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INTRODUCTION

Explicit gauge invariance, which is present at the classical level in gauge
field theories, is normally lost when guantum corrections are included. The

background field methodl)’a)

is a technique which allows cone to fix a gauge, and
thereby compute quantum effects, without losing expliclt gauge invariance. It thus
makes calculations in gauge theories easier both technically and conceptually.

The background field method is used extensively in analyses of gravity and super-
gravity and has been used by Weinberg3) to construct light effective fiéld theories
from grand unified models. In its original formulaticn, the method was applicable
only to one-lcop processes. However, the extension to multi-loop effects has

been made by 't HooftQ) and by DeWittS). {In addition, very recently a discusw-

6)

sion of the gauge-invariant effective action by Boulware™ ' has appeared.) Here,
the background field method which is applicable to multi-loop processes will be
presented in detail. The result is a prescription, including Feynman rules and
a renormalization scheme, for computing an explicitly gauvge-invariant effective
action. The method is equivalent to that of 't HooftA}, although the formulaticn

follows more closely the conventional functional approach.

The basic idea of the backgrcound field method is to write the gauge field
appearing in the classical action as A + Q@ where A 1is the background field
and Q is the quantum field which is the variable of integration in the func-
tional integral. Then, a gauge is chosen (the background field gauge) which
breaks the gauge invariance of the Q field, but retains gauge invariance in
terms of the A field. Background field gauge invariance is further assured
by coupling external sources only to the Q fieldq). Thus, gquantum calculaticns
can be performed, yet explicit gauge invariance in the background field variable

is not lost.

The generating functionals and effective action of the conventional func-
tioﬁal approach to field theory are reviewed in Section 2. The analogous quant-
ities used in the background field method are then introduced, They are defined
exactly as in the conventional approach except that, as outlined above, the gauge
field appearing in the classical action is written as A& + Q. The generating
functionals and effective action thus become functionalas of the background field
4 as well as of their usual arguments. Furthermore, in the background field
gauge they are gauge-invariant functionals of A. The gauge-invariant effective
action is just the background field effective action considered as a functional
of A and evaluated with vanishing quantum field. It is shown in Section 3 that
this gauge-invariant effective action is equal to the conventicnal effective
action evaluated in an unusual, but nevertheless valid gauge. It can thus be

used in the normal manner to generate the § matrix of the thecry.
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In the background field approach, it is desirable to work only with back-
ground field Green's functions and not with those of the quantum field, as it is
only the background field gauge invariance which is retained. The rencrmalization
programme beyond one loop would then seem to present a problem, since calculation
of the quantum field renormalization factor necessarily involves working directly
with Q field Green's functions. However, as shown in Section 4, it is not neces-
sary to renormalize the quantum fields. The only renormalizations required are
those of the gauge coupling constant, background field and gauge=-fixing parameter.
Furthermore, the gauge-fixing parameter renormalization can be avoided by going
to the Landau-type background field gauge (after the calculation has been per-
formed with an arbitrary bare gauge-fixing parameter - see Section 4). The coupling
constant and background field renormalizations can be determined from the & field
two-point function, Thus, it is possible to carry cut the renormalization pro-

gramme without any reference to quantum field Green's functions.

Because explicit gauge invariance is retained, the gauge coupling and back-
ground field renormalizations in the background field approach are related. This
allows one to determine the B function from a calculation of the background‘
field two-point function alone; no vertex functions need to be considered. This
leads tc a considerable simplification in the background field calculation over

7)’8). The one- and two-loop contrib-

those performed using conventicnal methods
utions to the B function for pure Yang-Mills theory are calculated using the
background field approach in Section 5. Since the subtleties of the renormalization
programme first arise at the two-loop level, it is reassuring to see the formalism
verified in an explicit example. For simplicity, throughout the paper only pure
Yang-Mills theory is considered. The inclusion of fermions or scalars is straight-

forward.
THE METHOD

In the conventional functional approach to field theory, one defines the
generating functional (throughout, the letter Q is used to denote the guantum
gauge lield which is the variable of integration in the functional integral)

Z[7)- (¢ 1t (25 Y exp i[5 [200)- £ (697 7207

(2,1)

where
<

2(Q)= ":L"(E,,?,) (2.2)



with
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Euv= ,.-Qv—,v..,**j Q. Q, . (2.3)

¢* is the gauge-Tixing term (for example, ¢ - BuQi is a typical choice} and
5Ga/5wb iz the derivative of the gauge-fixing term under an infinitesimal gauge

transformation

Y nbc b < ] a
= ._<F + - :; Lo
g@ L Q ﬂ s . (2.4)

The functicnal derivatives of Z[J] with respect to J are the disconnected

Green's functions of the theory. The connected Green's functions are generated

wlT]= - i 2[7] . (2.5)

Finally, one defines the effective action by making the Legendre transformation

rial= wisy - {a% 1" Qs 2.6

where

Q; s v
= g . . : (2.7
-t
The derivatives of the effective action with respect te @ are the one-particle-

irreducible Green's functions of the theory.

We now define guantities analogous to Z, W, and T in the background
field method. We denote these by E, ﬁ, and T. They are defined exactly like
the conventional generating functicnals except that the field in the classical
Lagrangian is written not as Q but as A + Q@ where A 1is the background field.
Following 't HooftA) we do not couple the background field to the source J. Thus,

we define

?[TJA]: FQafef[gf-:]ex,oi A'fr[f(ﬁ+@)-g£(6«)‘+ J:Q:] (2.8)
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where GGa/wa is the derivative of the gauge~-fixing term under the infinitesimal

gauge transformation 603 = -fabcwb(A; + Qz) + (l/g)auma. Then, Jjust as in the con-

ventional approach, we define

e .

w[l3A4]-= i L 2[3;'4] (2.9)
and the background field effective action

o oy - @ a a (2.
P[Q)/‘?]: W[J}A] dx J Q. 2.10)

where

Qq = R : {2.11)
~ 2 3.

Since there are several field variables being used here, it is worth while to sum-

marize them,

Qi = the guantum field, the variable of integration in the functionsl
integral.
Ai = the background field,

1

g® SW/SJi = the argument of the conventional effective action, T [6].

the quantum field argument of the background field effective
action, T [&,a].

(=]
n

st/ 832
u
One now chooses the background field gauge condition

P aL:c L <
Go = QL.(?, + 9 f /‘L' (31“ (2.12)

in Eqg. (2.8). By making the change of wvariables Qi - Qi - fabcwai it is easy

to show that Z [J,A] and hence W [J,4] are invariant under the infinitesimal
transformations

SA = -f“bcu"’ﬁ; +

! 29 a
—_— ()
T (2.13
N, )



al::cw[:, J—-C (2.13)

cont.

8L =-f

when this gauge-fixing term is used, It then follows that iy [ﬁ,A] is invariant

under

@ aL.v( b < “
SA, = ~ LA “j!'“a«"‘) (2.14)

/‘\/“ QL, g
SR = - £ R (2.15)

] A

in the background field gauge. In particular, T [0, must be an explicitly
gauge-invariant functional of A since (2.14) is just an ordinary gauge trans-
formation of the background field. The quantity Iy [O,A] is the gauge-invariant
ef'fective action which cne computes in the background field method. In the next
section it will be shown that T [0,8] 1is equal to the usual effective action

T [Gj, with Q@ = A, calculated in an unconventicnal gauge which depends on A.
Thus, f [O,Aj can be used to generate the S matrix of a gauge theory in ex-
actly the same way as the usual effective action is employed., Furthermore, it

is explicitly gauge-invariant, The advantages of this will become apparent when

the two-loop B function is calculated in Section 5.

. THE RELATION BETWEEN T [0,A7] and T[]

We now derive relationships between Z, W, and I and the analogous quan-
tities E, ﬁ, and T of the backeground field method. This is done by making
the change of variables Q@+ Q - A in Eg. (2.8). ©One then finds that when

Z [J,A] 1is calculated in the background field gauge of Eq. (2.12)
ZL3,A]= 2[7] f*f-ifﬂ"i I7AZ (3.1)

where Z [J ] is the conventional generation functional of Eq. (2.1) evaluated

with the gauge-fixing term

abe

G = R -I A+ 9f /4:0@: : (3.2)
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One can verify that the ghost determinant of Z in the background field gauge
goes over into the correct ghost determinant for Z in the gauge of Eq. {3.2),.
Note that because of the presence of the background field A in the gauge~fixing
term (3.2}, Z [J] will actually be a functional ot A as well as of J. It
follows from Eg. (3.1) that W and W are related by

o

w(lJTA]l= wl3]- SJ‘Q I°AS . (3.3)

Like Z [J], W[J] depends on A through the gauge-fixing term. Taking a
derivative of (3.3) with respect to J and recalling that T = &W/8J and
G = 8W/8J we find that

Q°=Q " -A4A" . (3.4)
ol -ty

Finally, performing a Legendre transformation on the relation {3.3) we have a re-
lation between the background field effective action and the conventicnal effective

action

~~ R —
r(aA]=rl[aj
Y R (3.5)
Q=Q+A
The gauge-invariant effective action is just f;[@,A] 50 from (3.5) we have the
identity we need

["[o)ﬂ] = F[Q] (3.6)
Q=A
In this identity, T is calculated in the background field gauge of Eq. (2.12)

and I in the gauge of Eq. (3.2). Thus, in Eq. {3.6), T depends on A& both
through this gauge-fixing term and because O = 4.

The connection with the formalism of 't Hooftq) can be made using the above
results. First, note that the gauge-invariant effective action, T [0,47] is
given according to (2.10} by

ﬁ[o}/}]: W[T)A] . (3.7)
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However, the condition d = 0 must still be imposed. By Eg. (3.4), @ =0 is
equivalent to @ = A which, in turn, implies that A& and J are related through
the dependence of @ on J. Thus, when we take derivatives of W with respect
te J, we must include the J dependence which enters through the presence of
4 in the gauge-fixing term (3.2). With this in mind, the condition @ = A is

Just

w SA () o
W ([ IO -
SJ° SVQV(y) by J. “ (3.8)

£l

Finally, using (3.3) to prelate W to ﬁ, Eq. (3.8) can be written in the equiv-
alent form

1

——

o S 3T ) .
il + 44] __Ej"_ *—"“q)’ 1. (3.9
SA” 33,°G) A 9

4)

Equations (3.7) and (3.9} are the basis of 't Hooft's formulation ' of Lthe back-
ground field method. According to the language used here, {3.7) is Jjust th= usual
Legendre transformation and (3.9} is the condition @ = 0. The formulation given

here is thus equivalent to 't Hooft'sq)

although it follows more closely the con-
ventional functional approach. One advantage of this is that it allows for an

easy derivation of Eq. (3.6} relating the background field and ususl methods.

Note that because A appears in the gauge condition {3.2) and acts as a
source there, the onewparticle-irreducible Green's functions calculated from the
gauge-invariant effective action will be very different from those calculated by
conventional methods in normal gauges. Nevertheless, the relation (3.6) assures
us that all gauge-independent physical quantities will come out the same in either

approach.

. FEYNMAN RULES AND RENORMALIZATION

The gauge-invariant effective action, f ELA], iz computed by summing all
one-particle-irreducitle diagrams with A fields on external legs and Q fields
inside loops. No Q field propagators appear on external lines (since 5 = 0)
and likewise no A field propagators cccur inside loops (since the functional in-
tegral is only over Q). To derive the Feynman rules one must write the determinant
factor appearing in the functional integral in terms of an anti-commuting scalar
ghost field. From the background field gauge-fixing term of (2.12), using the

gauge transformation



QT =-F L (AT ) ¢ —%“Eﬂw“ (4.1)
one derives the ghost Lagrangian
a cb ¢ < acl , ¢
Lo =075 ot g ) s 4t S

?stt -

+ 32{4¢x{x4Lﬁﬂc (%Z:’"‘L Q’:l )] 9‘, . 4.2)

The complete Feynman rules are those given in Fig., 1. Wavy lines represent
quantum gauge propagators whereas wavy lines terminating in an & dencte the ex-
ternal background field. Ghest propagators are represented by dashed lines. Be-
cause the effective action invelves only one-particle-irreducible diagrams, vertices
with only one outgoing quantum line will never confribute. Consequently, they

have not been included in the Feynman rules.

It was pointed out in the introduction that the renormalization of gquantum
flelds was undesirable because it required the calculation of quantum field Green's
functions., However, since the ghost and quantum gauge fields appear only inside
loops, it is not necessary to renormalize them and, in fact, they are best left
as bare quantities. To see this, imagine that we did renormalize these fields

6 and Q by writing

o= 2% , aq-=2"a. .2

e

Then, one has a factor of Zé/g at each end of a gauge propagator coming from
renormalizing the field at each vertex, and a factor Zél from rencrmalizing
the propagator. The two factors Zé/g and the 251 associated with each prop-

agator then cancel exactly. Likewise, the two Zé/2 factors at the ends of each
ghost line cancel with the Zél renormalization of the ghost propagator. Thus,
the renormalization of Eg. (4.3) is completely irrelevant and it is better to
leave the ghost and quantum gauge fields unrencrmalized, However, it is still
necessary to renormalize the gauge-fixing parameter for the quantum gauge field
due to the fact that the longitudinal part of the gauge field propagator is not
renormalized. Thus, coupling constant, background field and gauge-fixing para-

meter renormalizations given by




22, A=20A <=2

are required,

In Section 5, the renormalizations of Eq. (4.4) are explicitly carried out in
the Feynman-type gauge o = 1, However, in principle, it is possible to com-
pletely avoid the gauge-fixing parameter renormalization by calculating with an
arbitrary bare gauge-fixing parameter - Then, one can either extract physical
quantities which are independent of o or one can go to the Landau=type gauge
0, = &= 0. In either case, the renormalization of the gauge-fixing parameter
need not be performed. Because of the presence of vertices proportional to 1l/a,
one cannot go to the limit « = O until after the calculation has been performed
and all l/a factors have cancelled, Thus, during the calculation, an arbitrary

ao should be retained.

Because explicit gauge invariance 1s retained in the background field method,
the renormalization factors ZA and Z _ are related. The infinities appearing
in the gauge=~invariant effective action T [@,Aj must take the gauge-invariant
form of a divergent constant times (Fpi)z' Now, according to (4.4), Fui is

renormalized by

L 4 P

(E:)oz 2,;/2[9*}?““9"44*72724’/z{qbcébﬁvc] ' (4.5)

This will cnly take on the gauge-covariant form of a constant time Fui if

Z = 2‘72 (6.6)

9 A

This is the relation between the charge and background field rencrmalizaticns in

the background field gauge.

. CALCULATION OF THE TWO-LOOP g FUNCTION

As an explicit example of the background field formalism in use, we now com-
pute the B function for pure Yang-Mills theory up to the two-loop level, The
B function is related to the dependence of the coupling constant rensrmalization,

Zg, on the renormalizaticn mass parameter, 1, by
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(3 = _-13.44 ‘-——‘,éLn i?

‘ (5.1)

Likewise, the anomalous dimension Ya is defined by

it

\0; ‘é”"‘ 3:_,&,., 2,4 ] (5.2)

Because Zg = 2;1/2 in the background field method, Y, and B are related by

(g-_-_j?); _ ' (5.3}

The B function can thus be determined by calculating Z, which only requires

A
a knowledge of the background field two-point function. In contrast tc conven-

ticnal methods, no vertex functions need to be considered. The great simplific-
ation provided by the method thus becomes apparent. In previous calculations7)’8),
the gauge propagator, ghcst propagator and gauge-gheost-ghost vertex ail had to be

computed. Here, only the gauge propagator is needed.

We will use the dimensional regularization procedureg) in 4 - 2= dimensions

10)

and the minimal subtraction scheme in which Z, is written as a series of poles

A
in e
iy
0 Z
Z=1+ & AL ) (5.4)
A i=y (&)

By using the chain rule of differentiation on Eg. (5.2) and the result

'y J
one can derive a relationship between the various Zél R
(> :
(2\(_@.__)2 - p) Z(.u:) (5.6)

or using (5.3), in the background field method,

Q(=- j ) 2 “_ 32 2 2t (5.7)
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(o}

Recalling that ZA = 1, this gives
)
= -l — 7 (5.8)
. (1) 3 2 (1) _
Alsc note that for the piece of ZA proportional to g, (2 - gB/Bg)ZA = 0.

2)

This means that the term in Z( proportional to g4 will be zero. Thus, in

A
our calculation of ZA’ there will be no l/s2 pole at the two-loop level, From

this fact and Eq. (5.8} we find that up to two loops, if we write the g func-

Q= _3[ &o(%)2+ G, (:?r-)vj (5.9)

then Z must be

tion as

4
2 ¢
G, [ 9 + 8, 3
z = l + T b (5.10)
A ¢ Y4 RE ¢
The diagrams needed to compute ZA at the one~loop level are given in Fig. 2.

The divergent contribution of Fig. 2a is

T (S%M%’ - lemlev] (5.11)

¢ ¥mY?

and that of Fig. 2Zb

-2 ab
N Cy 0 /
(/ E;E?’) [f jluv'LZZE.Lgu L:/j] . (5.12)

( ¥m)°

Adding these together, one determines ZA and hence the well-known one-lcoop re-
) 7)
sult Bo = (11/3)CA .

The two-loop graphs for computing ZA are given in Fig. 3. The divergent

contributions are all ¢f the form

(‘3%6:5“[%)‘7&%2" @EML’J (5.13)

Cym) *
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The individual contributions to A and B as well as the totals are given in

Table 1. In the Table, p = Yg = Indm + &n ka/uz. Because the calculation was per-
formed in the Feynman-type gauge, o = 1, the gauge~-fixing renormalization in-~
sertion diagrams of Figs. 3% and 3m are included. The rencrmalization factor Za

is determined from the quantum gauge field propagator corrections appearing in

Fig. 3b. (Recall that if the calculation had been performed with an arbitrary

ao rather than in the Feynman-type gauge o = 1, +this step could have been

aveided.} It is

2 =

o {5.14)}

( 5\ 9
+
3e /) (vm?

The insertions result from a counter-term of the form

é.( S-ﬂqc,.q (%Q’: N j{alsc/?ub@:)i’ 1)

X0 a2k

arising from the renormalization of %y by (5.14), Because of the relation

Z_ = Z_l/Z, there are no counter-term insertion diagrams from the coupling and

bickgrgund field renormalizations of Fig. 2. From the totals given in Table 1
and Eq. {5.10) one determines that Bl = (34/3)Ci in agreement with previcus re- -
sultsB). The algebraic manipulation programme Schoonshiplz) was used in the eval-
uation of Fig. 3k.

A curious feature of this calculation is that the leading pole (1/e a%t one

lcop and l/€2 at two locops) takes the transverse form [8uvk2

- kukv] diagram
by diagram as can be verified from Egs. (5.11) and (5,12) and the Table. In ad-
dition, the sum of the non-insertion diagrams and the ingertion diagrams in Fig. 3

2

separately are of the form [gpvk - kukvzl' This remarkable uniformity is pro-

bably a result of both background field techniques and the cheice of the Feynman-
type gauge.

. CONCLUSIONS

The background field formalism for generating a gauge-invariant effective
action has been presented and employed in an explicit example, Although the
Feynman-type gauge may be easier for calculations, it is important that, in prin-
ciple, the rencrmalization programme can be carried out without reference to any
renormalization of fields inside loops. Section 5 gave an example of the simp-

lifications provided by the method for gauge theory calculations.
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TABLE 1

GO PRI R T B U e T T LT RTa T, LY

Graph A B
a 3%7 {1 + %ge - 2pe) 8%3 (1L + 6 = 2pe)
b %%? (1 + %%e - 2pe) %%T {1+ %?e - 2pg)
c élg 0
d -§9§ 0
e ._é%.(l + he - 2pe) -—g% (1 + 4e - 2pe)
£ -'5%2- (1+l§—g-zps) —%Ez(l+%e—2ya€)
g ’é%;f (1 + %%e - 2pe) "EEEZ (1 =+ %g - 2pe}
n _5%, (l+-]-'é-9-g—2;)e) -8—27 (1 +%1—e~2oeJ
i E%EZ (L + %;E - 2pe) §%E2 (1 + %?e - 2pe}
j g7 (1 + e - 2pe) -2 (1 + Ze - 2pe)
k ég% (1 + %%%e - 2pe) g%g (1 + %;?E - 2pg)
b3 9-28% (l-&%E ee) —9-2-857(l+%€-o€)
m 45%% (1 + %gs pel -5%% (1 + %%E - pe}
Total %% %%
TABLE 1: Contributions to Eg. (5.13) of the text from the

R AT RSt Ll

graphs of Fig. 3.

2
0 = Y — Ln4m + Iin k2/u .
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Feynman rules for background field calculations in Yang-Mills theory.
Wavy lines are quantum gauge propagators, wavy lines ending with an
4 are external background fields and dashed lines are ghost prop-

agators.
Graphs for a one-loop calculation of the B function,

Graphs for a two-loop calculation of the B function. Boxes re=
present gauge-fixing term insertions resulting from renormalization

of the gauge-fixing parameter.
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