
C
ER

N
-A

TS
-2

01
1-

19
6

18
/1

0/
20

11

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN – ACCELERATORS AND TECHNOLOGY SECTOR

CERN-ATS-2011-196

MIDDLEWARE TRENDS AND MARKET LEADERS 2011

A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, M. Sobczak, CERN, Geneva,

Switzerland

Abstract

The Controls Middleware (CMW) project was launched over ten years ago. Its main

goal was to unify middleware solutions used to operate CERN accelerators. An

important part of the project, the equipment access library RDA, was based on

CORBA, an unquestionable standard at the time. RDA became an operational and

critical part of the infrastructure, yet the demanding run-time environment revealed

some shortcomings of the system. Accumulation of fixes and workarounds led to

unnecessary complexity. RDA became difficult to maintain and to extend. CORBA

proved to be rather a cumbersome product than a panacea. Fortunately, many new

transport frameworks appeared since then. They boasted a better design and supported

concepts that made them easy to use. Willing to profit from the new libraries, the

CMW team updated user requirements and in their terms investigated eventual

CORBA substitutes. The process consisted of several phases: a review of middleware

solutions belonging to different categories (e.g. data-centric, object-, and message-

oriented) and their applicability to a communication model in RDA; evaluation of

several market recognized products and promising start-ups; prototyping of typical

communication scenarios; testing the libraries against exceptional situations and

errors; verifying that mandatory performance constraints were met. Thanks to the

investigation performed the team have selected a few libraries that suit their needs

better than CORBA. Further prototyping will select the best candidate.

Presented at the International Conference on Accelerator and Large Experimental

Physics Control System (ICALEPCS2011) – October 10-14, 2011, Grenoble, France

Geneva, Switzerland, October 2011

MIDDLEWARE TRENDS AND MARKET LEADERS 2011

A. Dworak, P. Charrue, F. Ehm, W. Sliwinski, M. Sobczak, CERN, Geneva, Switzerland

Abstract
The Controls Middleware (CMW) project was launched

over ten years ago. Its main goal was to unify middleware
solutions used to operate CERN accelerators. An
important part of the project, the equipment access library
RDA, was based on CORBA, an unquestionable standard
at the time. RDA became an operational and critical part
of the infrastructure, yet the demanding run-time
environment revealed some shortcomings of the system.
Accumulation of fixes and workarounds led to
unnecessary complexity. RDA became difficult to
maintain and to extend. CORBA proved to be rather a
cumbersome product than a panacea. Fortunately, many
new transport frameworks appeared since then. They
boasted a better design and supported concepts that made
them easy to use. Willing to profit from the new libraries,
the CMW team updated user requirements and in their
terms investigated eventual CORBA substitutes. The
process consisted of several phases: a review of
middleware solutions belonging to different categories
(e.g. data-centric, object-, and message-oriented) and their
applicability to a communication model in RDA;
evaluation of several market recognized products and
promising start-ups; prototyping of typical
communication scenarios; testing the libraries against
exceptional situations and errors; verifying that
mandatory performance constraints were met. Thanks to
the investigation performed the team have selected a few
libraries that suit their needs better than CORBA. Further
prototyping will select the best candidate.

CERN MIDDLEWARE
The Controls Middleware (CMW) project was launched

at CERN over ten years ago. Its main goal was to unify
middleware solutions used to operate CERN accelerators.
Many software components were developed, among them
the Remote Device Access (RDA) [1] library. The main
responsibility of the library was to allow communication
with servers that operate hardware sensors and actuators.
The RDA design corresponds to the Accelerator Device
Model [1] in which devices, named entities in the control
system, can be controlled via properties. RDA implements
this model in a distributed environment with devices
residing in front-end servers that can run anywhere in the
controls network. It provides a location-independent and
reliable access to devices from control programs. By
invoking the device access methods, clients can read,
write, and subscribe to device property values. Currently
over 4000 servers (processes) are deployed, which
contain altogether almost 80,000 devices. In total the
system gives access to more than 2,000,000 properties/IO
points, on which clients may perform read/write
operations or monitor their values. [2]

Present Implementation
From the beginning there were certain requirements [3]

imposed on RDA that drove its implementation: relying
only on standards; interoperability with the already
existing communication infrastructure at CERN; portable
on LynxOS with an old gcc v.2.95 compiler, Linux,
Windows, HP-UX and AIX (only the first three are still
supported; LynxOS is being eradicated); C/C++ and Java
bindings for client/server libraries; request-reply and
publish-subscribe operations on device data. Each call
type should provide timeout settings and handling of
communication errors. Moreover, complementary,
centrally managed services like naming service,
reservation service and access control should be supplied.

To facilitate development of the new library it was
decided to base it on an already existing, mature product.
CORBA [4] was a very popular middleware at that time
and fulfilled all the requirements. Thus it was chosen as
the communication layer. The C++ implementation was
based on omniORB (currently 4.1.2,) and the Java
implementation on JacORB (currently 2.2.4.) RDA
library wrapped CORBA, hiding all its complexities and
providing a simple to use API. The proposed solution was
widely accepted and became an operational and critical
part of the infrastructure.

Shortcomings of the System
Unfortunately, the demanding run-time environment

revealed a few shortcomings of RDA. Accumulation of
fixes and workarounds led to unnecessary complexity.
Desire to deliver a better, more user-friendly solution led
to a general review of the system. Discussions with
library clients helped to identify several major issues, of
which the most troublesome are the ones directly
correlated with CORBA [5]. First, the CORBA standard
is inherently huge and complex. Libraries that try to fully
implement it have a major memory footprint. This is an
issue especially for older front-end computers. It is well
understood that RDA as a communication framework
uses only a small fraction of the CORBA platform, but
users still have to pay the full run-time price. On the other
hand, libraries such as JacORB do not implement the full
functionality. This leads to mismatches in behaviour of
Java and C++ bindings. The struggle to support
"asynchronous" operations on top of the synchronous
calls leads to unnecessary complexity in the library code
and design. Second, the way CORBA is used in RDA
leads to multiple data conversions between different
representations. This is both time consuming and leads to
higher memory usage. Third, CORBA is based on the
static Interface Definition Language (IDL), which is
difficult to manage and evolve in large, complex
environments such as CERN. Finally, the community
supporting open-source implementations is shrinking.

FRBHMULT05 Proceedings of ICALEPCS2011, Grenoble, France

1334C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

There is a significant lack of new releases from the major
implementations like JacORB, even if the major bugs
have been identified and fixed a long time ago.

MIDDLEWARE EVALUATION
In view of a 1-year accelerator shutdown at CERN,

starting end of 2012, there is a unique opportunity for
introducing a major new version of RDA, which should
solve all the limitations experienced with CORBA.
Therefore, the CMW team launched the middleware
review process, aiming at choosing a new, modern
middleware library, to be used for the future version of
RDA.

In addition to previously specified general requirements
we expect that the new transport library provides:
 Consistent implementation for C++ and Java.
 Easy to trace peer-to-peer communication with

reliable request/reply and publish/subscribe
messaging patterns.

 Synchronous and asynchronous communication
 Quality of Service (QoS): timeout management,

message queues and priorities, various thread
management policies.

 Small library size, low memory and resource usage.
 Certain performance characteristics (described later)
 No, or only a few, external dependencies that can be

linked with an application, preferably no need for
additional services (e.g. brokers, global servers,
daemons).

 Open source, with a license allowing to redistribute
our product further; good documentation, and
support from a large active community.

 Simple, easy to learn and use API.
The CMW team evaluated several market recognized

middleware products. A short description of each product
is provided below, including a general assessment and
results of tests. Detailed performance results and other
quantitative measurements are gathered and presented in
the next paragraph. All opinions and criticism are based
only on our knowledge and products evaluation.

In line with the requirements the following middleware
standards and protocols were of no interest: XML-based
protocols (e.g. SOAP, XMPP), Stomp, P2P (FastTrack,
BitTorrent), MPI, MQTT (rsmb, Mosquitto) nor
WebSphere MQ.

The Current Solution: omniORB/JacORB
CORBA is an object-oriented communication platform

created by OMG. The standard defines the wire protocol
and the IDL, which is used to specify object interfaces. It
describes also mappings from IDL to several languages.
The complexity of the communication process is hidden
from the user, who cannot differentiate between a local
and a remote call. The standard and chosen
implementations are well documented. Unfortunately
there are many shortcomings described in the previous
paragraph. Also, the CORBA API is old-fashioned and

heavy, thus it has a very steep learning curve and its
community shrinks.

Evaluation of Ice
Ice [6] belongs to the object-oriented middleware

category. It is conceptually very similar to CORBA,
which is an advantage for those who already know it.

The product supports C++ and Java, and runs on Linux
and Windows. Compilation on LynxOS fails due to the
use of modern C++. It has a static type system and relies
on separate specification files to describe interfaces and
data structures. Apart from a request-reply model, Ice
provides a publish-subscribe event distribution service
called IceStorm. Full control over QoS and many tuning
options are available. Performance wise Ice satisfies our
needs. It uses a compact binary encoding that conserves
bandwidth and is very efficient to marshal and unmarshal.
Additionally protocol compression can be enabled. Sizes
of statically compiled libraries and of binaries of a simple
ping-pong server and client indicate a heavy use of global
state that brings in the majority of Ice, no matter how
much of it is actually used. On the other hand, the well
designed API, modern and flexible IDL, easy to use
language mappings, up-to-date documentation and a
detailed tutorial are a big plus. The library is distributed
with GPL license; sources are available for download.

Ice seems to be a very strong candidate due to its
industrial presence and number of existing deployments.
It also fulfils majority of our requirements.

Evaluation of Thrift
Thrift [7] belongs to the service-oriented middleware

category, which means that the central notion in this
system is that of remote services being accessed over the
network.

The library supports C++/Java and runs on
Linux/Windows. Compilation for LynxOS is problematic
due to the use of modern C++ features. Thrift has a static
type system and relies on separate specification files to
describe the service interface and data structures. It
supports simple request-reply communication in
synchronous and asynchronous mode. It has a small
memory footprint and fulfils the performance needs, but it
is still an immature product with an incomplete
implementation. Tutorial on the product webpage is
empty and there is no documentation.

We decided to exclude Thrift from further
investigation.

Evaluation of ZeroMQ
 ZeroMQ [8] is a message-oriented middleware library,

which resembles the standard Berkeley sockets. Because
of supported communication patterns and various
transports like in-process, inter-process, TCP and
multicast it may be easily used as a concurrency
framework.

The core of the library is written in C. Bindings for
C++, Java (through JNI) and many more languages are
supported. The library runs on most modern platforms.

Proceedings of ICALEPCS2011, Grenoble, France FRBHMULT05

Distributed computing 1335 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

With minor changes it is possible to run it on LynxOS.
ZeroMQ has no type specification and does not know
anything about the data a user sends. For this reason it has
to be used with an external serializer. Because of
similarities to the BSD sockets the API is familiar and
easy to learn and use. In contrast to the BSD, the ZeroMQ
API is more intuitive and user-friendly. Moreover, apart
from simple socket send/recv calls, many complex
communication patterns are implemented and ready to be
used (e.g. request-reply, publish-subscribe, workload
distribution). Users have full control over communication
policies and QoS (synchronous or asynchronous
communication, timeouts, high water marks). The library
has a small memory footprint. To achieve the best
possible performance it uses different protocols
depending on the peers location (TCP, PGM multicast,
IPC, inproc shared memory). Parallel protocols may be
easily changed so an eventual upgrade from unicast to
multicast is easy. The direct connection between the
system parts results also in reduced maintenance costs as
there is no need for brokers or daemons. A detailed
documentation and broad, easy to follow tutorial are
available on the product website. The project is under the
LGPL license, with a large and active open source
community. If needed, full commercial support may be
obtained from iMatix, the authors of the product.

We consider ZeroMQ as one of the major candidates to
replace CORBA.

Evaluation of YAMI4
YAMI4 [9] belongs to the message-oriented

middleware category, in which communicating peers
exchange messages between each other. The distribution
is therefore explicit and seen in the user code.

The library supports C++/Java and runs on
Linux/Windows. With small changes it is possible to
compile it for LynxOS. YAMI4 has a dynamic type
specification. Data structures (messages) are created
dynamically without describing them with IDL. It is an
inherently asynchronous communication system with
support for request-reply and publish-subscribe over TCP.
QoS may be configured through message priorities and
timeouts. The library has a small memory footprint and,
as our tests show, even if considerably slower than the
statically typed products, it fulfils the performance needs.
It is an open-source project under GPL, with a thorough
documentation and a modern, intuitive API.

YAMI4 is already successfully used at CERN.
Unfortunately, community behind the product is small.

Evaluation of the DDS Products
DDS [10] (Data Distribution Service) is an OMG

standard, targeting real-time distributed systems. It
belongs to the data-oriented middleware category, where
the communicating parties declare their interest in a topic
and the system takes care of delivery of only relevant
data.

There are five wire-interoperable implementations of
DDS. We evaluated the three most mature ones. All three

products support C++ and Java languages, however due to
use of modern C++ they do not support LynxOS out of
the box. DDS has a static type system and relies on
separate specification files to describe data structures.
Compatibility of the generated code with the code
generated from the CORBA IDL may be accomplished.
Single-direction data flow is the most frequent use-case. It
is possible to set up request-reply communication but this
requires two symmetric channels. Because of the nature
of the channels, this approach is not applicable for CMW,
thus additional request-reply middleware would have to
be used in parallel. DDS is an asynchronous system that
supports many QoS settings, including message priorities.
A nice additional feature is Dynamic Discovery, which
allows a DDS application an automatic discovery and
connection with another DDS application. This feature
does not work for us as our network do not support
multicast. The products are well documented, but the
DDS API is neither easy to use nor compact. In fact, the
multitude of settings and concepts provided by the
standard is overwhelming and renders the products to be
cumbersome and difficult to use.

Evaluation of OpenSplice DDS
OpenSpliceDDS [11] is the only DDS implementation

that needs a separate daemon process on each node as
individual user processes do not use the network services
directly. The daemon is used for service discovery and for
data transfer between nodes. Such a solution creates
additional complexity, which should be avoided in CMW.

Evaluation of CoreDX DDS
CoreDX [12] is a small-footprint DDS implementation.

Unfortunately, due to the licensing policy, further
redistribution to third parties would be problematic.

Evaluation of RTI DDS
RTI [13] provides the most mature and widely adopted

implementation of DDS. It is distributed with a number of
useful tools for system monitoring and administration. As
a research organization, CERN is eligible for a free of
charge IRAD license and even access to the source code
is available. On the other hand, the library size and simple
binary programs are significant.

Evaluation of AMQP family
AMQP [14] is a wire-level protocol used for

messaging. An AMQP system consists of a broker
responsible for message routing between the
communicating parties and a client library implementing
the protocol. It does not provide any data model - only
binary messages are supported. As AMQP is a broker
system, implementation of request-response is
cumbersome and almost two times slower than in a direct
mode. Only recently, the first stable version of the
protocol was released, but there is still no product that
supports it. On the other hand, there are a few products
using the previous, noncompliant versions of the protocol:
Qpid v 0.10, OpenAMQ and RabbitMQ v 0.9, and

FRBHMULT05 Proceedings of ICALEPCS2011, Grenoble, France

1336C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Distributed computing

SwiftMQ v 0
every new p
Moreover, th
there is no
support from
Qpid and Op
outstanding
withdraw the

P
The comm

and fast. An
estimated th
between a se
1.5GHz, 1G
similar mach

1) 4000ms
2) 5msg/se
3) publish
4) publish
For each

tested. The m
test 1 (see F
dynamic mo
can be seen.
by test 3 (s
brilliant, aut
ZeroMQ.

Figure 1

Figu

0.8. The AMQ
protocol versio
he specificatio
clear indicati

m industry [15]
penAMQ, how

issues arou
em from furth

PERFORM
munication w
nalysing the

hat the new t
erver on a ne

GB RAM, Gb
hine should ha
sg/sec req-rep
ec req-rep call
400 x 8B to 1
30 x 8B to 10
candidate lib

most interesti
Figure 1), wh
del and addit
A similar pro

see Figure 2
tomatic mess

1: Test 1, a cli

ure 2: Test 3, p

QP standard is
on is not back
on is still a wo
ion on its fu
]. Two produc

wever taking i
und AMQP,
er investigatio

MANCE TE
ithin CMW s
current usage
transport over
w front-end (

bE) and a cli
andle approxim

calls, payload
ls, payload = 1
10 clients, in l
0 clients, in les
brary all fou
ing results w
here the pric
tional hop thr
oblem with Ic
). That test
sage batching

ent talking to

pub-sub to a C

s still evolving
kward compa
ork in progres
uture direction
cts were evalu
into account a

we decide
ons.

ESTS
should be rel
e statistics, it
r a GbE netw
(Inter Core 2
ient running
mately:
d = 4Bytes
10MBytes
ess than 100 m
ss than 20 mse
ur scenarios

were obtained
ce for the YA
rough Qpid b
eStorm is rev
also unveiled

g implemente

a C++ server.

C++ server.

g and
atible.
ss and
n and
uated,
all the
d to

liable
t was
work,
Duo,
on a

msec
ec
were
from

AMI4
broker
vealed
d the
ed in

.

Th
midd
requ
well

Fig

Th

were
YAM
and a

[1]

[2]

[3]

[4]
[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

he paper p
dleware prod

uirements of th
as considerin

gure 3: Summ

he results are
e qualified for
MI4. Based on
adopt one of t

N. Trofimov
new CERN
ICALEPCS 2
Z. Zaharieva
Configuration
Controls Syst
October 2011
V. Bagiollin
Project, User
SL/99-16(CO
Switzerland, A
OMG CORBA
M. Henning
http://queue.a
ZeroC Ice: htt
Apache Thrif
iMatix ZeroM
Inspirel YAM
OMG DDS: h
OpenSplice: h
CoreDX: http
RTI: http://ww
AMQP: http:/
Pieter Hintje
http://www.im

CONCLU
resented sev
ducts, evalu
he CERN acc

ng the product

mary of evaluat

e gathered in
r further prot
n prototyping
them for the fu

REFERE
et al., “Rem
Accelerator

2001, San Jose
a et al., “Dat
n Managemen
tem”, ICALE

1.
ni et al., “C

Requirement
O), Issue 1
August 1999.
A http://www

g, “The rise
acm.org/detail
tp://www.zero

ft: http://thrift.
MQ : http://ww
MI4: http://ww
http://www.om
http://www.pr
p://www.twino
ww.rti.com/
//www.amqp.
ens, “What

matix.com/articl

SIONS
veral market
uated accord
celerator contr

maturity and

ted middlewa

Figure 3. T
otyping: Ice,
the CMW tea

future version

NCES
mote Device A
r Controls
e, California, 2
tabase Found
nt of the CERN
PCS'11, Gren

CERN PS/SL
ts Document”
 Revision

w.corba.org/
and fall o

l.cfm?id=1142
oc.com/
.apache.org/

ww.zeromq.or
ww.inspirel.com
mgwiki.org/dd
rismtech.com/
oakscomputin

org/
is wrong w
les:whats-wron

t recognized
ding to the
rol system, as
ease of use.

re products.

hree libraries
ZeroMQ and

am will select
of RDA.

Access in the
middleware”,
2001.

dation for the
N Accelerator
noble, France,

Middleware
, CERN Note
3, Geneva,

of CORBA”,
2044, 2006.

g/
m/yami4/
ds/
/opensplice

ng.com/

with AMQP”,
ng-with-amqp

d
e
s

s
d
t

e
,

e
r
,

e
e
,

,

,

Proceedings of ICALEPCS2011, Grenoble, France FRBHMULT05

Distributed computing 1337 C
op

yr
ig

ht
c ○

20
11

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

