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Universal Point Sets for Planar Graph Drawings with Circular Arcs
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Abstract

We prove that there exists a set S of n points in the
plane such that every n-vertex planar graph G admits
a plane drawing in which every vertex of G is placed on
a distinct point of S and every edge of G is drawn as a
circular arc.

1 Introduction

It is a classic result of graph theory that every pla-
nar graph has a plane straight-line drawing, that is,
a drawing where vertices are mapped to points in the
plane and edges to straight-line segments connecting
the corresponding points (achieved independently by
Wagner, Fáry, and Stein). Tutte [21] presented the
first algorithm, the barycentric method, that produces
such drawings. Unfortunately, the barycentric method
can produce edges whose lengths are exponentially far
from each other. Therefore, Rosenstiehl and Tarjan [19]
asked whether every planar graph has a plane straight-
line drawing where vertices lie on an integer grid of
polynomial size. De Fraysseix, Pach, and Pollack [5]
and, independently, Schnyder [20] answered this ques-
tion in the affirmative. Their (very different) methods
yield drawings of n-vertex planar graphs on a grid of size
Θ(n)×Θ(n), and there are graphs (the so-called “nested
triangles”) that require this grid size [10]. Later, it was
apparently Mohar (according to Pach [6]) who general-
ized the grid question to the following problem: What is
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the smallest size f(n) of a universal point set for plane
straight-line drawings of n-vertex planar graphs, that
is, the smallest size (as a function of n) of a point set
S such that every n-vertex planar graph G admits a
plane straight-line drawing in which the vertices of G
are mapped to points in S? The question is listed as
problem #45 in the Open Problems Project [6]. De-
spite more than twenty years of research efforts, the
best known lower bound for the value of f(n) is lin-
ear in n [4, 17, 18], while the best known upper bound
is only quadratic in n, as established by de Fraysseix
et al. [5] and Schnyder [20]. Universal point sets for
plane straight-line drawings of planar graphs require
more than n points whenever n ≥ 15 [3]. Recently,
universal point sets with o(n2) points have been proved
to exist for straight-line planar drawings of several sub-
classes of planar graphs generalizing outerplanar graphs.
Namely, an upper bound of O(n(log n/ log log n)2 has
been proven for simply-nested planar graphs [1] and an
upper bound of O(n5/3) for planar 3-trees [14], which
extends to planar 2-trees and hence to series-parallel
graphs.

Universal point sets have also been studied with re-
spect to different drawing standards. For example, Ev-
erett et al. [13] showed that there exist sets of n points
that are universal for plane poly-line drawings with one
bend per edge of n-vertex planar graphs. On the other
hand, if bend-points are required to be placed on the
point-set, universal point-sets exist of size O(n2/ log n)
for drawings with one bend per edge, of size O(n log n)
for drawings with two bends per edge, and of size O(n)
for drawings with three bends per edge [11].

However, smooth curves may be easier for the eye to
follow and more aesthetic than poly-lines. Graph Draw-
ing researchers have long observed that poly-lines may
be made smooth by replacing each bend with a smooth
curve tangent to the two adjacent line segments [7, 15].
Bekos et al. [2] formalized this observation by consider-
ing smooth curves made of line segments and circular
arcs; they define the curve complexity of such a curve to
be the number of segments and arcs it contains. A poly-
line drawing with s segments per edge may be trans-
formed into a smooth drawing with curve complexity at
most 2s− 1, but Bekos et al. [2] observed that in many
cases the curve complexity can be made smaller than
this bound. For instance, replacing poly-lines by curves

http://cs.smith.edu/~orourke/TOPP/P45.html#Problem.45
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in the construction of Everett et al. [13] would give rise
to a drawing of curve complexity 3, but in fact every set
of n collinear points is universal for smooth piecewise-
circular drawings with curve complexity 2, as can be
derived from the existence of topological book embed-
dings of planar graphs [8, 16, 2]. A monotone topological
book embedding of a graph G is a drawing of G such that
the vertices lie on a horizontal line, called spine, and the
edges are represented by non-crossing curves, monoton-
ically increasing in the direction of the spine. In [8, 16],
it was shown that every planar graph has a monotone
topological book embedding where each edge crosses the
spine exactly once and consists of two semi-circles, one
below and one above the spine (see Figure 2).

The difficulty of the problem of constructing a univer-
sal point set of a linear size for straight-line drawings,
the aesthetical properties of smooth curves, the recent
developments on drawing planar graphs with circular
arcs (see, for example, [2, 12]), and the existence of uni-
versal sets of n points for drawings of planar graphs with
curve complexity 2 [13] naturally give rise to the ques-
tion of whether there exists a universal set of n points
for drawings of planar graphs with curve complexity 1,
that is, for drawings in which every edge is drawn as a
single circular arc. In this paper, we answer this ques-
tion in the affirmative.

We prove the existence of set S of n points on the
parabolic arc P = {(x, y) : x ≥ 0, y = −x2} such that
every n-vertex planar graph G can be drawn with the
vertices mapped to S and the edges mapped to non-
crossing circular arcs. In the same spirit as Everett et
al. [13], we draw G in two steps. In the first step, we
construct a monotone topological book embedding of
G. In the second step, we map the vertices of G to the
points in S in the same order as they appear on the
spine of the book embedding.

2 Circular Arcs Between Points on a Parabola

In this section, we investigate geometric properties of
circular-arc drawings whose vertices lie on the parabolic
arc P.

In the following, when we say that a point is to the
left of another point, we mean that the x-coordinate of
the former is smaller than that of the latter. However,
when we say that an arc is to the left of a point q, we
mean that all the intersection points of the arc with the
horizontal line through q are to the left of q. We define
similarly to the right, above, and below, and we naturally
extend these definition to non-crossing pairs of arcs. We
denote by C(p, q, r) the circle through three points p, q,
and r.

We start by stating a classic property of parabolas
and circles.

Lemma 1 For every three points p, q, and r on P with
increasing x-coordinates, the circular arc from p to r
and through q is below P between p and q and above P
between q and r (see Figure 1).

Proof. We first observe that a circle intersects P in at
most three points with positive x-coordinates (counted
with multiplicity). Indeed, substituting y by −x2 in
the circle equation yields a degree-4 equation in x with
no monomial of degree 3. There are thus at most
three changes of sign in the sequence of coefficients, and
Descartes’ rule of signs implies that there are at most
three positive roots, counted with multiplicity.
We now consider three points p, q, and r on P and

consider circle C(p, q, r). Since there is no other point
of intersection with positive x-coordinate, and since the
circle is bounded and the parabolic arc is not, the cir-
cular arc to the right of r is below the parabolic arc.
The result follows since C(p, q, r) crosses P at p, q, and r
(since, otherwise, the number of intersection points with
positive x-coordinates and counted with multiplicity
would be larger than three). �

Given six points p0 = (x0, y0), . . . , p5 = (x5, y5) in
this order on P (that is, x0 ≤ x1 ≤ · · · ≤ x5), we con-
sider two circular arcs (see Figure 1); C0,3,4 (red) goes
through the ordered points p0, p3, p4 and C1,2,5 (blue)
goes through p1, p2, p5. We assume that the three points
defining each arc are pairwise distinct. It should be
stressed that these arcs may not be x-monotone.1 The
two circular arcs are, however, y-monotone—for C0,3,4

we argue as follows; the argument for C1,2,5 is simi-
lar: By Lemma 1, p0 lies on the right half-circle of
C(p0, p3, p4), and p3 and p4 are to the right of p0.
We will prove, in Lemma 4, that the arcs C0,3,4 and

C1,2,5 do not intersect each other if the x-coordinate
of pi is at least twice that of pi−1 for i = 3, 4. For
that purpose, we first consider, in the two next lemmas,
the special cases where these arcs share one of their
endpoints.

Lemma 2 If p4 = p5 and x3 ≥ x1+x2, the two circular
arcs C0,3,4 and C1,2,5 intersect only at p4 = p5.

Proof. Refer to Figure 1(a). We first observe that,
by Lemma 1, the circular arc C0,3,4 is below P in a
neighborhood of p0, it crosses P at p3, and it lies above
P in a neighborhood of p4. Similarly C1,2,5 is below P
in a neighborhood of p1, it crosses P at p2, and it lies
above P in a neighborhood of p5.
We now argue that the two arcs C0,3,4 and C1,2,5 in-

tersect at a point other than p4 = p5 if and only if the

1 This could be seen by considering, for instance, the limit case
of a circle where p0 and p3 lie at the origin and the x-coordinate
of p4 is larger than one. This circle is centered at (0,−a) with
a > 1. Since −a > −a2, the rightmost point (a,−a) of the circle
is above the parabola y = −x2, thus it lies on C0,3,4 by Lemma 1.
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Figure 1: Three configurations of relative position of the circular arcs C0,3,4 (red) and C1,2,5 (blue dashed) defined
by six points p0, . . . , p5 lying in that order on P. For readability, the figure is not to scale.

(red) arc C0,3,4 is to the right of the (blue) arc C1,2,5 in
a neighborhood of p4. Since the (red) arc C0,3,4 is below
P in a neighborhood of p0, and C0,3,4 does not intersect
P between p0 and p1 (by Lemma 1), the (red) arc C0,3,4

is to the left of p1. On the other hand, the two circular
arcs intersect at most once other than at p4 (since circles
intersect at most twice). Hence, if they intersect at a
point q other than p4, their horizontal ordering changes
in a neighborhood of q and thus the (red) arc C0,3,4 is
to the right of the (blue) arc C1,2,5 in a neighborhood
of p4.
As a consequence, we can assume without loss of

generality that p0 is at the origin O = (0, 0) (that is,
the topmost point of P). This can be seen as follows.
First, by Lemma 1, the origin is inside C(p0, p3, p4).
Furthermore, since the origin is above p3 and p4, the
arc p3p4 of C(O, p3, p4) lies to the right of the arc p3p4
of C(p0, p3, p4). It follows that if C0,3,4 is to the right
of C1,2,5 in a neighborhood of p4, it remains to the right
if p0 is placed at the origin. Hence, in the sequel, we
can assume that x0 = 0.
We now prove that if x3 ≥ x1+x2, then the tangents

at p4 = p5 of the two circular arcs C0,3,4 and C1,2,5 are
distinct for any position of p4 = p5 to the right of p3
on P.
The following calculations are done in Maple. We

consider the equation of C(p0, p3, p4), which is the de-
terminant 

x0 −x2
0 x2

0 + x4
0 1

x3 −x2
3 x2

3 + x4
3 1

x4 −x2
4 x2

4 + x4
4 1

x y x2 + y2 1


and similarly for C(p1, p2, p4 = p5). The normals to

these circles at p4 are the gradient of their implicit equa-
tions evaluated at p4. We then compute the cross prod-
uct of these two vectors; more precisely, the last coordi-
nate of the cross product, that is, MxNy−NxMy, where
(Mx,My) and (Nx, Ny) are the normal vectors.
This expression can be factorized such that it is the

product of two terms. The first is the term x3 x4 (x3 −
x4)(x2 − x4)(x1 − x4)(x1 − x2), which does not vanish
if p0, . . . , p4 are pairwise distinct. The second is the
following term, which we view as a polynomial in x4

whose coefficients depend on x1, x2, and x3:

(x3 − x1 − x2)x
4
4

+(x1 + x2 + x3) (x3 − x1 − x2)x
3
4

+(1 + x1x2) (x3 − x1 − x2)x
2
4

+(x1x2x
2
3 + x1x

2
2x3 + x2

1x2x3 + x2
3 − x2

1 − x2
2)x4

+x1 x2 (1 + x2
3) (x1 + x2).

All coefficients are non-negative since x3 ≥ x1 + x2.
Thus, the polynomial has no positive real root. In other
words, the two normals are never collinear. Now, con-
sidering the limit case where p4 = p3, the (red) circle
C(p0, p3, p4) is tangent to P and since, by Lemma 1, the
(blue) arc C1,2,5 is above and thus to the right of P in
a neighborhood of p4 = p5 (and is not tangent to P if
p2 ̸= p5), the (blue) arc C1,2,5 is to the right of the (red)
arc C0,3,4 in a neighborhood of p4. Hence, the two arcs
C0,3,4 and C1,2,5 do not intersect except at p4. �
Lemma 3 If p0 = p1, x0 ≥ 1, x3 ≥ 2x2 and x4 ≥
x0+x3, the two circular arcs C0,3,4 and C1,2,5 intersect
only at p0 = p1.

Proof. Similarly as in the proof of Lemma 2, the two
arcs C0,3,4 and C1,2,5 intersect at a point other than
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p0 = p1 if and only if the (red) arc C0,3,4 is to the right
of the (blue) arc C1,2,5 in a neighborhood of p0 (see
Figure 1(b)).
Furthermore, we can assume without loss of gener-

ality that p5 is at infinity, which means that C1,2,5 is
the (straight) ray from p0 = p1 through p2. Indeed, for
any point p′5 that lies on P to the right of p5, point p

′
5

lies outside the C(p1, p2, p5) by Lemma 1. Furthermore,
since p′5 lies below p1 and p2, the arc through p1, p2,
and p′5 (in order) lies to the left of C1,2,5 between p1
and p2. Hence, if the (blue) arc C1,2,5 is to the left of
the (red) arc C0,3,4 in a neighborhood of p0, it remains
to the left if p5 is at infinity.
Now, similarly to the proof of Lemma 2, we prove

that the tangents at p0 = p1 of C0,3,4 and C1,2,5 never
coincide. With the above assumption, this is equivalent
to showing that the normal to C0,3,4 at p0 is never or-
thogonal to the segment p1p2. The corresponding dot
product (computed in Maple) is equal to

(x4 − x3) (x4 − x0) (x3 − x0) (x2 − x0)(
(x3 − x2)x

2
4 + (x3 − x2) (x0 + x3)x4 +(

(x2
0 − 1− x3x0 − x2

3)x2 + x3
0 + x0

))
.

The first four terms never vanish and we want to show
that the last term, seen as a polynomial in x4, has no
root x4 larger than x0 + x3 (it can be shown that this
polynomial has a positive root). For that purpose, we
make the change of variable x4 = t+x0+x3 which maps
the interval (x0+x3,+∞) of x4 to the interval (0,+∞)
of t and maps the above degree-2 polynomial in x4 to

(x3 − x2) t
2 + 3 (x3 − x2) (x0 + x3) t−

(1 + x2
0 − 5x0x3 + 3x2

3)x2 +

x0 + 4x0x
2
3 + x3

0 + 2x3
3 + 2x2

0x3

whose first and second coefficients are positive and
whose last coefficient is positive for any x2 ∈ [x0, x3/2]
since it is linear in x2 and takes value x3 (3x0+2x3) (x3−
x0) at x0 and value 1

2x3 (−1+x2
3+3x2

0+3x0x3)+x0+x3
0

at x3/2 (which is positive since x0 ≥ 1).2 Hence, if
x3 ≥ 2x2, all coefficients of this polynomial are posi-
tive, which implies that it has no positive roots. This,
in turn, means that the initial degree-2 polynomial in x4

has no root larger than x0 + x3.
This implies that there is no position of the points

p0 = p1, p2 . . . , p5 such that x3 ≥ 2x2, x4 ≥ x0 + x3

and such that the tangent to C0,3,4 is collinear with
p0p2. Furthermore, at the limit case where p2 = p0,
the segment p0p2 is tangent to P, and C0,3,4 is be-
low and to the left of that tangent in a neighborhood
of p0 (by Lemma 1). Hence, for any position of the

2Note that the last coefficient is negative when x2 = x3 which
is why we consider x2 in the range [x0, x3/2].

points p0 = p1, p2 . . . , p5 (as defined above) such that
x3 ≥ 2x2, x4 ≥ x0 + x3, the (red) circular arc C0,3,4

is to the left of the segment p1p2 in a neighborhood of
p0. Finally, as argued above when we considered p5 at
infinity, this implies that for any position of the points
p0 = p1, p2, . . . , p5 such that x3 ≥ 2x2 and x4 ≥ x0+x3,
the (red) circular arc C0,3,4 is to the left of the (blue)
circular arc C1,2,5 in a neighborhood of p0 = p1. This
concludes the proof since we have proved that this is
equivalent to the property that the arcs C0,3,4 and C1,2,5

intersect only at p0 = p1. �

Lemma 4 If p0, . . . , p5 are pairwise disjoint and xi ≥
2xi−1 for i = 3, 4, the two circular arcs C0,3,4 and C1,2,5

do not intersect.

Proof. We refer to Figure 1(c) and, unless specified
otherwise, an arc pipj refers to the arc from pi to pj
on the arc C0,3,4 or C1,2,5 that supports both pi and
pj . We first prove that the arcs p2p5 and p3p4 do not
intersect. For any point q on P between p4 and p5, the
arc p3q on the circular arc through p0, p3, q lies above
the concatenation of the arcs p3p4 of C0,3,4 and p4q of
P (since the circular arcs p3q and p3p4 lie above P,
by Lemma 1, and C(p0, p3, p4) and C(p0, p3, q) intersect
only at p0 and p3). It follows that if arc p3p4 intersects
arc p2p5, then arc p3q also intersects arc p2p5 for any
position of q between p4 and p5 on P. This implies
that, for the limit case where q = p5, arc C1,2,5 and
the circular arc through p0, p3, and q = p5 intersect in
some point other than q = p5, which is not the case by
Lemma 2.
We now prove, similarly, that the arcs p0p3 and p1p2

do not intersect. For any point q on P between p0 and
p1, the arc qp2 on the circular arc through q, p2, p5 lies
below the concatenation of the arcs qp1 of P and p1p2
of C1,2,5. It follows that if arc p1p2 intersects arc p0p3,
then arc qp2 also intersects arc p0p3 for any position of
q between p0 and p1 on P. This implies that, for the
limit case where q = p0, arc C0,3,4 and the circular arc
through q = p0, p2, and p5 intersect in some point other
than q = p0, which is not the case by Lemma 3.
Finally, arcs p1p2 of C1,2,5 and p3p4 of C0,3,4 do not

intersect because they lie on different sides of P and sim-
ilarly for arcs p0p3 of C0,3,4 and p2p5 of C1,2,5. Hence,
the two arcs C0,3,4 or C1,2,5 do not intersect. �

3 Universal Point Set for Circular Arc Drawings

In this section, we construct a set of n points on P and,
by using the lemmata of the previous section, we prove
that it is universal for plane circular arc drawings of
n-vertex planar graphs.
Consider n2 points q0, . . . , qn2−1 on the parabolic

arc P such that x0 ≥ 1 and xi ≥ 2xi−1 for i =
1, . . . , n2 − 1. For our universal point set, we take the n
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Figure 2: Relative positions of two edges in a monotone topological book embedding.

points pi = qni for i = 0, . . . , n − 1. We call the points
in q0, . . . , qn2−1 that are not in the universal point set
helper points.

Theorem 5 Every n-vertex planar graph can be drawn
with the vertices on p0, . . . , pn−1 and circular edges that
do not intersect except at common endpoints.

Proof. Consider any planar graph G. Construct a
monotone topological book embedding Γ of G in which
all edges are drawn with a spine crossing [8, 16]. De-
note by w0, . . . , wn−1 the order of the vertices of G on
the spine in Γ. We substitute every spine crossing with
a dummy vertex. The relative position of any two edges
in Γ is as depicted in Figure 2 (in which two edges may
share their endpoints). For 0 ≤ i ≤ n−1, we map vertex
wi to point pi. Furthermore, for each 0 ≤ i ≤ n− 2, we
map the dummy vertices that lie in between wi and wi+1

on the spine in Γ to distinct helper points in between
pi and pi+1, so that the order of the dummy vertices
on P is the same as on the spine in Γ. (We postpone
the proof that there are enough points qi to map the
dummy vertices.) We finally draw every edge (wi, wj)
of G containing a dummy vertex dl as a circular arc
passing through pi, through pj , and through the helper
point to which vertex dl has been mapped to. We prove
that the resulting drawing is plane.
By Lemmata 2, 3, and 4, two edges whose relative

positions in Γ are as depicted in Figure 2(a) do not
intersect except possibly at a common endpoint.
For the pairs of edges whose relative positions in Γ

are as depicted in Figures 2(b) and 2(c), it is straight-
forward to check that they do not intersect either be-
cause they are separated by P, or because they are y-
monotone and hence they are separated by a horizontal
line.
Consider two edges (wi, wl) and (wj , wk) whose rel-

ative position in Γ is as depicted in Figure 2(d) (the
argument for pairs of edges as in Figure 2(e) is anal-
ogous). Let dil and djk be the dummy vertices of
(wi, wl) and (wj , wk), respectively. Let qil and qjk be
the points on P to which dil and djk are mapped. Arcs
piqil and pjpk do not intersect because they are both y-
monotone and their endpoints are separated by a hor-
izontal line. Arcs qilpl and pjqjk do not intersect be-
cause they are separated by P. Hence, it suffices to
prove that arcs qjkpk and qilpl do not intersect. These
two arcs are above and to the right of P (by Lemma 1)

and qil, qjk, pk, pl are ordered from top to bottom. It is
thus sufficient to prove that there exists a curve from
qjk to pk that is to the right of qjkpk and that does not
intersect qilpl. Consider the (y-monotone) arc from qjk
to pk of the circle C(pi, qjk, pk). It is indeed to the right
of the arc qjkpk (of C(pj , qjk, pk)) because pi is inside
C(pj , qjk, pk) (by Lemma 1) and pi, qjk, and pk are or-
dered on the parabola. Furthermore, this new arc does
not intersect qilpl because in the case where wi = wj ,
wk and wl are in this order on the spine—that’s the sit-
uation depicted in Figure 2(a)—we know that the cor-
responding circular arcs do not intersect.

It remains to show that there are enough helper points
to map the dummy vertices. There are n − 1 helper
points qni+1, . . . , qn(i+1)−1 between each pair of points
pi = qni and pi+1 = qn(i+1). It thus suffices to prove
that there are at most n−1 dummy vertices in between
wi and wi+1 along the spine in Γ.

Let (u1, v1), . . . , (uk, vk) be k edges in the book em-
bedding that define consecutive dummy vertices on the
spine. If no vertex wi lies in between these dummy
vertices on the spine in Γ, the k edges are such
that u1, . . . , uk, v1, . . . , vk are ordered from left to right
on the spine in Γ; see Figure 3(a). Now, consider
the graph that consists of these edges plus the edges
(ui, ui+1), (vi, vi+1), for i = 1, . . . , k−1; see Figure 3(b).
This graph is outerplanar. It has at most n vertices and,
thus, at most n − 3 chords. On the other hand, it has
exactly k−2 chords: (u2, v2), . . . , (uk−1, vk−1). This im-
plies that k− 2 ≤ n− 3 and k ≤ n− 1, which concludes
the proof. �

(a) (b)

u1 uk

v1 vk
u1 uk

v1 vk

Figure 3: (a) k edges of a monotone topological book
embedding that defines k consecutive dummy vertices
(spine crossings). (b) Augmented outerplanar graph.
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4 Conclusions

We proved the existence of a universal point set with n
points for plane circular arc drawings of planar graphs.
The universal point set we constructed has an area
of 2O(n2). It would be interesting, also for practical vi-
sualization purposes, to construct a universal point set
with n points for plane circular arc drawings of planar
graphs within polynomial area. We remark that (relax-
ing the requirement that the set have exactly n points)
a universal point set with O(n) points and within 2O(n)

area for plane circular arc drawings of planar graphs is
Q = {q0, . . . , q4n−7}, where the helper points are de-
fined as in Section 3. To construct a plane circular-arc
drawing of a planar graph G on Q, it suffices to map
vertices and dummy vertices of a monotone topological
book embedding of G to the points of Q in the order
they appear in the book embedding. The geometric
lemmata of Section 2 ensure that the resulting drawing
is plane.
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