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INTRODUCTION

There are a number of ways in which one can calculate effective poten—-
tials in conventional [Eoe., non-supersymmetric (SUSY) theorieé] field
theories, Three popular methods are those of Coleman and Weinberg 1) (C—W),
Jackiw 2) and 5. Weinberg 3). For SUSY theories we also have the optiéns
of either a component field or a superfield formalism [éee Wess and Bagger

for a recent review 4)] -

As for component field methods, O'Raifeartaigh and Parraviecini 5) have
enployed the (-W approach and Hugq §) has employed the functional method of
Jackiw, Only recently has the S. Weinberg tadpole method been investigated

for SUSY theories 7 .

The one-loop effective potential of any gauge theory is essentially
known if we combine the works of the original C~W paper with the general
evaluation of SUSY mass matrices given by Barbieri et al. 8 . However, there
are two set—backs with this approach. Firstly, the C-W results were derived
for a covariant Landau gauge (o=0). This gauge choice is non-SUSY. Sec—
ondly the C-W method is virtually impossible to implement 9)’10) beyond the
one-loop level. BUSY zffective potentials beyond a one~loop level are not
Just of abstract theoretical interest but could prove useful in SUSY GUT
models of the type in Ref. 11).

The methods of Jackiw 2) 3)

to higher loop order calculations as was shown in conventional f%eld theory.
9

and S, Weinberg “/ both allow practical means

[See Kang 12) for two~loop Jackiw and both ILee and Séiacciluga and
Mghanthappa and Sher 10) for two-loop Weinberg in conventional field theories;]
The gauge question, already raised, suggests it would be benefiecial to work
with a manifestly SUSY calculaticnal method. This is also suggested by

common sense, namely, if a theory possesses & certain symmetry, Why not
exploit it. Thus it appears what we would ideally like is either a super—
field formalism of Jackiw's method or a supergraph analogue of Weinberg's

13) has already considered Jackiw's method in such =a

tadpole method. Hug
faghion. However, it is the present author's opinion that even in conventio-
nal field theory, the tadpole method is intrinsically simpler than the Jackiw
method. It is thus the purpose of this paper to develop the basic theory of
a tadpole supergraph method and illustrate its use for a simple model, the
Wess-Zumino (W—Z) model. It is worth while noting the recent paper by

14}

Grigaru et al. which investigates a C-W éupergraph method (which reveals

that all three popular methods have now been persued to the superfield level).
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Let me first begin by responding to a series of natural objections
which usually arise with the mention of a tadpole supergraph method. For
example is it not well known that tadpole supergraphs vanish ? The answer
here is yes, but only for SUSY theories. The tadpoles evaluated in the
S. Weinberg method are associated with 2 translated (hence broken) SUSY
theory (they need not vanish). Another immediate objection follows; how
can one possibly talk of supergraphs for a broken SUSY theory ? The answer
here is that the prerequisite for supergraphs is a superfield formulation of
one's theory ngt that it has to be SUSY. Of course SUSY theories will have
gimpler supergraph Feynman rules. A final objection might be that one cannot
understand how a superfield of a broken SUSY theory, containing component
fields of different mass, could possibly have a single expression for its
propagators. The answer here is that superfield propagators are differential

operators in superspace and this intuitive objection fails to materialize.

To summarize then, I will show that supergraph Feynamn rules are
possible for a broken SUSY theory. Their application to my formulation of

the tadpole supergraph method confirms it all works.

Since this paper deals with a calculational technique, I have pre-—
sented the work on a slightly pedagogical level, particularly with the worked
example. In Section 2, the basic methods are formulated. In Section 3, tree-
level implementation provides a simple example of how it works. In Section 4
implementation at the one-loop level is persued, beginning with a derivation
of the necessary (formal) supergraph Feynman rules of the broken SUSY theory.
In 4.2 these are utilized to obtain a simple expression for the one=loop
effective potential. In 4.3 we must go beyond the formal Feynman rules and
derive an explicit expression for a specific operator inverse. (This point
poses the greatest difficulty for the method, hence requires a separate dis-
cussion. ] It concludes by showing how the one-loop-effective potential is

finally arrived at. BSection 5 provides a summary.

DEVELOPING THE METHOD

In this Section, I will show how the supergraph tadpole method may be
formulated in such a way that we arrive at a simple recipe for its implemen—

tation.

Let ¢ denote a superfield described by a supersymmetric Lagrangian.
I' will denote the effective action of this theory. Since our theory is

SUSY, we may apply the familiar supergraph techniques of Grisaru, Siegel and
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and Rotek 15) to obtain a loop expansion for T. T can always be reduced
to a single d49 integration 15) (generally denoted by Id@ alone), thus

in general we may write,

F(¢) = Sde gd‘? X(P)e)clé(p,e) + other terms (2.1)

[Gp will denote (@p/(2m)*)(2m)*s(p) throughout this paper]. The effective
potential is then defined by

vz~ { xcedpw@ ..o de (2.2)

where it is understood in (2.2) and (2.%) that ¢ denotes the classical

superfield, ¢ also that X(@) means x(0,0), t.e., X evaluated at

el’?
zero external momenta. The loop expansion for V is obtained through the
loop expansion for X (and, of course, the other terms not explicitly pre-
sented) which is directly calculable via supergraph techniques [énd would

usually be extracted from (2.1)].

Let us define AJ by

V= S de (2.3)
Then
T = -~ X(8) P +---- (2.4)
in particular,
o = -X(e) (2.5)

OT;; ib:o

Suppose we now expand our theory about ¢ =0, where

¢ = ¢+ (2.6)

(c denotes a momentum space constant superfield), then
/
d\J =-X (&) (2.7)

X'(G) ig to be caleculated as in (2.1) but using the translated theory,
£'(¢')==£(¢‘+c). [@he reader will note that it is no longer obvious that
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X'(8) can be caleulated via supergraph techniques, since 27(¢!') will be
manifestly non—supersymmetric so standard supergraph Feynman rules no longer

apply. This issue will be discussed 1ater;1

With (2.6), (2.7) may be written as

dv = ~X'(e) (2.8)
. d 4’ d):G’
Now q;(@) is U caleulated via £, thus U has ng ¢ dependence, hence
we may write (2.8) as

dUes) = ~x'(8)
de

(2.9)

with (2.3) we obtain the results

Vo= -Sda[ gdé" X'(e)] | (2.10)

Observe that the introduction of 9 has avoided functional derivatives, also
that the order of integration in (2.10) is strictly fixed because o is &

dependent.
At this stage we have our recipe for the calculation of V.

1. We chooge £.
2. With ¢ =0¢T4+5 construct £'=2(¢145).

3. With 2! and supergraph Feynman rules calculate X'(O) appearing in

N = gde J? X'tp,8) 45"(9,9)4...-.-

4. V 1is then given by (2.10),

5. If ¢ is a chiral superfield then o is chiral and will have the

form

- = a + 91‘5:

if ¢ 1is a vector superfield o must have the form (general gauge )

. . © - ] L"1¢A
_ { g™ -~ 8%(m-cn) +L 070
5 c+Le (Mm+in) s z

-

where a, f, ¢, my n- and d are ccnstants. The effective potential in

R Sod U

are the spin zero and auxiliary fields

terms of classical fields is then given by replacing a—A
d — Dcl where Acl and Fcl
of ¢c1 (¢c1 ehiral) and Ccl’ Mcl’ Ncl’ Dcl are the auxiliary field

of ¢cl (ch vector).



-5 =

6. - In the case of chiral superfields a gpecial subtlety should be noted,
Integration of (2,10) will lead to a result such as

N gde CRCom ) +R (o) +€CF) ]
*)

where p(G) is ths "constant” of iutegration. It is then easy to see
- g'd-e C R, (6,8 +R(67) +R,(F)]

In other words, do not forget to symmetrize your result in ¢ and o

otherwise you could throw away potentially important terms !

It is clear that the method is well defined, what remains to be seen
is how it is implemented. This we now investigate for the Wess—Zumino model

(its extension to the general chiral superfield theory is trivial).

IMPLEMENTATION AT THE TREE LEVEL

Qur choice of £ is the Wess=Zumino model
L= Fplug-[(798558¢8 ) ] )

We perform the field translation ¢ — ¢+ to obtain

2= $flyg L Ume s 14+ (m20444) $44)5 (5.2
+H.c. ]

where o 1is a constant chiral superfield, hence must have the form

6~ = a+ @4 (3.3)

At the present stage we do not need supergraph Feynman rules since we know
that the tree level effective action FO is simply given by the action

evaluated at the c¢lassical field.

Thus

e Sded? (-~ Cmr+%—1_f)s“‘(é’))¢+--_, (5.6)

*) E.g., by integrating d4V/dc and using linear independence arguments.
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[where we have used the fact that K(Q,ﬁ)IGQ - jd@K(o,ﬁ)b(z)(ﬁ)]. Accor—
ding to rule 3, we read off the zero loop X'(@),

X'@) = - (me +rgr-F)E7(E) (3.5)
Rule 4 and (2.10) directly give

YV, = go\e L (de (me*-*—é%”---?) Sm(é‘)]

integrating and symmetrizing (see rule 6) gives

V, = gd&[—é‘ﬁ" -t'{Sm(é) ( '“_0{5." -r.%*.i c?) +H.C. g‘_]
Evhere we observe Id@ (=) o'fa(z)(ﬁ) =‘_['d0 (=) Gcﬂ.

Finally, utilizing (3.3), we obtain

Vo, =~ f§ +(maf +_i_a1§)*cma;+%_al‘?) (3.6)

- . . = = 2
U 1 . =
ging rule 5 and the equations of motion for Fcl’ Fcl mAOl-b(l/Z)Acl we
get the familiar result
vV, = F, F, (3.7)

Thig at least provides a simple example of how the method works {(in particular

rule 6 plays a crucial rdle here).

IMPLEMENTATION AT THE ONE-LOOP TEVEL

4.7 Supergraph Feynman zules for the broken SUSY theory, £!

The one=loop contribution to T, of interest %o us (see rule 3), comes
from the one=loop ¢ tadpole as illustrated in Fig. 1 *). Anyone familiar
with supergraph Feynman rules will recall that such a graph normally would
vanish, due to the structure of a ¢¢ propagator. However, recall that this
supergraph is to be evaluated using g', and since f [}ee (B.BI] is a
priori arbitrary, ¢' represents & broken SUSY theory. The tadpole need

not vanish.

To evaluate Fig. 1 we thus need supergraph Feynman rules for the
broken SUSY theory, 2'. That such Feynman rules exist is not obvious.
Intuitively one would believe that the possibility of defining supergraph

*¥) At this stage ignore the 52 and © indexing.
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Feynman rules is a consequence of having a SUSY lagrangian. In this Section

I will show that this is not correct, supergraph Feynman rules for £1 do

exist.

In fact a simple intuitive argument can be given to support such a
conclusion. My premise is that all one needs to define supergraphs and their
Feynman rules is a superfield formulation of the theory dealt with, pg! in
(3.2) is such a theory. The reasoning is that if the action can be written
totally in terms of superfields then it is clearly intuitive‘that the gffec~
tive agtion should ke expressible in terms of classical superfields. However,
given the effective action in terms of classical superfields, we can almost

directly extract the supergraph Feynman rules of the theory.

My intention is to develop necessary supergraph Feynman rules foxr p!
along the lines of the treatment given by Grisaru, Siegel and Rodek 15) for
SUSY theories. 4 glance at (%.2) shows that we expect three propagators 99,
¢ and ¢6, a cubic vertex »° (and $3) and also a ¢(&) +tadpole vertex.
In the present paper, since we are only congidering one-particle irreducible
{(1PI) diagrams (T dig their generator) we may fcorget about the tadpole ver—
tex. Secondly, (3.2) shows that the ¢3 term has been unaltered by the field
translation, thus we expect its vertex factor to be the same as that in an
unbroken SUSY theory. This is not immediately guaranteed because we recall
that in the SUSY theory the vertex factor and propagators are intimately re-
lated in that 53(¢3) vertices provide -D2/4 (-§2/4) factors which act
on propagators. That vertex factors can be defined in this way relies upon

the structure of the propagators themselves.

In essence then this is our only problem, to derive the Propagators
of 2' (in the process hopefully establishing the standard vertex factor).
We commence in a standard menner, by writing down the guadratic part of the

action with a chiral source term, J. TFrom (3.2)
So = §d} dé-7((dg %¢¢+T¢)+H.c.'§ (4.1)

I adopt the notation convention of Grisaru, Siegel and Rodek 15) where

4.4 4

dz=34'x4' @ and dp=4d xdgg (however, my spinor index conventions will follow

*
that of Wess and Bagger 4)’ )). Here I have defined a mass M given by

M= m+dho (4.2)

*)  The reader with any doubts as to the meaning of my notation should
refer to these references.
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We recall that m and ¢ are co=ordinate space constants. However, o 1is
chiral -[:5d,0"=0, see (3.3)] hence gso is M. M we may refer 1o as a cons-

tant chiral superfield (constant referring to co-ordinate space dependence ).

Using (3.3) we may write
M= +r§er (2.3)

where
X T mtAra

at this stage one can comprehend the possible difficulties we face. The mass
of our chiral superfield ¢ is itegelf g chiral superfield ! Thus super—
field ¢ has a mass which depends upon its position in superspace, this is
exactly what one expects in a broken BUSY theory. We can alsc give a diffe-
rent interpretation to this effect, namely that according to ¢ superspacs
‘is not uniform. [bne can imagine the analogous effect in co—ordinate space
should one break Poincaré invariance by introducing a co—ordinate space
dependent VEV. A particle's mass and the strength of its coupling would then

depend upon "where it is™ and "when it is" in space time;]

Returning to the problem at hand, suppose € and % are two chiral

superfields, then it follows 13)

(g tn = §dp $ 250 (4.9

Since J 1is a chiral superfield, as is the product M¢ (since m and ¢

are individually chiral), then we may write

S, = fd} L YTAY + w78 (4.5)
with

BT':"( - Py ¥ ‘*Ei%‘._):) (4.6)

and

, m p (4.7)

where I employ the p operators and fcllow the notation of Wess and Bagger 4)



p= PY/un" , Pl= DY/upn

- - - (4.8)
p,=0"D*v6eq , P,= P D 160 ,p=-PD D /30

[ﬁhose multiplication table may be found in Ref, 41].

It is then not difficult to show that the standard expression for the
generating functional ZO results
-1
= -1 Sd}- BTA B
2

LnZ, (4-9)

In the present case, we are ouly interested in the ¢¢ propagator so let us
concentrate upon this (the other propagators then follow in a siraightforward

manner).

The big task is to invert A in (4.7). This is a rather straight-
forward exercise in p operator algebra when M is just a number. However
here M Jis a constant chirel superfield and does not commute with the p
operator algebra ! This precludes the possibility of usiﬁg P operator

methods since it is not difficult to convince oneself that the commutators
take one outside the closed p algebra. For the moment, however, we can

make significant progress with a formal inverse.

If we denote (A_1)11 by x then from 421 we fing

— r—

QY a Ya Vo

x(v~? pom l’-)=‘7;z—P~

Since [i)+,)7l]=0 we obtain the formal expression
_ — 2
x= ~—M P-(l‘ml’.) (4.10)
D‘I

where nf2=ﬁﬁn. With (4.10) in (4.9) we obtain the relevant term,

oz = 4 (i (55 7) OB P ) ()

+ other {.’Qrmg 0% no interest

The sub~ and super-scripts (0) denote =a labelling on ©(8), l.e., Q(O)
(5(0)). Since
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$30 - —n P 8(%,)

(4.12)
{generally t,, will denote t1*t2), then it is straightforward to show

kS

£ Ln 20
63,573,

(W L) N m «) - pw
- {ﬁ’[%? ARERY AR YRS TR

J=zo

where we go into mementum space and still retain the 0O notation for "-pz".

Here I have introduced the notation

o = (l.“ ﬂl Fu) (4.14)

a

At this state we see we recover the standard vertex factor since

1
—sz(g and = 2p_1 may be associated with the vertices at either end of

the propagator (—ch_;=—52/4), as shown diagrammatically in Fig. 2.

Finally, from (4.13) we read off directly the formal ¢¢ propagator
Feynman rule, it is given in Fig. 3. Note that the p operators will not
~ —1
commute through 1, further that the issue of an explicit form for O

will be dealt with later.

4.2 The one~loop contribution to ¥V

We can now return to the evaluation of Fig. 1. Following the standard

15)

supergraph Feynman rules with our modified propagator we obtain,

m o= (4R o (do, 34 o[-0 L T RV O, RS

(4.15)

¢ ¢(kn eo:é—o)

+ other termy of no interest.

8,2 0,26,

where + 1is the closed loop combinatorial factor and -T)%,] )/4 comes from

15)

the vertex Evve recall that, as we have one external chiral superfield
at the vertex, only one such term ariseg. The dk notation was introduced

in (2.1) and d?P denotes dp/(2'rr)4.

We immediately deduce from (2.10)
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Vs [ae §ae e [ R £0 02 oS 5@ ]

(.1-)
Since

o'g=1 , 020

then it follows

ro, e~ ] =o0

finally utilizing the fact that

PCz) Ly S(en.) - Pu) ‘Jéfe,,__\) -‘-'P‘(%)S(G“_)

we obtain

co)

V= -3 (deodpde m o Mo 7" 80,

=9
observing that X/(1-x)=-1+1/(1=x)

| -
V, = —2\7__ (deo.dede M ) 859-0)]9 (4.16)

o 91

This can be further simplified by changing variables from ¢ to f using

(3.3), thus giving
(do,de M = (de, (a§ e m, =% (de,df 6}

which in (4.16) gives,

IV = - x7 (de (de, 6] EYCIN
5‘?_ £ 6,6,

(4.17)

At this stage the present supergraph method has been relatively simple
to implement. The most difficult aspect is associated with obtaining an ex-
plicit expression for @“1. My approach fto its evaluation is discussed in

the folleowing Sub-Section.
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4.3 Inversgion of © and the final result

I menticned earlier that p operator methods are useless for the

inversion of ©

o= (N

z (|+%§¢Pg‘” DD, D, B-ré ) (4.18)
1

- due to the fact that M is a constant chiral superfield and it does not
commute with the p operator algebra, i.e.,, the commutators [ﬁ,m?] gene—~
rate terms outside the p algebra. We must then seek alternative means
for the inversion of (. The approach I have developed is rather straight-—
forward, although it requires a deal of algebra. Here I will outline the

nethod, the Appendix will provide greater detail for the interested reader.

We begin by observing that 0-1 must be a function of covariant deri-

vatives. Its most general form must be
&'z c.(8,8) 1, (4.19)

where {Qi} is a basis of nine linearly independent covariant tensors, as
listed in the Table. One observes that Ci are in general 9(5) dependent
and they 4o not commute with Qi' (It should be pointed out that dealing with
a tensor basis is much simpler than dealing with a scalar, i.e., contracted
basis,; which would increase the amount of algebra: to be performed.) With
(4.19) in (4«17) we see that life simplifies even further, since

Qia(e =0 for i=0,...,7, and 0

L } = - -
10”91=90 8,0:50#66(9?0']91=90 +€38%0p

hence

ettt

NV = ~Ax” €, €52 [P 0z0,8)]
a,r' A X ga@( & ,e,,&p)c)gm[ g ’ ]9"’(4.20)

: -1
80 Wwe see we may set ©=0 in deriving & .
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. . -1
Our requirement ieg that @ @=1. By analyzing this equation and uging
the linear independence of {Qi} (see Appendix for details), one finds (af‘ter

much algebral) the following solutions,

Co = | c':‘;= cXFL-eA$M M- /16aA]
¥z 0 it = o
. . oL K k.—jo{— Ly .
c*zo cx¥P - gR PG [WXIEMVrénaca-my) ] (4.21)
GP=o gt P g P e P [ (a-m)/160a]]
P
Cqﬁ =0

“where ©=0 is understood (e.g., M= x). Here

| o
A= m-w)—a,cg(;—_g__f_%g ) o

and "fQOf:PmEza Efess—Bagger 4) notatiorﬂ.

Note that the non-zero C7 solution confirms my earlier remark that

p operator methods cannot be used to invert (for Q..( cannot be expressed

in terms of the p algebra). The final step is to substitute the 08 solu—

tion into (4.20) anad perform the differentiation, the result is,

oV, = =X ¢ (4f ' = (4.23)
g‘){ z g (g-ZxH)y*-X"§§%

which is, of course, the correct result EL few gimple steps take it through,
see Ref. 'FD.

CONCLUDING REMARKS

3)

In conventional field theory, 3. Weinberg's tadpole method of

effective potential evaluation provides (in this author'sg opinion) the sim—
plest and most elegant approach amongst the other popular methods 1)’2).

7

Recently, I have shown how this appraisal can also be applied to SUSY

theories analyzed via the {component) auxiliary f£ield tadpole method.
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4) supergraph methods have been applied to the calculation of SUSY

Recently !
effective potentials. These authors employ the Coleman-Weinberg 1) approach
principally because it requires no modification to standard supergraph

15)

Feynman rules .

From what has been said, it isg an attractive idea to investigate what
the tadpole supergraph method might have to offer in terme of simplifying the
calculation of SUSY effective potentials, in addition to providing a prac—
tical means of going beyond the one-locop level and also a way of performing
manifestly SUSY gauge fixing. In this paper I have developed such a formalism
and illustrated its implementation for the Wess—Zumino model. The formaliism
is guite compact and was summariged in recipe form. Implementation is also
reagonably simple up to the point where an operator denoted by O (associa-
ted with the chiral superfield prOpagators) must be inverted. This is the
only difficult point faced in the tadpole supergraph method., Invergion of @
cannot proceed via standard p operator methods. I have shown how O may
be inverted, but the procedure is not as simple as one might hope for. Sim-
plification of this procedure, I believe, would place the Weinberg tadpole
method as the more attractive supergraph apprcach. We should keep in mind
after all that explicit superfield propagator Feynman rules (for the broken
SUSY theory) need only be derived oncé !

Thus to conclude, the tadpole supergraph method has been shown to work.
Its extension to SUSY gauge field theories 1s an interesting prospect and
should be the next step in its development. At the same time, a simplified
method for cperator inversion, similar to the p operator metheds, would be

welcome.
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APPENDTIX

FURTHER DETATLS ON THE iNVERSION or 9

From (4.18) and (4.19) O_1O:=1 implies

| c N
| = C"('-mtf’.)-*-_z { CofL. 4 g% g™P CoK: (4.1)
. (] [ 4| =
e
where
Keo= 2, (MDD, D D) (4.2)

(spinor indexing will be given only when necessary).

Linear independence arguments on the set {Qi} are to be used, thus

i i

Ki must be expressed in the form K
taken through M2 (or the 'm2DaDB when appropriate). Note that this is

.==njnj, which requires €. to be
neoéssary since we carnot take the Qi through to the left for théy will not
commute with the Ci, and as yet the Ci are unknown. The following (anti—)
commutators are found to be useful in this respect, all derivable from the

basic superalgebra;

{00, 5,3 =-2Pus C(a3)

where pa&==p (pn” the momentum operator when in comordinate space) and

0o _
my spinor notation is that of Ref. 4).

fDx,3p75="£dﬁ {-V_atre‘s‘g -5;4,5
[ Dy, 6%] =20, Cde,8%] =18,

[Ox,M"]=2m A6 [Ds, M) =2mAf,

EDa(, B,-( 5(5.] = 1 C Fo(fa _D.,,;( et .P“,;: Bﬁ ] (h0)
. . A4
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The general results
fa,bcd =fa,bjc-hea,c]

= La,b]lc + lofa,c,3

Cabec] = Cablce +bCa,c] (4.5)

iQ,":t)C - \o{ahci

also prove useful. Having expanded Ki in 1., substituted into (A.1), we
then compare coefficients of the nj (linear independence). The result of
this is

Co |

Ce=0 €z142,3%3, 4,6 (4.6)

Y]

while 05, C7 and 08 are the solutions of a system of simultaneous

equations

kp  xp AP = o o | r,f,_):’lf,]
0= Cy+ Emcf» % M Puy, Pay [MES —1M €y g, € (4.7)

LEE xp oK =2 BT, - 5
= CT ' E—I;EE'“ {16 ‘"L)\-F va'q_ e‘fl Cs * C‘S ) 32,)\14-; gi"‘- I?silei:.i
y e o (A.8)
+ 2L ETE S gm” Puy, Pag,
1€ a-

and finally

0= P *;T;Lﬁ*-[ EXPE P S(mraamAaf €54, €0 7F)

- C;l '51.7. ﬁ:, C (FXL rf Exl.x‘-. Es,' %’- ) '}
s XE,E - ~
Eﬁvl e' K‘% g C7 P¥ 2 Ig)\—; ‘ﬂz fvl _‘5.‘ 6{{1%

-+ €1Lfr E‘xﬁ z C';d”ﬂfz ‘g-nz:l" Pf).i;' PXI%L% ]

(4.9)
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At this stage, 2 single assumption has been made, that 05 and 08
are antisymmetric in their ¥ indices and vy indices (individually). '
(This is finally confirmed when a solution is obtained, relying upon its

uniqueness.)

Besides their Size, these equations are difficult to solve because of
the coupling of spinor 1ndices. However, we' now call upon the fact that Ci

are only needed at ©=0, hence may always be given an expansion
. - -l‘i - - -‘L
c-= AT ¢+ 8. 6% +D77 B (4.10)

(recall 8, O'--Fe 59 )

Ai, Bi and Di can only be constructed from the rema&ining objects

carrying spinor indices, namely,
. » o<
Exak 3 €a<f3 > 3 F (A'11)

and © is available (in integer powers only) for dimension control., As.za
result, dimensional analysis shows B5==B8==O (as they require fractional
dimension) and similarly A, =D.=0. It is then easy to prove that C must

T 2

have the form

ciF o g%F 2, (.12)
It is a little more difficult to place restrictions on C8 and .07,
however the following are found to provide a consistent solution,
CTpc'kfj, - Eo'(f_é P‘-jx 5_5 ;_:.7
cHPRE g"‘f?‘g""fig o (a.13)

4 g

(a P GB contriktuticon +o 07 iz finally found to have a zero coefficient
so I exclude it here). With these in (4.7), (A4.8) and (A.9), one obtains
the final solutions in (4.27),.

This method is straightforward but rather long winded, something
equivalent to a p operator approach would be welcome, however the present

author was nct able o succeed there !
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The tensor basis employed in the inversion of (J,
see Bq. (4.19).

i Qi i 01
D.D

0 1 5 WDB
1 Da 6 DdDﬁD&

- D 5.5
2 Dy 7 e
3 DWDB 8 DGDSD& a
4 D B,

o o

PN HIe I KWK

FIGURE CAPTIONS

Figure 1

BFigure 2

Figure 3

The one-loop ¢ tadpole. To utilize superfield propagators
we must introduce 91

then take the limit as @

and 92

1 and 92

on either side of OO and

approach Oo'

In the broken theory, it is still possible to associate 52
terms with the vertices rather than with the ¢¢ propagator
itself.

The formal propagator Feynman rule for a ¢¢ propagator in

the broken SUSY theory, O is defined in (4.14).
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