points. The medial axis of an arbitrary simple polygon
consists of line segments and parabolic arcs, where each
parabolic arc corresponds to a reflex vertex. It can also
be viewed as the Voronoi diagram whose sites are the
edges and vertices of the polygon boundary. The me-
dial axis is basically the one dimensional representation
of a simple polygonal object. In spite of many uses of
medial axis, its curved arcs have been considered to be
a shortcoming in different applications.

Straight skeleton for a simple polygon has been intro-
duced in [2]. It is solely made of straight line segments
which are pieces of angular bisectors of polygonal edges.
Unlike medial axis, the straight skeleton of an arbitrary
simple polygon is not the Voronoi diagram of its edges.

The definition of straight skeleton can be generalized
to (i) arbitrary planar straight line graphs [1], which
has applications in planar motion planning, and (ii) in
3D polyhedra, which has applications to solid modeling.
Some nice applications of the straight skeleton are also
demonstrated in computational origami [6, 7]

Although the medial axis of a simple polygon can be
constructed in linear time [4], the fastest known algo-
rithm for the straight skeleton runs much slower [9].

∗University of New Brunswick, Fredericton, Canada
†University of Windsor, Windsor, Canada
‡Indian Statistical Institute, Kolkata, India
§Tata Consultancy Services, Pune, India
¶Indian Institute of Technology, Guwahati, India

Table 1, lists the time and space bounds of various al-
gorithms. Here n is the total number of vertices and
r is the number of reflex (non-convex) vertices of the
polygon; ǫ is an arbitrarily small positive constant.

Cheng and Vigneron [5] established connection be-
tween straight skeleton and motorcycle graph, and pre-
sented an O(n

√
n log n) time algorithm for computing

motorcycle graph. They also proposed a randomized al-
gorithm for computing the straight skeleton of a simple
polygon, which runs in O(n log2 n) time after computing
motorcycle graph induced by reflex vertices of the poly-
gon. Combining these two algorithms they proposed a
randomized algorithm for computing the straight skele-
ton of a simple polygon with r reflex vertices which runs
in O(n log2 n + r3/2 log r) expected time.

2 The straight skeleton and its properties

The straight skeleton of a simple polygon P is denoted
by S(P ). The S(P ) is defined using an appropriate
shrinking process for P . The boundary of P is con-
tracted towards its interior in a self-parallel manner,
and at the same speed for all edges. Each vertex of P
moves along the angular bisector of its incident edges.
This situation continues as long as the boundary does
not change topologically. Then a new node of S(P ) is
created. The shrinking process continues in the result-
ing polygon(s). The process terminates when the area of
all the resulting polygons become zero. For the demon-
stration of the shrinking process, the reader may refer
to [2]. It gives a hierarchy of nested polygons. Each
polygon in the hierarchy is obtained after any one of
the following three events.

e

e

v

(a) (b) (c)

Figure 1: Illustration of (a) Edge-event, (b) split-event,
and (c) vertex-event

edge-event: An edge e of P vanishes due to shrink-
ing. This event is denoted by EE(e). After the occur-
rence of EE(e), the edges incident to the two end-points



22nd Canadian Conference on Computational Geometry, 2010

Table 1: Time and space complexity of earlier algorithms.

Time Space Reference
O(n2logn) O(n) [1]
O(nrlogn) O(nr) [2, 9]

O(nlogn + nrlog(n/r)) O(nr) [1, 8, 9]
O(nlogn + nr + r2logr) O(n) [1, 9]

O(nlogn + nr) O(n + r2) [1, 8, 9]
O(nlogn + nr) O(n) [10]

O(n1+ǫ + n8/11+ǫr9/11+ǫ) O(n1+ǫ + n8/11+ǫr9/11+ǫ) [9]
O(nlog2n + r3/2logr)∗ O(n) [5]

∗ indicates randomize algorithm

of e become adjacent (see Fig. 1(a)); thus the number
of edges in the resulting polygon is reduced by one.

split-event: An edge is split by a reflex vertex. In
other words, a reflex vertex touches this edge during the
shrinking process. This event is denoted by SE(v, e),
where v and e are the participating reflex vertex and
edge of P respectively. After the occurrence of SE(v, e),
the polygon P is split into two sub-polygons of non-zero
area (see Fig. 1(b)).

We will use the terms arcs and nodes for denoting
the objects that form the boundary of the skeleton, in
order to distinguish them from the objects forming the
polygon, which will be called edges and vertices. Bi-
sector pieces are called arcs, and their endpoints which
are not vertices of P are called nodes of S(P ). Each
edge/split-event introduces a node of degree three in
S(P ). The angle(s) incident at the new vertex in the
resulting polygon(s) is/are always convex.

In the degenerate cases, S(P ) may have nodes of de-
gree greater than three, introduced by the occurrence of
simultaneous events at the same location. In most cases,
we can handle these events one at a time using standard
perturbation techniques. This replaces a high-degree
node with several nodes of degree three, connected by
zero-length arcs.

vertex-event: It occurs when two or more vertices
(but no edge) reach the same point simultaneously. Un-
like edge/split-event, a vertex-event may introduce a
new reflex vertex into the shrunken polygon, although
the total number of reflex vertices always decreases (see
Fig. 1(c)).

Proposition 1 ([1]) The straight skeleton S(P ) of P
satisfies: (a) S(P ) is a tree with n leaf nodes corre-
sponding to the vertices of P , less than or equal to (n−1)
non-leaf nodes and less than or equal to (2n − 3) arcs,
(b) it partitions P into n connected faces; each face is
a monotone polygon, and (c) in the boundary of each
face, exactly one edge of the P appears.

Proposition 2 Let e1 and e2 be two edges incident on
a vertex v. Let v′ be the position of v at an instant
of time during the shrinking process (before v vanishes

due to edge/split-event). If r is the Euclidean distance
dist(v, v′) between v and v′, φ is the angle incident at
v inside the polygon, and χ is the distance traveled by
e1 and e2 in self-parallel manner to meet v′, then χ =
rsin(φ

2
), and is referred to as shrinking parameter at

that instant of time.

The node of S(P ) generated by an edge-event EE(e)
is the point (ξ) of intersection of the bisectors of the
angles of P incident to the end points of e.

A reflex vertex v may need to be tested with several
edges to identify the exact edge e which participates in
the split-event (with v). Let v be tested with the edges
e1, e2, . . . , ek and the corresponding event points be re-
spectively ξ1, ξ2, . . . , ξk. The split-event SE(v, ei) may
occurs if dist(v, ξi) ≤ dist(v, ξj) for all j = 1, 2, . . . , k.
Lemma 6 says that a split-event may disappear due to
an edge-event during the shrinking process.

3 The straight skeleton of a monotone polygon

A simple polygon P is said to be monotone with respect
to a line L if its intersection (if any) with any line per-
pendicular to L is connected. Without loss of generality,
we may assume that the line L is the Y -axis. The left
(resp. right) monotone chain of P is the boundary of P
from vt to vb in anti-clockwise (resp. clockwise) order
where vt and vb are the vertices of P having maximum
and minimum y-coordinate respectively. In the follow-
ing lemmata we investigate the effect of monotonicity
of a polygon in connection with the computation of its
straight skeleton. The proof of the lemmata are omitted
due to space constraint.

Lemma 3 For any split-event in a monotone polygon,
the reflex vertex and the edge being split always belong
to different monotone chains.

Lemma 4 Let v1 and v2 be two reflex vertices belonging
to the same monotone chain such that v1 and v2 par-
ticipates in the split-events SE(v1, e1) and SE(v2, e2)
respectively. If v1 is above v2 (i.e. having larger y-
coordinate value), then either e1 and e2 are the same
edge, or e1 is above e2.



CCCG 2010, Winnipeg MB, August 9–11, 2010

Lemma 5 During the shrinking process of a monotone
polygon, a vertex-event with the bisectors of two angles
belonging to the same chain can not happen.

Lemma 6 The shrinking process never introduces a
new reflex vertex.

Lemma 7 If ξ is the event point of SE(v, e) then
d(ξ, ℓ(e)) = min{d(ξ, ℓ(f)); f ∈ P}, where ℓ(x) denote
the line containing edge x and d(ξ, ℓ(f)) is the perpen-
dicular distance from ξ to ℓ(f).

4 Algorithm

We create two arrays AL and AR with the vertices (and
hence the edges) in the left and right monotone chains
in a top to bottom order. In addition, we store the reflex
vertices of the left and right chains in two arrays, namely
REFL and REFR, in top to bottom order. The output
of this algorithm is the skeleton tree S(P ) of the polygon
P . We use a priority queue Q that stores the edge-
and split-events; Q is maintained in the form of a min-
heap in increasing order of the shrinking parameters of
these events. Since a vertex-event can be considered
as a split-event also, we need not have to identify the
vertex-events separately. During the execution of the
algorithm, we maintain a variable ∆ which indicates the
amount of shrinking of the polygon P up to the current
instant of time.

An edge-event EE(e) is stored in Q in the form of
a tuple (′EE′, e, ξ1, ξ2, χ), where ξ1 and ξ2 are the two
nodes of S(P ). When a node ξ is created in S(P ) at
the time of processing EE(e), ξ1 and ξ2 are connected
with ξ. Initially, ξ1 and ξ2 contain the two end-points
of the edge e in its original position 1. Similarly, a split-
event SE(v, e) is stored in Q in the form of a tuple
(′SE′, v, e, ξ, χ), where both v and e point to their own
presence in AL and AR, and ξ is the node in S(P ) corre-
sponding to the original position of the reflex vertex v.
Each edge (resp. reflex vertex) in AL and AR also points
to its corresponding edge-event (resp. split-event) in
Q. Note that, after each edge-/split-event during the
shrinking process, the edges of P get modified. But, we
do not make these changes in AL and AR.

We also attach a height balanced binary tree T (e)
with each edge e in AL and AR. The reason is that
the same edge may participate in different split-events
with different vertices. Initially T (e) contains e only.
During the execution of a SE(v, e), e is split into two
parts. Each of these parts may further be split while
executing another split-event SE(v′, e). These pieces of
e are stored in T (e).

1If e is a polygonal edge, then ξ1 and ξ2 are the two end-points
of e. If e is generated by a edge- or a split-event at a point ξ∗ (say),
then coordinate of ξ∗ is stored as the corresponding end-point of
e.

The execution starts by computing EE(e) for all
edges e of P , and storing them in Q. We now explain
the method of computing the split-events corresponding
to the reflex vertices of P .

4.1 Identification of split-events

In order to identify the edge e associated to a split-
event SE(v, e) corresponding to a reflex vertex v, we
may need to inspect several edges of the opposite chain
(see Lemma 3). Let {v1, v2, . . . , vk} be the set of re-
flex vertices in REFL from top to bottom. First we
compute the split-event corresponding to the vertex vi,
i = 1+k

2
, using Lemma 7 in O(n) time. Let the split-

event be SE(vi, ej), and it partitions AR in two parts
A′

R and A′′
R. We include appropriate portion of ej in

both A′
R and A′′

R. After computation of SE(vi, ej), the
edge participating to the split-event of a reflex vertex
in {v1, v2, . . . , vi−1} will be a member in A′

R, and the
edge participating to the split-event of a reflex vertex in
{vi+1, vi+2, . . . , vk} will be a member in A′′

R (Lemma 4).
Again, we find the split-event for the vertices vi′ and vi′′

where i′ = i
2

and i′′ = i+1+k
2

in O(n) time, and so on.
Thus, the time complexity for computing all the split-
events is O(n log n) (see Lemmata 4 and 7). The same
method applies to compute the split-events for the reflex
vertices in REFR. All these split-events are stored in Q.
Since, a reflex vertex may be destroyed after processing
an edge-event (see Lemma 6), a split-event generated
at the beginning or later stage of the shrinking process,
may not occur during the further shrinking process. If
such a situation takes place, the split-event correspond-
ing to that vertex is deleted from Q.

4.2 Processing of edge/split-events

All the vertices of P are the leaf nodes in S(P ). Ini-
tially, Q contains the edge-events corresponding to all
the edges in P and split-events corresponding to all the
reflex vertices in P , ∆ is set to 0. We choose an event
having minimum shrinking parameter χ from Q, and
perform one of the following procedures as stated below.
The process continues until Q becomes empty. Obser-
vations 1 and 2, say that while processing an event some
existing events will no longer be valid. These are to be
deleted from Q. Also some events in Q may need to
be modified during the shrinking process. The pointers
attached to the vertices and edges of P in AL and AR

help in accessing those events in Q.

Observation 1 An edge-event EE(e) for an edge e
may not take place during the shrinking process. This
happens if the shrinking parameter of a split-event
SE(v, e) for some reflex vertex v and the edge e is
smaller than that of EE(e). In this case, after SE(v, e)
the shrunken edge e is split into two pieces e1 and e2,
and they lie in different sub-polygons. Here, after the
occurrence of SE(v, e), we delete EE(e) from Q, and
store the new events EE(e1) and EE(e2) in Q.



22nd Canadian Conference on Computational Geometry, 2010

Observation 2 A split-event SE(v, e) for a reflex ver-
tex v may not take place during the shrinking process.
This situation arises if one of the edges e′ attached to v
may disappear due to EE(e′) prior to SE(v, e).

Processing of an edge-event EE(e): The tuple at-
tached to EE(e) is (′EE′, e, ξ1, ξ2, χ), where e = [α, β] ∈
AL; e1 = [α, γ] and e2 = [β, δ] are two edges adja-
cent to e. We compute the event point ξ, and create a
node of S(P ) at ξ; join ξ with ξ1 and ξ2 to create two
arcs of S(P ). The edge e is deleted from AL, and the
event EE(e) is deleted from Q. If e1 and e2 changes
to e′1 = [ξ, γ′] and e′2 = [ξ, δ′] respectively after EE(e),
and χ1 and χ2 are the shrinking parameter of EE(e′1)
and EE(e′2) respectively, then the shrinking parameter
of EE(e1) and EE(e2) in Q are updated to ∆+ χ1 and
∆+χ2 respectively. The ξ1 parameter of EE(e1) and ξ2

parameter of EE(e2) are also updated with ξ. Finally,
∆ is updated with ∆ + χ.

If the angle incident at one of the end-points, say α
of e = [α, β] is reflex, then the corresponding split-event
may be deleted from Q (see Lemma 6). Note that, if an
edge-event EE(e) occurs then the edge e is not involved
in any split-event (see Lemma 7).

Processing of a split-event SE(v, e): The tuple
attached to SE(v, e) is (′SE′, v, e, ξ1, χ). We create a
node of S(P ) at the event point ξ, join ξ with ξ1, and
then delete the event SE(v, e) from Q. Next, we com-
pute the perpendicular projection η of ξ on the edge
e, and search in the tree T (e) attached to the edge e
to find the segment e∗ of e that contains η. The root
of T (e) is reached using the pointer stored in the e
field of the tuple. Let e∗1 and e∗2 be the two pieces of
e∗ generated after the split-event SE(v, e), and e′1 and
e′2 be the shrunken form of e∗1 and e∗2 after SE(v, e).
If χ1 and χ2 are the shrinking parameter of EE(e′1)
and EE(e′2) respectively, then the shrinking parame-
ter of EE(e∗1) and EE(e∗2) are ∆ + χ1 and ∆ + χ2 re-
spectively. We now delete EE(e∗) from Q, and insert
two new events EE(e∗1) and EE(e∗2). If the tuple at-
tached to EE(e∗) is (′EE′, e∗, p1, p2, χ), then the tuple
of EE(e∗1) and EE(e∗2) will be (′EE′, e∗1, p1, ξ, ∆ + χ1)
and (′EE′, e∗2, ξ, p2, ∆ + χ2) respectively. Finally, we
delete e∗ and insert e∗1, e∗2 in T (e). Finally, ∆ is up-
dated with ∆ + χ.

Note that, at the time of processing a split-event
SE(v, e), we do not need to update the existing split-
event involving e in the queue, because the other split-
events automatically detect its proper position on e (see
identification procedure of split-event in Section 4).

4.3 Complexity analysis

Computation of all the edge-events of P takes O(n)
time. From the discussions in identification of split-
events in Section 4, the split-events for all reflex vertices
in P , and all the vertex-events (if any) can be com-

puted in O(nlogn) time. As initially we have generated
O(n) events, the creation of the initial heap Q needs
O(n) time. While processing an EE(e) or a SE(v, e),
at most two edge-events can be generated. In addition a
O(log n) time search in T (e) is required while processing
a SE(v, e). Moreover, the processing of an event also
includes deleting at most two old events from Q and
inserting at most two new events in Q, which requires
O(log n) time. Since, the total number of internal nodes
in the skeleton tree S(P ) is O(n), the total number of
events processed is also O(n). Thus, the time complex-
ity of our algorithm is O(nlogn) in the worst case. Apart
from storing the polygon during the shrinking process
and the output skeleton tree S(P ), we also use (i) a
priority queue Q for storing the event points, and (ii)
the height balanced binary tree attached to each edge
of P . The space required for both these data structures
depends on the number of edge-events and split-events,
which is O(n) in the worst case.

References

[1] O. Aichholzer and F. Aurenhammer Straight skeletons
for general polygonal figures in the plane. Interna-

tional Computing and Combinatorics Conference, 117-
126, 1996.

[2] O. Aichholzer, F. Aurenhammer, D. Alberts and B.
Gartner A novel type of skeleton for polygons. Journal

of Universal Computer Science, 1:752-761, 1995.

[3] F. Aurenhammer Voronoi diagrams - a survey of a fun-
damental geometric data structure. ACM Computing

Surveys 23, 3:345-405, 1991.

[4] F. Chin, J. Snoeyink and C. A. Wang Finding the
medial axis of a simple polygon in linear time. Discrete

Computational Geometry, 21:405-420, 1999.

[5] S. -W. Cheng and A. Vigneron Motorcycle graphs and
straight skeletons. Algorithmica, 47:159-182, 2007.

[6] E. D. Demaine, M. L. Demaine and A. Lubiw Folding
and one straight cut suffice. Symposium on Discrete

Algorithms, 891-892. 1999.

[7] E. D. Demaine, M. L. Demaine and J. S. B. Mitchell
Folding flat silhouettes and wrapping polyhedral pack-
ages: New results in computational origami. Sympo-

sium on Computational Geometry, 105-114, 1999.

[8] D. Eppstein Fast hierarchical clustering and other ap-
plications of dynamic closest pairs. Symposium on Dis-

crete Algorithms, 619-628. 1998.

[9] D. Eppstein and J. Erickson Raising roofs, crashing
cycles, and playing pool: Applications of a data struc-
ture for finding pairwise interactions. Discrete Compu-

tational Geometry, 22:569-592, 1999.

[10] P. Felkel and S. Obdrzalek Straight skeleton imple-
mentation. Spring Conference on Computer Graphics,
210-218, 1998.

[11] D. G. Kirkpatrick Efficient computation of continuous
skeletons. IEEE Symposium on Foundation of Com-

puter Science, 18-27, 1979.


