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ABSTRACT

3. Weinberg's tadpole methed for the cal-
culation of effective potentials of con-
ventional field theories also provides an
attractive means for calculating SUSY
effective potentials. The essential trick
is to leave the SUSY unconstrained and
consider auxiliary field tadpoles. The
method iz illustirated for the Wess-Zumino

nodel.
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1.~INTRODUCTION

In conventicnal field theory [by which I mean non-supersymmetric {SUSY) the-

ories], one might say there are three popular ways of performing the calculation

of effective potentialsl)’a)’3).

1)

Weinberg . This method has a number of drawbacks. First of all, at any loop

There is the original method of Coleman and

order therc are an infinite number of Feynman graphs to consider. With these we
have the problems of combinatorial factors, counting topologically distinct graphs,

and then summation. On top of this, going beyond one-lcop order in this fashion
4) 2)

seems a formidable task '. There is also the functlonal method of Jackiw ° which
presents an improvement on the above, Eowever, the most eclegant method of the
three mentioned is that due to 3. Weinberg3). Here the effective potential can

be calculated by considering the scalar tadpole graphs of the transliated theory.
(A brief review will be given in §2.) The Coleman-Weinberg problems are avoided
and further, one is consldering the simplest possible loop graphs in the theory.
Beyond a one-loop level, it provides the way to proceed [for example, see Refs. 4)
and 5)7.

When we consider SUSY theories there are a number of ways Lo proceed. One

6),7),8)

can either do a component field calculation or a superfield calcula-

9)’10). In principle, for either approach all three popular metheds can be

tion
employed. Surprisingly enough, the tadpole method has not been pursued for SUSY
caleulations. For example, via component field methods, Huq6) pursues the func-
2)

tional methed of Jackiw Q'Raifeartaigh and Parravicini7) reply upon the ori-

ginal Coleman-Weinberg paperl) and Lang and Fujikawa8) refer back to an earlier

11). As for the superfield approach, Hug applies the (non-

formulation of Feynman
graphical) method of Jackiw once more, and only recently have supergraph tech-

niques been developed for such calculations [Grisaru, Riva and Zanonlo)]. These
authors tackle the problem via the Coleman-Weinberg approach (with necessary de-

tours to simplify things).

In this letter I will show that the S. Weinberg tadpole method3), as in con-
ventional field theory, provides the most attractive approach for the component
field calculation. Application of the method to the Wess-Zumino (W-7) modellz)
will show how the one-loop effective potential is derived in a very simple fash-
ion. The principle ingredient which makes the calculation so simple is due to
the fact that I will not constrain the theory, i.e., I will not eliminate auxi-
liary fields via thelr equations of motion. Conseguently we can consider auxi-
liary field tadpole graphs. This approach will be particularly useful at higher
loop order, since the auxiliary field does not couple directly to the spinor
fields, hence there will be fewer graphs to evaluate than the approach where one

uses spin zero component field tadpoles.
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In section 2 I review the tadpole methed. In secticn 3, the Wess-Zumino
model is written down and propagators of the translated theory derived. In sec-
tion 4, the auxiliary field tadpole method is displayed and finally, in section

5, I make some concluding remarks.

2.~ DEFINING THE EFFECTIVE POTENTIAL AND THE TADPOLE METHOD

To arrive at the required resuits, it will be sufficient to consider a spin
zero fleld B described by a Lagrangian £ . The effective action, the gener-
ating functional of one particle irreducible (1PI) amplitudes, will be denoted by

I'. This may be given a momentum space expansion in the classical field Bcl’

NI ED2 S"?.--'-dl’n “"’u‘g(?r‘\ w TR ) B )

-

(2.1}
The effective potential for this theory is then definad by
n
- a1 - ™ =0
v % n! (f:=0)) Bey (2.2)
We see
4&( = - f1(”
dB8 P = (2.3)
¢l B, =0 exty = O
Pél)t = 0 1s the 1PI tadpcle of the theory with zero external momentum, calcu-
extn

lated™using £ . Now translate the theory, i.e. set

£
BCI = Bcl + b (2.4)
where b 1is a constant. Expanding the theory about B;l = 0 we write
t L r
£ (Bcl) = ¢ (Bcl + by = £ (B cl)' Thus
AV" _ rnCl) 4
d—g:l 7 ng‘bga o (2.5)
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Equally, Eq. {2.5) may be written as

1

Here - 0 is the zero external momentum tadpole calculated using £ .

b -7 -
a fSO:J B, = b exta ™

Since V(Bcl) denotes V expanded in terms of the untranslated theory, it can

have no b dependence; then (2.6) may be written as

— )/
AV - _1P Y (2.7)
(;lb extn

This is the central equation of the tadpole method. It tells us to take the
given theory, translate the fields, calculate the tadpole of the translated the-
ory, substitute the result into (2.7) and then integrate with respect to b to
obtain V(b), finally to replace b by Bcl to obtain the effective potential

expressed in terms of the untranslated theory. For greater detail, see Weinberg3).

3,- THE WESS-ZUMINC MODEL AND THE PROPAGATORS OF THE TRANSLATED THECRY

The W-Z nodel in superfield notationl3) is given by

L-C8lpp - (més2¢dd)utbc] oo

®, the chiral superfield, contains the component fields A& (spin zero), ¥

(spin cne half) and the auxiliary field F. In terms of component fields, (3.1)

may be written asl3)

A = CDM‘\PG:“'“\V +FDA+EF

-t m(hF—Ji\VllJ)-t-_i.(AAF—WWA)+u.C-1 (3.2)

[the metric signature n = {-1,1,1,1) being employved throughout this paper].

Translating the Bose fields of this theory in the fashion
A= A/—IPO\.

l:-‘: F:/_‘__g_ (3.3)



we obtain
2= (9 YEMY + ADA'+FF
faleef i X f o}
"L CATR -4 YY) + 2 (ATATFI-YWAT) + 2 £A'A

+F’CMG\+A;°LL'E) +A' XL 4 HC] (3.4)

where

X=m+Aa (3.5)

Befeore any perturbation theory can be done, we must know the propagators of

this theory. The quadratic part of the {Bose) action is given by

So = Sclu'x -_t fTﬂ ;’F + @TB (3.6}

where

7= (A A F F)

B = (T F K w) 3.7
and

Af @ x ©

Ar = O »§ o X%
%~ o o | | (3.8)
o > | O

J and K are the source terms for fields A and F respectively [note that
linear terms in (3.4) can be absorbed into the definition of the sources; these
ferms will not affect the propagators]. The generating functional Z, is then

given by

LnZ,= '—,‘!: gd"’aa BTH—|£ (3.9)

B e L L T T O S



A is readily inverted to obtain

N o-%% -¥(a-%Z» 2N X
p{‘:.l. 0-2% -2 § MK - x@xY) |, 0
a -Z(a-E%) AEX —A§xX ~X§+a(a-~wn)
x§ % -y lU-2%K) 2 f+a(a-xx) D Y 2%%
where
A= @-E2x)Y -2 5% (3.11)

By looking at Sz(LnZo)/éslSSz|s_O {where s denotes a source) the propagators
of the theory are obtained directly. Although we will only need cne of them

later, for completeness they are all given in Figure 1.

4.~ THE AUXILIARY FIELD TADPOLE METHOD

Now that the groundwork has been laid, I can show how simple the tadpole
method becomes when applied to the W-Z model, unconstrained by auxiliary field

equations of motion,

First the tree level result. At the tree level, the effective action is

just the action evaluated at the classical field,

ros SCh) = ( ' d* (4.1)

-3

From (3.4) we thus read off, the zero-loocp, F tadpole of the translated theory

{at zeroc exfernal momentum)

r/ « ~(ma+ra*-F
i S

)

F,o

2 P (4.2)
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Note that this term is not Zero, as we have not applied the equation of motion for
F. In other words, at this stage a and f are not related and we treat them as

independent parameters.

Using the central equation in (2.7) we ses
No = (ma +ra>— £)

d £ ot

which when integrated gives

— -

he - ad)
Vo = (maxdas)f - £Ff +H(f,a,& (4.3)

H 1is the constant of integration. It is easy to see that

Y= (MEFAEDS 4+ T(F)a) (6.4)

H(f,a

s

either by symmetry or having integrated dVU/dE. Finally, using the fact that the

effective potential must vanish at r = 0¥ we see

V; =(MCL+2\_Q'L){ +(m&’+rl§2')‘f“'§‘f (4.5)

2

(having obtained the final answer we can now constrain the theory if we so wish;

then V, = ff or Vo = F_jF | which is the familiar result),

Proceeding to the one~loop level, we see that Fig. 2 provides the only one-
loop contribution to the P tadpole. Applying Feynman rules for the effective
action (see Fig. 1 for the AA propagator), we see

JdRETYSCR) (AP (ma).L . (=AT) F/ (R
F ((1‘“')“' g(t.‘ﬂ')"f‘ 2 (P1‘+i¥}1——;-f y* ! (4.6)

+ {other terms of no interest)

-
This is essentially the statement that if unbroken at the tree level, SUSY will

never be broken by radiative corrections.
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-} is the vertex factor read directly from (3.4) and 1/2 is the combinatorial

loop factor. From this we see

—

r’ =(de X p;

P, L o - =
' pgen=0 JOMT E (prm )~ DN

for the one-loop translated F tadpole at zero external momentum, Using (2.7)

we obtain

d¥ . - (de £

{ 2 Jom* ()= £5AT
or

G X (de, e (Rt N E HED e
T ) oY

the integration constant deduced (in the usual manner) to have no f dependence.
Finally, as Vi must vanish at £ = 0 this fixes the integration constant and

we obtain

Vo= X Sﬂ Lo (1 -4
' 2 ) ant (pr+Z2)" (4.8)

which is the familiar result obtained in the literatureg)’lo) (recall that f Fcl
a -~ Acl is understood). Although I have detailed the steps, it is clear that
(4.8) from (4.6) is just a three-line derivation. This reflects the strength of

the Weinberg tadpole method.

Equation (4.8) can alsc be derived using the A tadpole and integrating
dVl/da. Fven at this level it is a more complicated approach, since the A4 field
couples to the spinor field as well as to F. One thus sees that considering F
tadpoles will always produce the easier calculation, particularly at higher loop

order.

5.,-CCNCLUDING REMARKS

Hopefully I have convinced the reader that the 3. WeinbergB) tadpole method

of effective potential evaluation offers an attractive and simple means of



-8 -

calculating SUSY effective potentizls. The trick is to maintain an uncenstrained
SUSY (i.e., do not eliminate auxiliary fields) and thus look at auxiliary field
tadpoles.

I have discussed the method for self-interacting chiral superfields only.
For SUSY gauge field theories cne could apply the method by considering D and
F tadpoles, In the introduction, I mentioned that supergraph techniquele) have
recently been developed for the calculation of S3U3Y effective potentials. The
Coleman-Weinberg approach used by these authors faces difficulties at the gauge
theory level, It is my view that a supergraph tadpole approach will ultimately
provide the simplest technique for SUSY effective potential evaluations (this
suggestion is not as insane as it first sounds, for one must remember that the
tadpoles we evaluate are those of the translated theory which is manifestly non-
SUSY, thus the tadpoles need no longer vanish). Work along these liﬁes is in

progress.
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FIGURE CAPTIONS

Fig. 1 Propagator Feynman pules for the translated W-Z model. 4 is defined in
Eq. (3.11).

Fig. 2 The one-1lo0p contribution to the 1PI F tadpole of the translated theory.
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