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How to Cover Most of a Point Set with a V-Shape of Minimum Width
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Abstract

A V-shape is an infinite polygonal region bounded by
two pairs of parallel rays emanating from two vertices
(see Figure 1). We describe a randomized algorithm
that, given n points and an integer k ≥ 0, finds the
minimum-width V-shape enclosing all but k of the points
with probability 1− 1/nc for any c > 0, with expected
running time O(cn2(k + 1)4 log n(log n log log n + k)).

1 Introduction

Motivation. The motivation for this problem comes
from curve reconstruction: given a set of points sampled
from a curve in the plane, find a shape approximating
the original curve. It has been suggested in [AD13]
that in an area where the curve makes a sharp turn,
it makes sense to model the curve by a V-shape. The
authors remark that it would be natural to investigate
a variant that can handle a small number of outliers,
to accommodate a few bad data points. We investigate
that variant here. The problem is an instance of a large
class of problems known as geometric optimization or
fitting questions, (see [AS98] for a survey).

Previous work. In [AD13], the authors develop an al-
gorithm for covering a point set in general position1

with a V-shape of minimum width (allowing no out-
liers) that runs in O(n2 log n) time and uses quadratic
space. They also find a constant-factor approxima-
tion algorithm with running time O(n log n), and a
(1 + ε)-approximation algorithm with a running time of
O((n/ε) log n + n/(ε3/2) log2(1/ε)), which is O(n log n)
for a constant ε > 0.
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1We use the same general position assumptions as [AD13]: no
vertical line goes through two points, no three points are collinear,
and no lines defined by pairs of points are parallel.

Figure 1: Left to right: a V-shape with six outliers, and
both-outer, inner-outer, and both-inner V-shapes.

Our Result. Given a set P of n points in the plane and
an integer k ≥ 0, we show how to find the minimum-
width V-shape enclosing all but k of the points.

Definitions and notation. A V-shape is an infinite
polygonal region bounded by two pairs of parallel rays
emanating from two vertices (see Figure 1). The rays on
the region’s convex hull are the outer rays. The others
are the inner rays.

The line segment connecting the vertices of the outer
and inner rays separates the V-shape V into its left arm
and right arm. The width of an arm is the distance
between its two delimiting rays. The width of V is the
width of its wider arm. An outlier of V is a point of P
not contained in V . Each arm has an associated strip,
defined by the pair of directed parallel lines going through
its boundary. The left and right strips together uniquely
determine a V-shape. This is in fact how our algorithm
works: by trying to find a pair of strips determining the
thinnest V-shape.

Given a point set P , a k-edge (see Figure 2) of P
is a directed edge between two points in the set such
that exactly k points of P lie to the left of the directed
line through the edge (so in general position there are
n − k − 2 points to the right). For example, a 0-edge
is a directed edge on the convex hull. A k-edge is also
said to be an edge at level k. Let L(e, P ) denote the
level of edge e in point set P . The set H(k, P ) of edges
at level k or less are known as the at-most-k-edges, or
more concisely, the (≤ k)-edges.

It will also be useful to talk about levels in a line
arrangement A (see Figure 3). We use the following
definition: an edge of A is on the k-level if there are
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Figure 2: The edges at level 1 of a point set.

Figure 3: The 2-level of a line arrangement with six
lines.

exactly k lines of A strictly above it.

2 The algorithm

2.1 Overview

We need only consider locally optimal V-shapes. In
[AD13], it was shown that there are three types of locally
optimal configurations, which they called both-outer,
inner-outer, and both-inner (see Figure 1). A both-outer
V-shape is a V-shape where both outer rays have two
points on them (and the inner rays have one). A both-
inner V-shape is a V-shape where both inner rays have
two points on them (and the outer rays have one). An
inner-outer V-shape is a V-shape where one of the outer
rays and one of the inner rays has two points on it and
the other two rays have one point each. (Note that
even for point sets in general position, one of the arms
may have its two rays coincide, and thus the V-shape
will have only five points on its boundary instead of
six.) A V-shape with k outliers is called a k-outlier V-
shape of the point set. Our algorithm works by finding
the minimum-width k-outlier V-shape of each type, and
returning the one that has the smallest width of all three.

Our approach for the both-outer case and the inner-
outer case was inspired by the approach of [AD13] for
the inner-outer case, except we use a binary search for
one step where they use total enumeration. When there
are zero outliers, our algorithm for the both-outer and

inner-outer cases would be easier to implement than
theirs, at the cost of a logarithmic factor in the running
time. However, most of the complexity of their solution
was in the both-outer case, and we use their both-outer
algorithm as a black box in our both-outer algorithm,
by running it on random subsets of the point set.

We handle both-outer V-shapes and inner-outer V-
shapes in almost the same way (see Figure 4). We
begin by enumerating the (≤ k)-edges of the point set.
Each such j-edge e is considered in turn as a candidate
for one of the outer rays to go through, with j ≤ k
outliers already accounted for. For a fixed e, we do a
binary search among remaining points of P , ordered by
perpendicular distance from e; this distance is the width
of the first candidate strip. For each point of the search
we find the second strip that has the smallest possible
width and still covers the remaining points, except for
the outliers. If the second strip is wider than the first, the
binary search moves farther out from e so that the second
strip has fewer points, otherwise it moves closer. To find
the second strip, we again enumerate the edges at levels 0
through k of the remaining points. The precise definition
of “remaining” here is the key difference between the
both-outer and the inner-outer algorithm; see detailed
discussion below. By now we have chosen three rays,
and have no freedom for the fourth: it is dictated by
how many more outliers we need. The running time is
O(n2(k + 1)2 log2 n) (see Lemma 3 for proof).

To find the minimum-width both-inner k-outlier V-
shape, we use a randomized algorithm that takes random
samples of the given point set. For each sample, it
enumerates all both-inner 0-outlier V-shapes using the
algorithm from [AD13]. We show that with enough
samples, the minimum-width both-inner k-outlier V-
shape will be one of the V-shapes enumerated with
probability at least 1 − 1/nc for any real number c >
0 (given as an input parameter). The V-shapes we
enumerate might have more than k outliers, so we use
a range searching data structure from [CY84] to detect
and discard such V-shapes. The running time of the
both-inner case is O(cn2(k+1)4 log n(log n log log n+k)),
which dominates the running time of the other two cases.

Theorem 1 There is a randomized algorithm that,
given n points and an integer k ≥ 0 denoting the desired
number of outliers, finds the minimum-width k-outlier
V-shape for the points with probability 1− 1/nc for any
c > 0, requiring O(n2) space with expected running time
O(cn2(k + 1)4 log n(log n log log n + k)).

Proof. We find the thinnest k-outlier V-shape of each of
the three types separately and return the thinnest. The
both-inner algorithm dominates the running time. The
running time and correctness of the algorithms handling
the three cases is established in Lemmas 2, 3, and 5. �
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Figure 4: Snapshot of inner-outer algorithm (left) and
both-outer algorithm (right).

2.2 Both-Outer and Inner-Outer

The following two algorithms find the thinnest inner-
outer k-outlier V-shape and the thinnest both-outer k-
outlier V-shape. The algorithms have the same structure:
for each candidate first strip S1, find the thinnest possible
second strip S2:

Algorithms 1 and 2. Part I: Finding S1.

Input: integer k, point set P such that |P | = n.
For each edge e ∈ H(k, P ):
P ′ = points to the right of e, and the two points on e.
Sort P ′ by distance from the line through e.
//Perform binary search on P ′.
For each point p of the binary search:
S1 = points contained in strip defined by e and p.
Find thinnest strip S2. //see part 2 of algorithm
The binary search is guided by which strip is thicker:

If S1 is thicker, move p closer to e, else further.

It remains to explain how to find the thinnest S2 and
this depends on whether the k-outlier V-shape we seek
is an inner-outer V-shape or a both-outer V-shape. First
we define a function find-line (described in Lemma 4)
that takes a directed edge e, an integer i, and point
set P , and finds the (i + 1)st furthest line from e going
through a point in P right of e.

The two cases are similar, so the steps that differ
are marked with an asterisk. It may help to refer to
Figure 4. To find a both-outer k-outlier V-shape, we
use Algorithm 1, and to find an inner-outer k-outlier
V-shape, we use Algorithm 2.

Algorithm 1. Part II: Finding S2 of a both-outer V-
shape.

i = L(e, P )
For each edge f ∈ H(k − i, P ′): *

j = k−i−L(f, P ′). * //number of outliers still needed
Let ` = find-line(f, j, P ′ − S1).*//` may not exist
Let S2 = the strip formed by f and `.
Record the thinnest S2 found so far.

If ` from Algorithm 1 does not exist, because P ′ − S1

has less than j points, then the strip determined by S1

is too wide, and we can proceed to the next f .

Figure 5: Invalid V-shapes that looks like a T or an X.

Algorithm 2. Part II: Finding S2 of an inner-outer
V-shape.

i = L(e, P )
For each edge f ∈ H(k − i, P ′ − S1): *

j = k− i−L(f, P ′−S1). * //# of outliers still needed
Let ` = find-line(f, j, P ′).*
Let S2 = the strip formed by f and `.
Record the thinnest S2 found so far.

Lemma 2 The above algorithms are correct.

Proof. There are three ways these algorithms can fail.
It can fail to find a valid V-shape, the V-shape it finds
can have the wrong number of outliers, or it can overlook
the thinnest V-shape with k outliers. How do we know
that all the V-shapes we just enumerated with the above
algorithms are valid? Two arbitrary strips may form a
shape that looks like an X or a T instead of a V (see
Figure 5). More formally, we want to avoid S1 having
points on both sides of S2. The points covered by S1

might indeed be split by S2, but this can only happen
when the points that were split off were among the k
outliers. This is because only the outer ray of S2 can
split off points from S1, and it only splits off points near
the convex hull: the outliers.

The algorithms never create more than k outliers,
because they keep track of how many are needed and
at each step never create more than that. Do they ever
create less than k? This can only happen if the algorithm
counts some outlier more than once. The algorithms
choose outliers three times: first when they choose e,
then when choosing f , and finally when choosing `. The
outliers caused by e (that is, the i points to its left) are
never double-counted, because they are invisible to the
rest of the algorithm, which works with P ′ instead of P .
The outliers created by f and those created by ` are on
opposite sides of f , so they can not be counted twice
either.

Lastly, can the thinest both-outer or inner-outer V-
shape be overlooked? For both-outer and inner-outer
V-shape, there is at least one outer ray defined by two
points, and we consider all edges e that could possibly
define it. For a fixed choice of e and p, we look at all
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feasible choices of f . For a fixed choice of e, p and f ,
we have no freedom in choosing `, so no wrong choice
is possible. The only place where we do not look at all
possibilities is in choosing p, where we do binary search.
This is perfectly safe, because if, say, S1 is thinner than
S2, moving p closer to e forces S2 to cover more points,
which can not make it any thinner. �

Lemma 3 The running time of the above algorithms is
O(n2(k + 1)2 log2 n).

Proof. The algorithms are structured as a triply nested
loop, so it suffices to count the number of iterations of
each loop. It is well known that the set of (≤ k)-edges
has size O((k + 1)n) [GP84, AG86], so the loops for e
and f both iterate at most that many times. The binary
search for p iterates O(log n) times. We can enumerate
the j-edges, for all j ≤ k, in sorted order along the
j-level, in O((k + 1)n log n) time using the algorithm in
[EW86, pages 272–278]2. By Lemma 4 we can implement
find-line to run in O(log n) time. The claimed running
time follows. �

Lemma 4 After O((k+1)n log n) preprocessing, we can
find the (i + 1)st furthest point from a directed line e
among points to the right of e, where 0 ≤ i ≤ k, in
O(log n) time.

Proof. Finding the desired point is equivalent to finding
the line ` parallel to e which goes through the point in P
such that there are i points in P right of `. (This is the
line that find-line returns.) To do this, we go to the dual
and let A be the line arrangement induced by P ∗, where
` dualizes to a point `∗. The requirement in the primal
that there be k points right of ` means that `∗ must
lie on an edge in the k-level or the (|P | − k − 1)-level
of A, and the fact that ` must be right of e eliminates
one of these two possibilities. Again using [EW86], we
can compute the i-levels, and the (|P | − 1 − i)-levels,
for all i ≤ k, in sorted order by x-coordinate, in time
O((k + 1)n log n). Since we know the x-coordinate of `∗

(it is given by the slope of e in the primal), we can do
binary search on the i-level to identify the two vertices
that `∗ lies between. These two vertices lie on a line
of P ∗, which corresponds to a point of P in the primal.
This is the desired point. �

2.3 Both-Inner

The following algorithm finds the thinnest both-inner
k-outlier V-shape with high probability.

Lemma 5 Algorithm 3 finds the thinnest both-inner k-
outlier V-shape with probability at least 1− 1/nc for any

2The algorithm of [EW86] depends on a data structure for
dynamic convex hull. At the time, the best available such structure
was that of [OvL81, pages 169–181]. Using the one described in
[J02] instead gives the claimed running time.

Algorithm 3. Finds a min-width both-inner k-outlier
V-shape for P with high probability.

Input: integer k, point set P , real number c > 0
Let n = |P |, and let K = k + 1
Repeat K6ce lnn times:

Initialize R to the empty set
For each point in P , add it to R with probability 1/K
W = Find-empty-V-shapes(R) //[AD13, pp 303–304]
Remove V-shapes with more than k outliers from W

Return the thinnest V-shape seen.

c > 0, in O(cn2(k+1)4 log n(log n log log n+k)) expected
time and O(n2) space.

Proof. By [AD13], the above algorithm always produces
the right answer if k = 0, albeit with needless redundant
sampling of the entire point set, so we restrict our at-
tention to the case where k > 0. Denote the thinnest
both-inner k-outlier V-shape by V . Clearly, V is defined
by (at most) six points of P . Consider a subset R of
P , which contains the six points defining V but does
not contain the k outliers. V is a valid both-inner 0-
outlier V-shape for R, though perhaps not the thinnest
one. The algorithm simply samples P over and over, in
the hopes of eventually picking such a subset R. For
each sample R, it enumerates all both-inner 0-outlier
V-shapes using the algorithm from [AD13], and checks
whether they end up having at most k outliers in P .
Note that if all the V-shapes we consider end up result-
ing in more than k outliers, our algorithm fails to find
any valid V-shape. However, we show that this is very
unlikely: the probability that the algorithm fails to find
the optimal V-shape is less than 1/nc, where c is the
given positive constant.

Each point in P is independently chosen to be part
of R with probability 1/K. Thus, R has expected size
n/K. Now, what is the probability that the optimal
thinnest both-inner k-outlier V-shape is one of the valid
both-inner 0-outlier V-shapes for R? The probability of
having the required six defining points is 1/K6, and the
probability of avoiding the k outliers is (1−1/K)k = (1−
1/(k+1))k > 1/e, since (1−1/(k+1))k converges to 1/e
from above. So, the probability of our random sample
containing the six points we need and not containing the
k points we should avoid is at least p = 1/eK6. If we
call this the probability of success, then the probability
of failure is at most 1− p. If instead of taking just one
such random sample, we take m = K6 samples, the
probability of them all failing is at most (1− p)m. Now
using the fact that, for all x, 1− x < e−x, we conclude
that the probability q of all m samples failing to contain
the optimum both-inner V-shape is (1 − p)m < e−pm.
Since pm = (1/eK6)(K6) = 1/e, we have q < e−pm =
e−1/e. If we increase the number of samples from m to
mce lnn, then the probability of failure q reduces to at
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most

e−pmce lnn = e−(ce lnn)/e = (elnn)−c = 1/nc,

which concludes the high-level description of the algo-
rithm, and the proof that its probability of failure is at
most 1/nc.

The crucial operation in the above algorithm is to
check that the V-shapes returned by the algorithm
from [AD13] do not have too many outliers. This can
be done using range searching with wedges, which is
a special case of simplex range searching, for which
there are a variety of data structures with various
space/time trade-offs. (A wedge is simply the convex
region bounded by two rays with a common vertex.) We
use a data structure that takes O(n2) space and gives
O(log n log log n + k) query time [CY84, pages 41–45].
The time taken by the algorithm from [AD13] to enu-
merate all both-inner 0-outlier V-shapes of a point set
with O(n/k) points is O((n2/k2) log n). The subset may
have as many as O(n2/k2) V-shapes, each of which take
O(log n log log n + k) time to check to make sure the
number of outliers is not too high, for a total time of
O((n2/k2)(log n log log n + k)) per random sample.

We have glossed over a statistical subtlety here. If the
expected value of a random variable X is E[X], then
in general E[X2] may not be O(E[X]2), or indeed, it
might not even be finite. In this case, how do we know,
just because the expected size of R is O(n/k), that the
expected number of V-shapes is O(n2/k2)? What is true
for all random variables X from distributions with finite
mean and variance is that E[X2] = E[X]2+Variance[X].
The size of R follows the binomial distribution with
mean n/K and variance n(1/K)(1− 1/K), so we have

E(|R|2) = n2/K2 + n(1/K)(1− 1/K) < n2/K2 + n/K,

which is O(n2/k2).
Since we are taking O(ck6 log n) random samples, find-

ing the best both-inner k-outlier V-shape takes time
O(cn2(k + 1)4 log n(log n log log n + k)). �

Remark. We have calculated how many samples we
need in order to find a particular both-inner k-outlier
V-shape with high probability (specifically, the thinnest
one). A natural question to ask is how many samples
we would need to find all both-inner k-outlier V-shapes.

If the probability of failing to find an arbitrary both-
inner V-shape is q, then the probability of there being
at least one both-inner V-shape we fail to find is at
most q times the number of both-inner V-shapes present
in the point set. Clearly, regardless of the value of k,
this number is at most n6, and we already computed
q < 1/nc. By choosing c > 7, we have q < 1/n7, and
thus our probability of failure is less than 1/n.
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