
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

On Fence Patrolling by Mobile Agents
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Abstract

Suppose that a fence needs to be protected by k mobile
agents with maximum speeds v1, . . . , vk so that each
point on the fence is visited by some agent within every
duration of a predefined time. The problem is to deter-
mine if this requirement can be met, and if so, to design
a suitable schedule for the agents. Alternatively, one
would like to find a schedule that minimizes the idle
time, that is, the longest time interval during which
some point is not visited by any agent. The problem
was introduced by Czyzowicz et al. (2011). We revisit
this problem and discuss several strategies for the cases
of open and respectively closed fence.

1 Introduction

A set of mobile agents with predefined (possibly dis-
tinct) maximum speeds are in charge of guarding or in
other words patrolling a given region of interest. Two
interesting uni-dimensional variants where the agents
move along a curve (e.g., the boundary of the region),
have been introduced by Czyzowicz et al. [1]: (i) only
part of the boundary, that is, an open curve, or open
fence, needs to be guarded; (ii) the entire boundary,
that is, a closed curve (cycle), or closed fence, needs to
be guarded. For simplicity (and without loss of general-
ity) it can be assumed that the open curve is a segment
and the closed curve is a circle.

Given a schedule of the agents over some time interval
[0, t], the idle time I is the longest time interval during
which a point of the fence remains unvisited, taken over
all points. We are interested in guarding over an un-
limited time interval, i.e., over the interval [0,∞). If
the schedule of the agents is such that the positions
of the agents during the time intervals [it0, (i + 1)t0],
i = 0, 1, . . ., are the same functions of t, we say that the
schedule is periodic with period t0.

Given k agent speeds v1, . . . , vk > 0, the goal is to
find a schedule for which the idle time is minimum.
A straightforward volume argument from [1] yields the
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lower bound I ≥ 1/
∑k

i=1 vi. This lower bound applies
for both the segment and the circle variant of the prob-
lem, and for any speed setting.

For the segment variant, Czyzowicz et al. [1] proposed
a simple partitioning strategy, algorithmA1, where each
agent moves back and forth in a segment whose length
is proportional with its speed. Algorithm A1 is univer-
sal in the sense that is applicable for any speed setting
v1, . . . , vk > 0 for the agents. A1 has been proved to
be optimal for uniform speeds [1], i.e., when all maxi-
mum speeds are equal. It has been conjectured [1] that
it is optimal for any speed setting, however this was re-
cently disproved by Kawamura and Kobayashi [2] with
two examples (periodic schedules) that only barely in-
validate the conjecture. It is worth mentioning that the
idle time achieved by A1 is 2/

∑k
i=1 vi and thereby A1

yields a 2-approximation algorithm for the shortest idle
time. The current best lower bound examples have an

idle time of about 0.98
(

2/
∑k

i=1 vi

)
.

For the circle variant, no universal algorithm has been
proposed to be optimal. However, if the maximum
speeds of the agents are the same, i.e., v1 = . . . =
vk = v, then placing the agents uniformly around the
circle and moving in the same direction yields the min-
imum idle time for this setting. Indeed, the idle time
is 1/(kv) = 1/

∑k
i=1 vi, matching the lower bound men-

tioned earlier.
Under the restriction that all agents must move in

the same, say clockwise direction, Czyzowicz et al. [1]
conjectured that the following algorithm A2 is opti-
mal: Let v1 ≥ v2 ≥ . . . ≥ vk. Let r be such that
max1≤i≤k ivi = rvr. Place the agents a1, a2, . . . , ar at
equal distances of 1/r around the unit circle, each mov-
ing clockwise at the same speed vr. Discard the re-
maining agents, if any. Since all agents move in the
same direction, we also refer to A2 as the “runners”
algorithm. Observe that A2 is also universal. Its idle
time is 1/max1≤i≤k ivi [1, Theorem 2]. The conjectured
optimality of A2 is still open.

Notation and terminology. Write Hn =
∑n

i=1 1/i. A
unit circle (resp., segment) is one of unit length. For
a given patrolling algorithm A, using maximum speeds
v1, . . . , vk > 0, let idle(A, v1, . . . , vk), or just idle(A)
if there is no danger of confusion, denote its idle time.

Given k agents with maximum speeds v1, . . . , vk >
0, and a patrolling algorithm A, let L(A, v1, . . . , vk)
denote the maximum length of a segment patrolled
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by these agents using algorithm A. Since the
partition-based algorithm was conjectured to be op-
timal for a segment, it is natural to define the ra-
tio of performance for any other algorithm A′ over
the existing partition-based algorithm A1 as ρ =
ρ(A′,A1) = L(A′, v1, . . . , vk)/L(A1, v1, . . . , vk), where

L(A1, v1, . . . , vk) =
(∑k

i=1 vi

)
/2. This ratio can be

used to evaluate strategies for patrolling—higher ratio
implies better strategy. More generally one can com-
pare two arbitrary strategies A′,A′′ via their lengths
L(A′, v1, . . . , vk) and L(A′′, v1, . . . , vk). It is worth to
keep in mind the equivalence between comparing differ-
ent strategies via either their ratio or their idle time: if
two algorithms compare with each other with ratio ρ in
the length measure, the ratio of their idle times is 1/ρ.

We use distance-time diagrams to plot the agent tra-
jectories with respect to time. The x-coordinate rep-
resents distance along the fence and the y-coordinate
represents time. For a constant-speed trajectory con-
necting (x1, y1) and (x2, y2) in the diagram, construct a
shaded parallelogram with vertices, (x1, y1), (x1, y1+I),
(x2, y2), (x2, y2 + I), where I denotes the idle time (in
most of our cases, I = 1) and the shaded region repre-
sents the covered (guarded) region. A schedule for the
agents ensures idle time I if and only if all area of the
diagram in the time interval [I,∞) is covered.

General observations. 1. Strategy scalability. Sup-
pose we have a patrolling strategy with k agents for a
fence (open or closed) of length l with ratio ρ (rela-
tive to the partition strategy). Then, we can scale this
strategy for every l′ 6= l using k agents as follows. Let
l′/l = c, then v′i = cvi, 1 ≤ i ≤ k, where v′i is the scaled
speed of ai. The waiting times used in the strategy at
specific positions for agents need not to be scaled. One
can check that the ratio ρ remains unchanged.

2. Strategy extension. Suppose we have a patrolling
strategy with k agents for a fence (open or closed) of
length l with ratio ρ > 1 (relative to the partition strat-
egy). Then for any k′ > k, there exists a a patrolling
strategy with k′ agents for a fence of length l′ > l with
ratio ρ′ > 1: use m = k′ − k additional agents with∑k′

i=k+1 vi = 2(l′ − l) to patrol l′ − l using the parti-
tion strategy. Now if ρ = a

b > 1 , then one can check

that ρ′ = a+2(l′−l)
b+2(l′−l) > 1. It follows from the results of

Kawamura and Kobayashi [2] and the above observation
that the partition based algorithm is not optimal for a
segment for any k ≥ 6, and k suitable speeds.

Our results.

1. For every integer x ≥ 2 there exist k = 4x+1 agents
with

∑k
i=1 vi = 48x+3 and a guarding schedule for

a segment of length 25x/3. Alternatively, for every
integer x ≥ 2 there exist k = 4x + 1 agents with
suitable speeds v1, . . . , vk, and a guarding schedule

for a unit segment that achieves idle time at most
48x+3
50x

2∑k
i=1 vi

. In particular, for every ε > 0, there

exist k agents with suitable speeds v1, . . . , vk, and a
guarding schedule for a unit segment that achieves
idle time at most

(
24
25 + ε

)
2∑k

i=1 vi
. See Theorem 3,

Section 2.

2. For every k ≥ 4, there exist maximum speeds v1 ≥
v2 ≥ . . . ≥ vk and a new patrolling algorithm A3

that yields an idle time better than that achieved
by both A1 and A2. In particular, for large k, the
idle time of A3 with these speeds is about 2/3 of
that achieved by A1 and A2. See Proposition 1,
Section 3.

3. Consider the unit circle, where all agents are re-
quired to move in the same direction. For every
t > 0, there exists k = k(t) = O(et) and a sched-
ule for the system of agents with maximum speeds
vi = 1/i, i = 1, . . . , k, that ensures an idle time < 1
during the time interval [0, t]. See Proposition 2,
Section 4.

4. For every k ≥ 2, there exist maximum speeds
v1 ≥ v2 ≥ . . . ≥ vk so that there exists an optimal
schedule (patrolling algorithm) for the circle that
does not use up to k − 1 of the agents a2, . . . , ak.
In contrast, for a segment, any optimal schedule
must use all agents. See Proposition 3, Section 4.

5. There exist settings in which if all k agents are used
by a patrolling algorithm, then some agent(s) need
overtake (pass) other agent(s). This follows from
Proposition 3 and partially answers a question left
open by Czyzowicz et al. [1, Section 3].

6. When agents have some radius of visibility, there
exists instances in which a zero “speed budget” suf-
fices for guarding. E.g., k stationary agents with
radii of visibility r1, . . . , rk, can guard a segment
of length 2

∑k
i=1 ri. This partially answers another

question left open by Czyzowicz et al. [1, Section 3].

2 An improved idle time for open fence patrolling

In the paper by Kawamura and Kobayashi [2], the first
example with 6 agents has ρ = 42/41 and the second
example with 9 agents has ρ = 100/99. By repeating
the strategy from the second example (with 9 agents)
with a larger number of agents we improve the ratio to
25/24−ε for any ε > 0. We need two technical lemmas.

Lemma 1 Consider a segment of length L = 25
3 such

that three agents a1, a2, a3 are patrolling perpetually
each with speed of 5 and generating an alternating
sequence of uncovered triangles T2, T1, T2, T1, . . ., as
shown in the distance-time diagram in Fig. 1. Denote
the vertical distances between consecutive occurrences of
T1 and T2 by δ12 and between consecutive occurrences of
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T2 and T1 by δ21. Denote the bases of T1 and T2 by b1
and b2 respectively, and the heights of T1 and T2 by h1
and h2 respectively . Then

(i) 10
3 is a period of the schedule.

(ii) T1 and T2 are congruent; further, b1 = b2 = 1
3 ,

δ12 = δ21 = 4
3 , and h1 = h2 = 5

6 .
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Figure 1: Three agents each with a speed of 5 patrolling a
fence of length 25/3; their start positions are 0, 5, and 20/3,
respectively. Figure is not to scale.

Proof. (i) Observe that a1, a2 and a3 reach the left
endpoint of the segment at times 2(25/3)/5 = 10/3,
5/5 = 1, and (25/3 + 5/3)/5 = 2, respectively. During
the time interval [0, 10/3], each agent traverses the dis-
tance 2L and the positions and directions of the agents
at time t = 10/3 are the same as those at time t = 0.
Hence 10/3 is a period for their schedule.

(ii) Since AL ‖ BM and AB ‖ LM , we have b1 = b2.
Since L is the midpoint of IP , we have δ12+b2 = δ21+b1,
thus δ12 = δ21. Since all the agents have same speed,
5, all the trajectory line segments in the distance-time
diagram have the same slope, 1/5. Hence ∠BAC =
∠ABC = ∠MLN = ∠LMN . Thus, T1 is similar to T2.
Since b1 = b2, T1 is congruent to T2, hence h1 = h2.

Put b = b1, h = h1, and δ = δ12. Recall from (i)
that |AH| = 10/3. By construction, we have |BD| = 1,
thus |BH| = |BD|+ |DG|+ |GH| = 1 + 1 + 1 = 3. We
also have |AH| = b + |BH|, thus b = 10/3 − 3 = 1/3.
Since L is the midpoint of IP , we have δ+b = 5/3, thus
δ = 5/3− b = 4/3.

Let x(N) denote the x-coordinate of point N ; then
x(N) + h = 25/3. To compute x(N) we compute the
intersection of the two segments HL and BM . We have
H = (0, 0), L = (25/3, 5/3), B = (0, 3), and M =
(25/3, 4/3). The equations ofHL and BM areHL : x =

1− b
2
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Figure 2: Left: agent covering an uncovered triangle Ti.
Right: agent covering an alternate sequence of congruent
triangles T1, T2, with collinear bases.

5y and BM : x + 5y = 15, and solving for x yields
x = 15/2, and consequently h = 25/3−15/2 = 5/6. �

Lemma 2 (i) Let s1 be the speed of an agent needed
to cover an uncovered isosceles triangle Ti; refer to
Fig. 2(left). Then s1 = h

1−b/2 , where b < 1 and h are

the base and height of Ti, respectively.
(ii) Let s2 be the speed of an agent needed to cover an

alternate sequence of congruent isosceles triangles T1, T2
with bases on same vertical line; refer to Fig. 2(right).
Then s2 = h

3b/2+y−1 where y is the vertical distance

between the triangles, b < 1 is the base and h is the
height of the congruent triangles.

Proof. (i) In Fig. 2(left), tanα = 1/s1, |UZ| = b/2,

hence |V Z| = 1 − b/2. Also, |V Z|
|WV | = tanα = 1−b/2

h =
1
s1

, which yields s1 = h
1−b/2 .

(ii) In Fig. 2(right), |AB| = 1 + 2h
s2

. Also, |CD| =
b
2 + y + b + h

s2
. Equating 1 + 2h

s2
= 3b

2 + y + h
s2

and

solving for s2, we get s2 = h
3b/2+y−1 . �

Theorem 3 For every integer x ≥ 2, there exist k =
4x + 1 agents with

∑k
i=1 vi = 48x + 3 and a guarding

schedule for a segment of length 25x/3. Alternatively,
for every integer x ≥ 2 there exist k = 4x + 1 agents
with suitable speeds v1, . . . , vk, and a guarding sched-
ule for a unit segment that achieves idle time at most
48x+3
50x

2∑k
i=1 vi

. In particular, for every ε > 0, there exist

k agents with suitable speeds v1, . . . , vk, and a guarding
schedule for a unit segment that achieves idle time at
most

(
24
25 + ε

)
2∑k

i=1 vi
.

Proof. Refer to Fig. 3. We use a long fence divided
into x blocks; each block is of length 25/3. Each block
has 3 agents each of speed 5 running in zig-zag fashion.
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Figure 3: Top: iterative construction with 5 blocks; each block has three agents with speed 5. Middle: six agents with speed
1. Bottom: patrolling strategy for 5 blocks using 21 agents for two time periods (starting at t = 1/3 relative to Fig. 1); the
block length is 25/3 and the time period is 10/3.
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Consecutive blocks share one agent of speed 1 which
covers the uncovered triangles from the trajectories of
the zig-zag agents in the distance-time diagram. The
first and the last block use two agents of speed 1 not
shared by any other block. The setting of these speeds
is explained below.

From Lemma 1(ii), we conclude that all the uncovered
triangles generated by the agents of speed 5 are congru-
ent and their base is b = 1/3 and their height is h = 5/6.
By Lemma 2(i), we can set the speeds of the agents not

shared by consecutive blocks to s1 = 5/6
1−1/6 = 1. Also,

in our strategy, Lemma 1(ii) yields y = δ = 4/3. Hence,
by Lemma 2(ii), we can set the speeds of the agents

shared by consecutive blocks to s2 = 5/6
1/2+4/3−1 = 1.

In our strategy, we have 3 types of agents: agents
running with speed 5 as in Fig. 3(top), unit speed agents
not shared by 2 consecutive blocks and unit speed agents
shared by two consecutive blocks as in Fig. 3(middle).
By Lemma 1(i), the agents of first type have period
10/3. In Fig. 3(middle), there are two agents of second
type and both have a similar trajectory. Thus, it is
enough to verify for the leftmost unit speed agent. It
takes 5/6 time from A to B and again 5/6 time from
B to C. Next, it waits for 5/3 time at C. Hence after
5/6+5/6+5/3 = 10/3 time, its position and direction at
D is same as that at A. Hence, its time period is 10/3.
For the agents of third type, refer to Fig. 3(middle): it
takes 10/6 time from E to F and 10/6 time from F
to G. Thus, arguing as above, its time period is 10/3.
Hence, overall the time period of the strategy is 10/3.

For x blocks, we use 3x + (x + 1) = 4x + 1 agents.
The sum of all speeds is 5(3x) + 1(x + 1) = 16x + 1
and the total fence length is 25x

3 . The resulting ratio
is ρ = 25x

3 / 16x+1
2 = 50x

48x+3 . For example, when x = 2
we reobtain the bound of Kawamura and Kobayashi [2],
when x = 39, ρ = 104

100 and further on, ρ −→
x→∞

25
24 . �

3 A new algorithm for closed fence patrolling

Czyzowicz et al. [1, Theorem 5] showed that for k = 3
there exist speed settings and an algorithm that achieves
an idle time better than both A1 and A2 in this case:
35/36 versus 12/11 and 1. We extend this result for any
k ≥ 4.

Proposition 1 For every k ≥ 4, there exist maximum
speeds v1 > v2 ≥ . . . ≥ vk so that a new patrolling algo-
rithm A3 (we refer to as the “train algorithm”) yields
an idle time better than that achieved by both A1 and
A2. In particular, for large k, the idle time of A3 with
these speeds is about 2/3 of that achieved by A1 and A2.

Proof. We will need v1 > v2 in this algorithm. Place
the k − 1 agents a2, . . . , ak at equal distances, x on the
unit circle, and let them move all clockwise at the same

speed vk; we say that a2, . . . , ak make a “train”. Let a1
move back and forth (i.e., clockwise and counterclock-
wise) on the moving segment of length 1 − (k − 2)x,
i.e., between the start and the end of the train. Re-
fer to Fig. 4. Consider the speed setting: v1 = a,

a2
a3

ak ak−1

a1
vk

v1

Figure 4: Train algorithm: the train a2, . . . , ak moving uni-
directionally with speed vk and the bidirectional agent a1

with speed v1.

v2 = . . . = vk = b, where a > b, and max1≤i≤k ivi = kb
(i.e., a ≤ kb). Put y = 1 − (k − 2)x. To determine the

idle time, x/b, write: [1 − (k − 2)x]
(

1
a−b + 1

a+b

)
= x

b ,

or equivalently, 2ay
a2−b2 = 1−y

(k−2)b . Solving for x/b yields

idle(A3) =
2a

a2 − b2 + 2(k − 2)ab
.

For our setting, we also have

idle(A1) =
2

a+ (k − 1)b
, and idle(A2) =

1

kb
.

Write t = a/b. It can be checked that for k ≥ 4,
idle(A3) ≤ idle(A1) and idle(A3) ≤ idle(A2) when
a2 − b2 − 4ab ≥ 0, i.e., t ≥ 2 +

√
5. In particular, for

a = 1, and b = 1/k (note that a ≤ kb), we have

idle(A3) =
2

1− 1/k2 + 2(k − 2)/k
−→
k→∞

2

3
,

while idle(A1) = 2
1+(k−1)/k −→

k→∞
1 and

idle(A2) = 1
k(1/k) = 1. �

4 Remarks

Finite time circle patrolling. While we cannot con-
firm the conjectured optimality of A2—in particular, for
the system of agents with maximum speeds vi = 1/i,
i = 1, . . . , k, acting on the unit circle, we would have
idle(A2) = 1—we can achieve an idle time below 1 in
this setting for an arbitrarily long time, provided we
choose k large enough. Obviously for this setting we
have idle(A2) ≤ 1, which is already achieved by the
agent a1 with the highest (here unit) speed, and the
conjecture says that idle(A2) < 1 does not hold.
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Proposition 2 Consider the unit circle, where all
agents are required to move in the same direction. For
every t > 0, there exists k = k(t) = O(et) and a schedule
for the system of agents with maximum speeds vi = 1/i,
i = 1, . . . , k, that ensures an idle time < 1 during the
time interval [0, t].

Proof. We construct a schedule with an idle time
smaller than 1. Let a1(t) = t mod 1 denote the po-
sition of agent a1 at time t; in particular a1(0) = 0 with
a1 moving clockwise at maximum (unit) speed. We en-
sure that for each t ≥ 1 there exists an agent that covers
the interval [t− δ1, t+ δ2], for suitable δ1, δ2 > 0 before
a1 reaches this interval at time t − δ1. (We ignore any
other contribution of this agent to the overall coverage.)
We use many different agents to cover all time instances
t′ ∈ [1, t]. To this end we use the well-known fact that
the harmonic series

∑∞
1 1/i is divergent, more precisely

that Hk ≥ ln(k + 1).
To start with, put u1 = 1 as the first uncovered time

instant t′, and i = 2 as the index of the next unused
agent. Having defined ui−1, initiate the movement of
the next agent ai at time ui−1 − 1/2 from the position
ui−1−1/(8i). Its speed is 1/i and during a time interval
of 1/2, the agent will traverse a distance equal to 1/(2i).
Hence the agent’s position at time ui−1 will be ui−1 −
1/(8i) + 1/(2i) = ui−1 + 3/(8i). Now set ui = ui−1 +
3/(8i). In particular, u2 = 1 + 3/(8 · 2) is the second
uncovered time (to be covered by another agent), and
u3 = 1 + 3/(8 · 2) + 3/(8 · 3) is the next such term. The
solution of the recurrence is uk = 5

8 + 3
8Hk, and we need

uk ≥ t. Since Hk ≥ ln(k + 1), it follows that k = O(et)
agents suffice to cover the time interval [0, t] and ensure
an idle time smaller than 1 in this way. �

Useless agents for circle patrolling. Czyzow-
icz et al. [1] showed that for k = 2 there exist speed
settings when an optimal schedule does not use one of
the agents. Here we extend this result for all k ≥ 2:

Proposition 3 (i) For every k ≥ 2, there exist max-
imum speeds v1 ≥ v2 ≥ . . . ≥ vk > 0 and an opti-
mal schedule (patrolling algorithm) for the circle with
these speeds that does not use up to k − 1 of the agents
a2, . . . , ak. (ii) In contrast, for a segment, any optimal
schedule must use all agents.

Proof. (i) Let v1 = 1 and v2 = . . . = vk = ε/k, for a
small positive ε ≤ 1/300, and C be a unit length circle.
Obviously by using agent a1 alone (moving perpetually
clockwise) we can achieve unit idle time. Assume for
contradiction that there exists a schedule achieving an
idle time less than 1. Let a1(t) = t mod 1 denote the
position of agent a1 at time t. Assume without loss of
generality that a1(0) = 0 and consider the time interval
[0, 2]. For 2 ≤ i ≤ k, let Ji be the interval of points

visited by agent ai during the time interval [0, 2], and
put J = ∪ki=2Ji. We have |Ji| ≤ 2ε/k, thus |J | ≤ 2ε.
We make the following observations:

1. a1(1) ∈ [−2ε, 2ε]. Indeed, if a1(1) /∈ [−2ε, 2ε], then
either some point in [−2ε, 2ε] is not visited by any
agent during the time interval [0, 1], or some point
in C \ [−2ε, 2ε] is not visited by any agent during
the time interval [0, 1].

2. a1 has done almost a complete (say, clockwise) ro-
tation along C during the time interval [0, 1], i.e., it
starts at 0 ∈ [−2ε, 2ε] and ends in [−2ε, 2ε], other-
wise some point in C\[−2ε, 2ε] is not visited during
the time interval [0, 1].

3. a1(2) ∈ [−4ε, 4ε], by a similar argument.

4. a1 has done almost a complete rotation along C
during the time interval [1, 2], i.e., it starts in
[−2ε, 2ε] and ends in [−4ε, 4ε]. Moreover this rota-
tion must be in the same clockwise sense as the pre-
vious one, since otherwise there would exist points
not visited for at least one unit of time.

Pick three points x1, x2, x3 ∈ C \ J close to 1/4, 2/4,
and 3/4, respectively, i.e., |xi − i/4| ≤ 1/100, for i =
1, 2, 3. By Observations 2 and 4, these three points must
be visited by a1 in the first two rotations during the time
interval [0, 2] in the order x1, x2, x3, x1, x2, x3. Since a1
has unit speed, successive visits to x1 are at least one
time unit apart, contradicting the assumption that the
idle time of the schedule is less than 1.

(ii) Given v1 ≥ v2 ≥ . . . ≥ vk > 0, assume for contra-
diction that there is an optimal guarding schedule with
unit idle time for a segment s of maximum length that
does not use agent aj (with maximum speed vj), for
some 1 ≤ j ≤ k. Extend s at one end by a subsegment
of length vj/2 and assign aj to this subsegment to move
back and forth from one end to the other, perpetually.
We now have a guarding schedule with unit idle time for
a segment longer than s, which is a contradiction. �
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