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On Stretch Minimization Problem on Unit Strip Paper

Ryuhei Uehara∗

Abstract

For a given mountain-valley pattern of equidistant
creases on a long strip paper, there are many folded
states consistent with the pattern. Among these folded
states, we like to fold a paper so that the number of
the paper layers between each pair of hinged paper seg-
ments is minimized. We first formalize this problem
as optimization problem. The complexity of the prob-
lem is not known. In this paper, we give partial results
related to the problem. First, we show that the prob-
lem is well-defined even in a simple folding model. The
simple folding model is the most primitive model of ba-
sic origami models, and hence the folding availability is
very restricted. We show a universality theorem of the
simple folding model for this problem. That is, every
flat folded state consistent with any given pattern can
be folded by a sequence of simple foldings. Next, we
investigate the number of folded states consistent with
a given pattern. For a given random mountain-valley
pattern, the expected number of folded states consis-
tent with the pattern is exponential.

1 Introduction

What is the best way to fold an origami model?
Origamists around the world struggle with this prob-
lem daily. Even if you have a good origami model with
its crease pattern, this is not the end. To make the
model, we have to search for clever, more accurate, or
faster folding sequences and techniques. In this paper,
we focus on the problem for accurate folding on a sim-
ple kind of one-dimensional creasing, where the piece
of paper is a long rectangular strip, which can be ab-
stracted into a line segment, and the creases uniformly
subdivide the strip. A mountain-valley pattern is then
simply a binary string over the alphabet {M, V } (M for
mountain, V for valley), which we call a mountain-valley
string. Of particular interest in origami is the pleat,
which alternates MV MV MV · · · . The pleat folding is
quite unique in the sense that the folded state is unique
[Asano et al. 10]. In general, this is not the case. For
example, for a string MMV MMV MV V V V , surpris-
ingly, there are 100 distinct folded states consistent with
this string. Among them, what is the best folded state?

∗School of Information Science, Japan Advanced Insti-
tute of Science and Technology, Ishikawa 923-1292, Japan.
uehara@jaist.ac.jp

From the practical point of view, it seems better to de-
crease the number of paper layers between each pair
of paper segments hinged at a crease as possible as we
can. If we have many paper layers between the hinged
papers, it becomes to be difficult to fold with accuracy,
and if we have too many, we cannot fold any more.

For a folded state, we define a stretch at a crease i
is the number of the paper layers between the papers
hinged at the crease i. Then, we can consider two opti-
mization problems as follows:

Input: A strip of paper of length n+1 with a mountain-
valley string s in {M,V }n.
Goal: Among the folded states consistent with s, we
aim to find a folded state of unit length that (1) min-
imizes the maximum stretch of all stretches at each
crease in the folded state, or (2) minimizes the total
stretch of all stretches at each crease in the folded state.

The minimization problem for the average stretch is
equivalent to the second optimization problem (by di-
viding n). These two problems have different solutions
in general. For example, among the 100 valid folded
states of the string MMV MMV MV V V V , the mini-
mum maximum stretch is 3, which is achieved by the
folded state [4|3|2|5|6|0|1|7|9|11|10|8] (the details of this
notation is described later), the minimum total stretch
is 11 by the other state [4|3|2|0|1|5|6|7|9|11|10|8], and
moreover, these solutions are unique for this string.
Here we state an open problem:

Open Problem: Determine the computational com-
plexity of the minimization problems of the maxi-
mum/total stretch for a given string s in {M, V }n.

We first show that the problem is well-defined
even in a simple folding model introduced by Arkin
et al. [Arkin et al. 04]: even in the simple fold-
ing model, every folded state consistent with any
given mountain-valley string can be folded. This
universality theorem of the simple folding model
is related to the one-dimensional flat folding prob-
lem [Demaine and O’Rourke 07, Sec. 12.1], and the
locked chain problem, that has a long history
[Demaine and O’Rourke 07, Chap. 6].

The open problem seems to be NP-hard in general.
We next prove this intuition by counting.

Theorem 1 Let s be a mountain-valley string of length
n taken uniformly at random, and f(n) the expected
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Figure 1: Three foldings for the mountain-valley string
V V V .

number of folded states consistent with s. Then exper-
imental results imply that f(n) = Θ(1.65n). We also
show the upper and lower bounds; f(n) = Ω(1.53n) and
f(n) = O(2n).

The results guarantee that f(n) is an exponential func-
tion, and hence the exhaust search approach has no
hope in general. Theorem 1 comes from more general
counting problem:

Theorem 2 Let F (n) be the number of folded states of
a paper of length n+1. Then experimental results imply
that F (n) = Θ(3.3n). We also have the upper and lower
bounds: F (n) = Ω(3.06n) and F (n) = O(4n).

Theorem 1 says that a simple exhaust search runs
in an exponential time in general. Unfortunately, we
have no idea about the computational complexity of the
optimization problems up to now.

A part of this paper was presented as an oral talk
at 5th international conference on Origami in science,
mathematics, and education (5OSME) [Uehara 10]. All
the results in this paper will be published in the future
book that collects the works in 5OSME.

2 Preliminaries

The paper strip is a one-dimensional line with creases
at every integer position. At first, the paper of length
n+1 with the string of length n is placed at the interval
[0..n + 1]. The paper is rigid except the creases on the
integer positions; that is, we can only fold the paper at
these integer positions. At the end of the folding op-
erations, all creases are folded, the paper becomes unit
length, and the direction of each folded crease follows
the letter (in {M, V }). That is, the ith letter of the
mountain-valley string of length n indicates the final
folded state of the crease at integer point i in [1..n]. We
call each paper segment between i and i+1 the ith seg-
ment. Each final folded state can be represented by the
ordering of the segments; for example, a pleat folding
MV MV is described by [0|1|2|3|4] or [4|3|2|1|0], and a
crease string V V V produces [1|3|2|0], [1|0|3|2], [3|1|0|2],
or their reverses (Figure 1). We distinguish between the
left and right endpoints of the paper, but we sometimes
ignore the reverse of one folded state since they are es-
sentially the same. In fact, the sides of a folded state
sometimes turn upside down when we fold all paper lay-
ers at a crease from right to left or from left to right.

(a)

(b)

(c)

(d)

Figure 2: Simple folding model.

Figure 3: Two legal folded states for a string which
cannot be exchanged by local simple (un)foldings.

We employ the simple folding model by Arkin et
al. [Arkin et al. 04]. Precisely, each simple folding is
the folding from a flat folded state to another flat
folded state by the following operations: (1) put the
flat (folded) paper (on the reverse side, if necessary) in
a plane, (2) choose an integer point to fold, and (3)
valley fold consecutive most inner paper layers at the
crease (see also [Demaine and O’Rourke 07, Sec. 14.1]
and [Cardinal et al. 09]). In Figure 2, (a), (b), and (c)
are simple foldings, but (d) is not allowed. A simple
unfolding is defined by rewinding a simple folding; that
is, we can unfold a folded state a to a folded state b if
and only if a can be obtained from b by a simple folding.
We note that a can be unfolded to one of several folded
states; that is, a simple unfolding is not just a rewind
of the last simple folding. (In a sense, conceptually, a
simple unfolding can be seen as a simple folding. That
is, they are the same operation that flips consecutive
most inner paper layers at a crease.)

For a mountain-valley string s, we call a folded state
legal for s if it is consistent with the string.

3 Universality of the simple folding model

We here show that the simple folding model is strong
enough to discuss the strip paper of equidistant creases.
More precisely, we show that every legal folded state for
any string can be made by a sequence of simple foldings.

Theorem 3 Let P be any legal folded state for a
mountain-valley string s in {M, V }n. Then P can be
folded from the initial state by a sequence of simple fold-
ings.

Before proving Theorem 3, we comment on the claim
of the theorem. One may think that Theorem 3 is “triv-
ial”. But it is not so trivial. A typical counterexample
is shown in Figure 3; these two folded states are legal
for the same mountain-valley string, but they cannot be



CCCG 2010, Winnipeg MB, August 9–11, 2010

q

q

q

r

r

r

q

q

q

(a)

(b)

(c)

(d)

(e)

(f)

(g)

endpoint p

Figure 4: Simple (un)foldings.

exchanged by just local simple (un)foldings. This fact
implies that folding of these states from the initial state
requires some global strategy.

By definition of unfolding, a folded state P can be
folded from the initial state by simple foldings iff P can
be unfolded to the initial state. Hence, we prove The-
orem 3 by showing how to unfold any folded state P
to the initial state. This is strongly related to two well
investigated problems in computational origami:
(1) This is a kind of the “(un)locked chain problem in
2D” that has a long history [Demaine and O’Rourke 07,
Chap. 6]. There is no locked chain in 2D
[Demaine and O’Rourke 07, Sec. 6.6]. However, this
fact does not imply Theorem 3 since the operations are
restricted to simple unfoldings.
(2) Our problem is also related to “one-dimensional flat
foldings” [Demaine and O’Rourke 07, Sec. 12.1]. This
problem asks if there exists a flat folded state for a given
pattern on a strip paper. The known result says that we
can find one flat folded state by repeating crimp and end
folding if it exists. Hence, the known algorithm cannot
construct a given specified folded state from the initial
state. (In contrast with Theorem 3, this is not always
possible for non-unit case; see Concluding Remarks.)

Thus, in a sense, our problem is more difficult than
the above problems; the folded state is specified, and we
can only use simple foldings to make it. But all links in
our “linkage” have unit length. Using this advantage,
we can show the universality theorem for the unit strip
paper in the simple folding model. Here we prove the
following stronger claim than Theorem 3:

Corollary 4 Let P be a flat folded state of a paper of
length n+1 s. t. every folded point is placed at an integer
point in [1..n] in the initial state. Then P can be folded
from the initial state by a sequence of simple foldings
that are made at each integer point. Moreover, the total
number of simple foldings is bounded by 2n.

Proof. We prove the claim by unfolding any folded
state P to the initial state. Intuitively, we unbind the
last segment and arrange the last consecutive segments
in line. But before unbinding, we have to peel off the
papers covering the last segment. To describe in de-
tail, let p be the last endpoint of the paper, that will

be placed at integer point n + 1 in the initial state. We
abuse the symbol P to denote the current flat folded
state. We here define visibility of a point on P ; a point
is visible on P if and only if it appears on a surface of P .
All visible points are drawn in thick lines in Figure 4.
According to the visibility of the last endpoint p, we
have two cases.
Case 1: The point p is not visible in the folded state
P (Figure 4(a)-(c)). Let q be the largest visible crease.
That is, all points r > q (including p) are invisible. Let
q′ be the smallest folded crease with q′ > q. If there is
no folded crease greater than q, set q′ = p.

First suppose the crease q is flat. Then, by the vis-
ibility of q, the papers on the visible side of q can be
flipped by a simple (un)folding at the crease point q′.
Then, the largest visible crease is updated from q to
q′ > q.

Next suppose q is a folded crease. Without loss of
generality, the crease q + 1 is placed at left of q as in
Figure 4(a). Then, the papers on the opposite side of
q − 1 with respect to the segment q(= [q, q + 1]) covers
the point q + 1 but do not cover q − 1 since q is visible.
This fact implies that these papers can be flipped by a
simple (un)folding at the crease point q′ ≥ q + 1.

In any case, the largest visible crease is updated from
q to q′ > q by one (un)folding. We repeat this pro-
cess until the point p becomes visible. The number of
repeating is at most n, and hence the total number of
(un)foldings in case 1 is at most n.
Case 2: The point p is visible in the folded state P
(Figure 4(d)-(f)). Let q be the largest folded crease. If
q is not visible, since there is no folded crease between
visible p and q, we can make q visible by just one simple
(un)folding at the point q by using the same technique
in case 1. Now we can assume that all points in [q, p]
are visible. Moreover, these points can be seen from one
side (otherwise, the paper is disconnected). Hence we
can unfold at the folded crease q and make it flat. This
does not change the visibility of p. Thus we can repeat
this process until the whole creases become flat. We can
observe that these two (un)foldings (to make q visible
if necessary, and to make q flat) can be done at once.
Hence the total number of (un)foldings in this case is at
most n.

Hence we have Theorem 3 and Corollary 4. �

By Theorem 3, the optimization problems are well-
defined for any mountain-valley string, and it is worth
considering on the simple folding model. Furthermore,
if we have an optimal solution, it can be folded in linear
time by Corollary 4.

4 The number of folded states

In this section, we will prove Theorems 1 and 2. Using
Theorem 2, Theorem 1 follows easily. Hence we first
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focus on Theorem 2.
Recall that F (n) is the number of folded states of a

paper of length n + 1. A simple algorithm can compute
F (n) in a straightforward way for small n, but we can
find the correct values for larger n at “The On-Line
Encyclopedia of Integer Sequences” with id:A0001361.
Plotting the sequence, we have an experimental result
F (n) = Θ(3.3n). Now we turn to the upper and lower
bounds of F (n).

Lemma 5 F (n) = O(4n).

Proof. We first assume that n is even, say n = 2k,
and each folded state of unit length is placed on the
interval [0..1]. We see the relationship among the papers
at the point 0. The papers should not be penetrated
through each other. That is, at the point 0, k creases
with one end (of the left end of the segment 0) make
a nest structure. The number of nest structure with k
pairs is given by the Catalan number Ck = 1

k+1

(
2k
k

)
=

(2k)!
(k+1)!k! (see, e.g., [Stanley 97]). Once the left end is
connected to the right nest structure at the point 1, the
paper order is automatically determined. The number
of the possible connections of the left end to the right
nest structure is k. Hence the number of folding ways
can be bounded above by kCkCk. The other case (n is
odd) is similar, and hence omitted. �

Lemma 6 F (n) = Ω(3.065n).

Proof. We imagine folding the last k creases for some
k � n. After folding the last k creases into unit length,
we glue it, and obtain a paper of length n − k + 1
with n − k creases. Let G(k) be the number of the
folding ways of this last k creases under the constraint
that the (n − k)th crease is not covered, which means
the segments (n − k − 1) and (n − k) are not sepa-
rated by the other papers between [n − k..n + 1]. Re-
peating this process, we have a lower bound: F (n) >

(G(k))
n
k = (G(k)

1
k )n. This function G(k) is also

listed at “The On-Line Encyclopedia of Integer Se-
quences” with id:A0006822. Since the function G(k) is
a monotone increasing function for k, we use the largest
value G(43) = 830776205506531894760, and obtain the
lower bound F (n) > (830776205506531894760

1
43 )n =

3.06549n for sufficiently large n. �

By the experimental results listed on “The On-Line
Encyclopedia of Integer Sequences” with Lemmas 5 and
6, we have Theorem 2 immediately. Here, the number
of mountain-valley strings of length n is 2n. Hence, di-
viding the values in Theorem 2 by 2n, we have Theorem
1.

1http://www.research.att.com/~njas/sequences/A000136
2http://www.research.att.com/~njas/sequences/A000682
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Figure 5: Two legal folded states; (a) is foldable by sim-
ple foldings, and (b) is not foldable by simple foldings.

5 Concluding Remarks

In this paper, we state an open problem that asks the
computational complexity of the minimization problems
of the maximum/total stretch of a strip paper with
a given mountain-valley string. We first show that
the problem is well-defined even in a simple folding
model. That is, we show that any given folded state
of a strip paper can be folded by a sequence of sim-
ple (un)foldings. The proof of the universality gives
us a linear time algorithm that requires at most 2n
(un)foldings. The improvement of this bound 2n to n
remains to be open.

Extending the proof of Theorem 3, for the one-
dimensional flat foldings, one might wonder if any spec-
ified legal folded state can be folded from the initial
state even if we allow nonuniform intervals. However,
this is not the case. In Figure 5, both of (a) and (b) are
legal folded states for the above mountain-valley string
V MMM . Although (a) is foldable by a sequence of
simple foldings, (b) is not. In fact, (b) cannot be un-
folded at all from this position by a simple unfolding.
From the viewpoint of industry, the characterization of
folded states that can be folded by a sequence of simple
foldings seems to be a nice future work.
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