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ABSTRACT

We study the effect of a supersymmetry breaking scalar
mass A in the supersymmetric Nambu-Jona Lasinio model.
For a supersymmetry breaking scale A larger than a cri~-
tical value, A > A,, a spontaneous breaking of chiral
invariance is found, and a supersymmetric Dirac mass is
generated for the fundamental chiral multiplets. The
Goldstone sector of the theory contains two composite
chiral multiplets with non-supersymmetric masses of
order A. The supermultiplet containing the Goldstone
boson exhibits a residual self-interaction of current-
current type. Possible applications for composite
models of quarks and leptons are considered.
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1. = INTRODUCTION

In recent years, the problem of dynamical symmetry breaking in super-

1)

symmetric theories has received considerable attention. The connection be-—

tween chiral symmetry and supersymmetry has been investigated in the context

2)-3)

as well as supersymmetric gauge theories
4)-8)

of non-renormalizable models

s by

such as anomaly matching and complemen-—

tarity, or by explicit dynamical calculationsla)—IT). It has become clear

which have been studied on the basis of effective Lagrangians

9)-13)

exploiting general principles

that, due to their special vacuum structure, supersymmetric theories behave
very differently from ordinary ones. Despite considerable efforts, however,
our understanding of the complicated non—perturbative structure of confining

supersymmetric gauge theories is still in its infancy.

To a large extent this theoretical work is motivated by attempts to

construct a dynamical theory of composite quarks and leptonsls). Such preon

theories have to provide a dynamical reason for the occurrence of fermionic
bound states whose size is very small compared to their Compton wave length,
(rjf 4 l/mf. Supersymmetry may play a crucial role in generating light com-—
posite fermions: chiral symmetries, which have been suggested as a means to

19},20) 2),4),9)

, may be protected Goldstone

22)

keep fermionic bound states light
fermionle) may appear, or quasi-Goldstone fermions may be generated as
supersymmetric partners of Goldstone bosons. In applying the Goldstone me-
chanism to supersymmetric preon models, one usually assumes that either one or

22)_25), and that

two Goldstone bosons are part of one chiral supermultiplet
these Goldstone multiplets contain essentially all massless bound states. Yet
very little is known about the Goldstone sector of supersymmetric theories
with dynamical symmetry breaking, and it is conceivable that only a deeper
understanding of these dynamical questious will provide the clue to the main
issues of composite models: the family problem and the mechanism of fermion

mass generation.

In order to learn more about compesite Goldstone supermultiplets, we
study again the supersymmetric Nambu—-Jona Lasinio modelz). It turns out that a
sufficiently large supersymmetry breaking scalar mass 4, A))z%, which can be
small compared to the cut-off A, A<< A, leads to spontaneous breaking of
chiral invariance. A supersymmetric Dirac mass m-is generated for the
fundamental chiral multiplets. The Goldstone sector contains two composite
chiral multiplets. One of them contains the Goldstone boson and exhibits

residual self-interactions familiar from the study of non—linear realiza-



tions; it is connected with a second composite chiral multiplet through a

Dirac-like mass term. Masses in the Goldstone sector are of order A.

The paper is organized as follows. In Section 2 we discuss the ordinary
Nambu-Jona Lasinio (NJL) mode126) in terms of the effective potential for a
properly chosen auxiliary field. Section 3 deals with the supersymmetric NJL
(SNJL) model and its Lagrange multiplier superfields. In Sectiom 4 we compute
the effective potential for the SNJL model and discuss the conditions for
spontaneous symmetry breaking. Sections 5 and & treat the Goldstone multiplets
and their physical properties. In Section 7 we summarize our results and
present some speculations concerning possible applications for composite
models of quarks and leptons. In the Appendix, the propagators for chiral
multiplets are listed in the case of a supersymmetry breaking scalar mass

term.

2. — THE NAMBU-~JONA LASINIO MODEL

For later comparison with the supersymmetric case and in order to

establish some notation, we discuss in this section the ordinary NJL model

using the effective potential approach27)’28)

29)

related to the Gross—-Neveu model .

. Our treatment is closely

*
The Lagrangian of the NJL model reads ):

_______ - Bageerd0).

*
) We use the conventions of Wess and Bagger

ﬁ - Ir)h++qu~_t«'+ . ;‘)M"{'_Q““:{_’_ 4+ c;‘h"".. :h:l:..

{(2.1)



where b, and (_ are two two—component Weyl spinors and the coupling g has mass

dimension —1. The model is non-renormalizable and has to be provided with a

cut—off A *). The Lagrangian (2.1) is invariant under the chiral U(1l)
transformations:

*) As in the Gross—Neveu modelzg), we could have started with N-component
fermion fields in order to make our subsequent one-loop approximation to
the effective action of the bound states exact to leading order in a 1/N
expansion.

U, - Y, — e o (2.2a)

- - )

w =ty = e i ., .

(2.2b)

As Nambu and Jona Lasinio have shown, for appropriate choices of A and g,
the second U(l) symmetry is spontaneously broken by the formation of a vacuum
expectation value of the operator ¢+¢_. This phenomenon of dynamical symmetry
breaking is conveniently studied in terms of the effective potential of an

auxiliary field ¢ 29):

[ (‘?—";E‘E](‘?*ﬁ*ﬁ-)
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- - %
by its classical equation of motion ¢ 1is identical with g¢+¢_ ).

Sy e et e s an
) For a discussion of the subtle differences between the effective potential
of the field ¢ and the effective potential of the c§$gosite operator {yd_

we refer the reader to the paper of Gross and Neveu .

As a consequence of the chiral U(l) invariance of the Lagrangian (2.3},
the effective potential of ¢ depends only on z = ¢*¢. The one-loop
contribution to the derivative of the effective potential is given by the
tadpole graph31) of Fig. 1 calculated with the fermion propagator for a
constant background field ¢. Using the propagators of the Appendix, one’
obtains for the sum of the tree and one-~loop contributiomns with a covariant

26)

Euclidean cut—off ,
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Integration of (2.4) with the boundary condition V(0) = 0 yvields

V@ |
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From (2.4) it is easy to see that the extremunm condition

W Bl | 1

¢ =¥ AL[E"‘* »19“(}1#\)—} = 0 (2.6)
26)

is the familiar gap equation which admits a symmetry breaking solution

¢ # 0 only for
? ]
& = 'l(a-—l) < o (2.7)
ﬂ r1=0
i.e., for strong enough coupling g satisfying the inequality

1 Al
d=‘LQ > (2.8)
8%

If (2.8) is satisfied, the ground state of the theory is given by a non-
vanishing value ¢0 of the field ¢(x) and a Dirac mass m, which we may choose

to be real, is generated for the spinors ¢+ and ¢_,

wm ="3Q° = ‘3"3'* . (2.9)

The Goldstome boson associated with this spontaneous breaking of the
axial UA(l) symmetry (cf. (2.2b)] may be studied by computing the effective

action of the field ¢(x). After a shift around the minimum value ¢9,
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) (2.10)

the Lagrangian (2.3) reads
R S
+ i')m"(;v‘”‘_i Aot s m(h . %Y%)
+ t\‘("‘h'f’_ r 1‘?#"—\;% . (2.11)
The one-loop comntribution to the effective action of ¢' contains a tadpole
term {cf. Fig. 1) which cancels the linear part in ¢' and ¢'* in (2.11) and

two quadratic contributions (cf. Fig. 2). One obtains, after partial

integrations, for the total quadratic part
POt - - (4 2% G
-10; Y&x o\“x'ib;(x-x';u} -t (€0 €0 « Qoo W'ext)
+ @0 (020 ) €'a) ]
_‘Lop(oiml) $oex) €0 € } . (2.12)

As a consequence of the gap equation (2.6) the two local terms in (2.12)

cancel and with
Yoo = L (Goo + :‘ﬁm) (2.13)
T

we arrive at
P(U 7) Sl et VoY P U, i
(\T,l} =-l.<5 Ax X QF(X-Xi\M) i(T(X)(D"b(M)G‘(X}

(g Tt
+: 10 D O ‘J . (2.14)

Equation (2.14) represents the expected result: quantum corrections
generate a kinetic term for the auxiliary field ¢(x) - its imaginary part

corresponds to a massless excitation, the Goldstome boson of the spontanecusly



broken UA(l) symmetry, and its real part is related to the ¢ particle of mass

2m. This is the familiar result first obtained by Nambu and Jona Lasin1026);

as in the Bethe—Salpeter formalism, the occurrence of a massless pion is a

direct consequence of the gap equation.
It is easy to see that the kinetic terms (2.14) have the correct sign. In

the case m ¢< A, to which we restrict ourselves, the expression (2.14) is

essentially local and one obtains up to terms of relative order 1/(m( A%2/m2))

(¢}
Mem - 2 go\“x [%G(ﬂ\ﬂ—%ﬂ\?{x) + EinmDTu“(x)'] ) (2.15)

with a wave function renormalization constant Z givem by

.2 = i (QMS; + OU)> , (2.16)

3. — THE SUPERSYMMETRIC EXTENSION

The supersymmetric Nambu—-Jona Lasinio (SNJL) model has previously been

studied in Ref. 2). The Lagrangian reads

1 -ldel8,0, « 04 « 9000 DT 5.1)

where the chiral multiplets & contain the Weyl spinors ¢ considered in the

previous section,

¢«:U‘19t§) = At(‘,’))* ﬁ@"h(‘a) + 09 F'LUJ) (3.2)

with

The Lagrangian (3.1) is invariant under the two U(l) symmetries of Section 2

which now act on the entire supermultiplets,

a4
U, o, » e o, (3.3a)
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and an additional R symmetry which may be defined as
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As shown in Ref. 2), the SNJL model does not exhibit a spontaneous
symmetry breaking like the ordinary NJL model, i.e., supersymmetry protects
the chiral invariance. This feature of the SNJL model, however, is not

expected to persist if an explicit supersymmetry breaking scalar mass term
2 ¥ *
- - oA
$ % o (AA, « 078D (3.4)

which preserves the invariances (3.3), is added to the Lagrangian {3.1).
Indeed, for A A, where the scalar degrees of freedom cease to play any role
for the dynamics of the theory, one should recover the ordinary NJL model,
i.e., for strong enough coupling g (cf. Eq. (2.8)) the U, (1) symmetry should
be broken. A priori it is not clear what this transition looks like, i.e.,
whether dynamical chiral symmetry breaking appears for arbitrarily small A or

only for A larger than some critical supersymmetry breaking scale AC.

In order to study the model defined by (3.1) and (3.4), we proceed in
analogy to Section 2: we first introduce auxiliary superfields and study their
effective potential which, for strong enough coupling g, will again exhibit
spontaneous symmetry breaking; in a second step, we them study the composite
Goldstone multiplets in terms of the effective action for the fluctuations of

the auxiliary superfields.

Equation (2.3) suggests the introduction of a single auxiliary chiral

superfield & associated with the change of the Lagrangian (3.1)

1> 1 - [d6(9-908)Xb-90d) (3.5)

In Eq. (3.5), however, the scalar and the fermionic components of the
superfield & appear with kinetic terms, hence they do not play the role of

Lagrange multipliers: their equations of motion have non-trivial scolutions,



i.e., they do not have the form of constraints which would make (3.5)
identical with the original Lagrangian at the classical level. Furthermore,
the kinetic term has the wrong (megative) sign which does not allow for a

functional integration over &.

It turns out that one has to introduce two chiral superfields P, and @,.

The corresponding Lagrangian reads

- {drol@do80)0-8) « 86, ]
+ gv‘l@[dl.d); *‘5@. <b+(b--l + CC ) (3.6)

where & = A20066 corresponds to the supergymmetry breaking term introduced in
(3.4). The fields €y, ®, carry mass dimensions 2 and 1, respectively. The
superfield 2 plays the role of a Lagrange multiplier whose equation of motion

yields the constraint

(bl =.‘a o, ¢- (3.7a)

which, in components, reads

A‘L = %QA-A-._ ,
N, = QQ(A,."l'J ALY, ) ,
B, = 3(&.3 +AE -t ) (3.7b)

After inserting (3.7) into (3.6) one immediately recovers the original
Lagrangian (3.1). Despite the fact that (3.6) contains a canonical kinetic
energy for 3, the above constraint shows that $, has to be interpreted as a
composite object made out of ¢4 and & . The interpretation of $, can be

obtained from the equation of motion of the field D,

=T

(_:.r)-b d>1 * (bl

Hence, after inserting (3.7) into (3.8), one finds

o, - -%(—a)%l(a__)*&_) ’ (3.9a)

0 ] (3.8)

H

or, in components,



e (AR DR )
"h: —‘ﬁfqu%“(ﬁfq’_ + Aj"_h)
F‘=—-%D(A+¥Ptj) ) (3.9b)

It is important to observe that it is not possible to use (3.8) in order
to eliminate @, or &, in (3.6): in both cases one would end up with
pathological kinetic energies (with wrong sign or with derivatives in the
denominator). Both fields 2, and ®, have to be kept as independent degrees of

freedom in order to obtain a consistent theory.

As for the ordinary NJL model, the Lagrangian (3.6) for the auxiliary
fields can be found as a limiting case of a renormalizable theory with

canonical superfields. Starting with

"

1 - (4ol @o, «8.000-3) < 6.8, « 8,47
+ gf@[r%,d)i ~ h E{ZQQ-] + Cc. ) (3.10)

where the mass dimensions of 51, n, and h are 1, 1 and 0, one ocbtains (3.6)

after defining

4

e,
’.A % (3.11)

s
]

in the limit p » « with & and g fixed.
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4. - THE EFFECTIVE POTENTIAL FOR THE SNJL MODEL

In this section we will use the Lagrangian (3.6) in order to investigate
the vacuum structure of the SNJL model with explicit supersymmetry breaking.
We are interested in possible vacuum expectation values of the scalar fields

A Agy Fo, Foe The tree level potential for these fields reads:
V,=-E'E-6F -AF -A'E' -a’R*
o -7 A Y 1 3 v 1 " . (4.1)

From (3.6) it is clear that the ome-loop contribution to the effective
potential will be some function v of Al and Fq only. Hence the equations for
the extrema of the complete potential in the directions A, and F, can already
be found from (4.1),

'351 ) {(4.2a)}
N, %
0 = —a—FL = = F\. - Al . (4.2b)

As a consequence of (4.2a), we have to evaluate vy only for F, = 0 in order to
find the extrema of the potential. After using {(4.2), one obtains for the sum
of the tree and one-loop contributions of the effective potential
3 *
V= 'a, « U, (ATA)

(4.3)

where V, depends only on z =

Al|2 due to the chiral invariance of the theory.
In the next section it will be shown that the solution of (4.2a) actually

corresponds to a minimum of V.

The interaction Lagrangian between A, and the components of ¢4 and $_
reads (cf. (3.6)],

Y —ch{x, (B,FE + AR -%Y) &+ cc. (4.4)

wt
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which is analogous to the coupling of the auxiliary field ¢ in Eq. (2.3)

except for the additional scalar interactioms caused by supersymmetry.

The one-loop part V, of the effective potential can now be computed in
the same way as in Section 2. In addition to the fermionic tadpole, Fig. 1,
one has the scalar contribution of Fig. 3, and using the propagators of the

Appendix, one obtains

1
W

W

V, = - 7.]:} (OQF\T)* [QF(O; ‘;:"%) - D¢ (03“';%1'51)]

"

S 1 daed \ )
"y 8—1[% o Q,“(lhlu ~ 2L 0] s

where the same regularization as in Section 2 has been used. Integration of

(4.5) yields for the complete potential V = V, + Vis
et YL (- 1) ()
o =t = - D) L('l*i ) ot )

Q)\A(—&::%‘-j) . {LQM(%H) ’ (4.6)

with
1 - A o n
w.: 25'2 - EFIXIA“ \ -z = BF , a = é%h ;

the integration constant in (4.6) has been chosen such that v(0) = 0. v(m)
coincides with its non-supersymmetric analogue (2.5) in the limit £ » =

whereas the quantum contribution to v vanishes for E =

The supersymmetric gap equation

W

3y A.lh [~—(>1 E)QM(— +1) +q9~(*+‘n 0 (47

}

has a symmetry breaking solution Af # 0 only for
p l \
= ly) 5 - QM(-H < O 4.8
'b‘“l Ll r\ao 1[ T ] ) ( )]

i.e., for a coupling o« satisfying
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d{h(%+0 > | . (4.9)

The inequality (4.9) replaces the non-supersymmetric bound (2.8), a$ 1. It is
straightforward to see that, if (4.9) is fulfilled, the absolute minimum of
v(n) is assumed for Mg # 0 and the axial UA(l) symmetry (3.3b) is sponta-

neously broken.

The relation (4.9) determines for any fixed coupling « 3 1 the critical
supersymmetry breaking scale Ac, below which chiral symmetry remains

unbroken,

(4.10)

o
i

|
o\ECQM(-+
13
[
Equation (4.10) reflects the effect of supersymmetry which turms a quadratic-
ally divergent expression for the one-loop effective potential into a loga-
rithmically divergent one: for a supersymmetry breaking scale A much smaller
than the cut-off A, £ ¢€ 1, a very strong coupling is needed,
|
dww ) (4.11)
in order to form the condensate which breaks chiral invariance, i.e., super-

symmetry indeed protects chiral symmetry.

The connection between ¢ and 1, which follows from the gap equation
(4.7), is shown in Fig. 4. One should bear in mind that our model is
physically sensible only for mass parameters AZ, g2z0 smaller than the cut—off
A?, i.e., £, n & 1. In Fig. 5, we have schematically plotted m, which parame-
trizes the condensate, as a function of £ for some fixed coupling a: for

g L &, one has n = 0; furthermore we find (dn/df) = 0., For £ + =, 7

E=t,

approaches the value U which is given by the solution of the non-supersymme-

tric gap equation (2.6).

If the axial U (1) symmetty is broken and the effective potential
2 £ 0, we infer from Eq. (3.6) that a

acquires its minlmum at z, = 'AU

supersymmetric Dirac mass m is generated for the two chiral multiplets ¢4 and

& , which one may choose to be real,

o ¥ (4.12)
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The explicit supersymmetry breaking scalar mass A leads to a non-
supersymmetric mass spectrum in the Goldstone sector of the theory which we

shall discuss in the following section.

5. = THE GOLDSTONE MULTIPLETS

In order to study the Goldstone sector of the SNJL model, we proceed as

in Section 2, i.e., we shift the superfield o around the minimum value AU,

b, - AT . O (5.1)

)

and compute the quadratic part of the effective action for & , T(z)(é',ﬁi),
starting from the Lagrangian (cf. (3.6) and (4.12))

1 - {dol@d, «.0)1-8)« &, ]
NPolmbp +850+ 0/ - qb0d) + cc. |

The various contributing graphs are listed in Fig. 6; the corresponding
propagators are given in the Appendix. After some algebra one obtains the fol-
2 -
@ @1, 0):

lowing result for the quantum comntributicns to T
3] —| \
rEL8) -
.1 \ irl 1 I R 1
-l% gtrx Jx‘i-W\ [Dp(.x-‘t"!ho\l) - QF(Y-‘x",b}{-ﬁlﬂ(pr‘(x) A" o)+ A"m Q-l(!([:)
1*1\11!)_1.1|1'l 111']Al|
+Al(x)(BF(X-X;M)U - im [QF(X-X"M)-QFU(—X“M+Q] )
- U !)F(x-x"‘u}'.& 19, OF(x-x‘-,u}) "hmv‘“ ¥ o)
1 - =
¢ Dpoxubsd ) Boo R i)

(5.3)
"
~ T ngoyw) - ppto; e )] S A]*m Aoy }
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as in Section 2, the tadpole terms which cancel the part linear in &, in the
Lagrangian (5.2) have been omitted. We note that the expression (5.3) agrees

with (2.12) in the limit & = (A2/A2) > =

Subsequently, we will limit ourselves to the case of a supersymmetry
breaking scale A much smaller than the cut—off A, i.e., E ¢ 1. According to
(4.11) this requires a large coupling o in order to obtain chiral symmetry

breaking,

a D ____L___
TQM(%ﬂ)

Depending on a, the spontaneously generated mass m = n%A can take any

arbitrary value. Yet in the physically relevant range of parameters,

Ocwm, & <« N (5.4)

the gap equation (4.7) has the simple solution
1 l )

- a1
“_“,_=Q‘ﬁ=e‘\° (5.5)
nTN

In (5.5) corrections 0(1l) and 0( n(1+(A2/m2))) to n{ A%2/m?) have been

neglected, i.e., the above solution is not adequate in the limit m » O.

For parameters satisfying (5.4) the expression (5.3) is essentially local

and one obtains for the quadratic part of the effective action of @i and @Q’

up to terms of relative order 1/(fn(A%/m?)),

l—'(v ( 5:1 &1 ! d>| 3 ¢1)

:&J“xiA:DAl REETR A D A F:F

1

fBF AR AR AR SR, - Tt AT

FZLAMDA - b 2, Re (A)

* %.*,I%M*,G‘“;l " 2; PfF’ } (5.6)

with
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2, =2 = 2 %I ( o “ coom) (5.7a)
X l{‘ 1 i
lg% ( Q. M:? + 0¢ R‘) ) . (5.7b)

The solution (5.5) of the gap equation yields for the wave function remorma-

lization comstants, up to terms of relative order 1/ (n(A2/m2)),

!
= = —_ 5.8
2,5 2y - 2 7 oo | (5:8)

The effective action (5.6) shows that the components of the superfield &; have
received kinetic terms from quantum corrections. We note that no term
involving derivatives of F; has been generated. Consequently, F; can be
elimipated as usual resulting in a positive mass squared for the field A,.
This justifies the use of Eq. (4.2a); the point (F = (A*)O 0, (Fé)o =

= —(A*) = AO is indeed a minimum of the effective potential. Hence, no
scalar condensate (Ai>0 = glA A')O (which carries non-zero R charge) is formed

and R invariance remains unbroken.

After eliminating the auxiliary fields F; and F,, introducing

'
Ao = "-_ (Gon+ iTw) (5.9)
v

and rescaling the components of &) such that they have canonical kinetic

energies, one obtains
Pm(&-)lla 51 1 (bu‘;cbl.)
e (armria gy,

+ (0~ e)g RELIE Sk 2

|
1

NISCATEER b

(5.10)
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with

T =O(Q:{‘&l)
w

The physical interpretation of this result is obvious: the effective action
' 1

(5.10) describes a massless Goldstone boson x, a real scalar o of mass &msh-

(the ¢ mass is finite although very small for our choice of parameters), a

complex scalar A, of mass JZA and a "Dirac fermion” of mass vYZA.

The action (5.10) has been obtained from (5.3) for parameters satisfying
the condition (5.4). In the case md<¢ A¢¢ A one also arrives at (5.10) except
for the o mass term for which one now has & = 1. We thus see that in the limit
E = (AQ/AZ) + « all fields, except = and ¢, become infinitely heavy, i.e., the
physical degrees of freedom due to supersymmetry are "frozen"”, and we recover

the result of Section 2 for the non-supersymmetric case.

In addition to the fields of the Goldstone sector we have, of course, two
complex scalars A _of mass AEZ;E? and one Dirac fermiom ¢, of mass m. We
remark that the bgson and fermion masses, summed over all—fields, obey the
relation (up to terms of relative order 1/(fn(AZ/m?2)) and possible

contributions from additional bound states )

9 2
Z ( Hl’t - H{‘) = O . (5.11)

'::'.+|—,(,7.

The structure of the Goldstone boson is particularly interesting. It is
part of the multiplet &, whose "wave function” involves derivatives, a
9),4),32)

possibility already considered in the literature From (3.9) one

obtains

T T (QTED) )

~ ¢\§s* (1 o}'(gﬁm», A_‘AJT'

) (5.12)

where ¢ is the Dirac spinor formed from the Weyl spinors ¢+ and ¢_,

++d
Nl' = (:F__'l ) (5.13)

In order to obtain (5.12), we have eliminated F, by using the classical

equations of motion [cf. (3.1)]. It is interesting that the Goldstone boson
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appears to be predominantly a fermion—-antifermion bound state.

We are thus led to the following picture: the Goldstone boson of the
spontaneously broken UA(l) symmetry is connected with two chiral superfields,
®, and &,. Thus the number of quasi-Goldstone bosons and fermionSZS) is larger
than usually assumed. The superfields &, and &, describe physical states which
are created from the vacuum by the operators ('1/4)52(&45L) and @+¢L' The case
AZ¢ m is of particular physical interest: a heavy, approximately super-—
symmetric, sector (¢4’¢L)’ whose mass is spontaneously generated, is
accompagnied by a light Goldstone sector (&;,®;) with a non—-supersymmetric

mass spectrum of order A.

6. = RESIDUAL INTERACTIONS AND PARITY

Due to the coupling of the composite superfield @i to ®+®_(cf. (5.2 )]
higher n-point functions are generated for the components of @i in addition to

kinetic terms. Among them is the four—fermion self-interaction
plCH 4 L
1™ = -G ‘Jx +on ¥ on Y Yo ‘ (6.1)

As a consequence of the explicit supersymmetry breaking, (6.1) is part of a
rather complicated expression involving the superfield @i, the spurion field
& = A20866 and covariant derivatives. After some algebra, one obtains from the

one-loop graphs of Fig. 7 in the case AL m.(cf. (5.8)):

G 1 4.6
| ! oY
IRV 2+!M UWRY m
Let us combine the two quasi-Goldstone fermions ¢; and ¢; into a four-

component "Dirac spinor” i,

*]&
X 3,3 (6.3a)

1
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YL‘Q > %U;Eg) X . (6.3b)

From Eqs. (5.10) and (6.1), one reads off that the Lagrangian for the
*)

fermionic part of the Goldstone sector is given by

*
) Ve use the conventions of Wess and Bagger30).

Ty = XX +« Ro XX
* l1 G iL\f‘xl—?tf\uXL . (6.4)

This is a striking result! We have generated precisely the structure of the
low energy effective Lagrangian of the standard model of electroweak inter-
actions: the Goldstone sector contains a massive "Dirac fermion” whose "left-

handed™ component exhibits a positive current—curreant self-interaction.

There is, however, a problem with this interpretation which is related to
the definition of parity. Conventionally, the parity transformation for the

fundamental multiplets 2., @ is given by {(x' = (xf,—g))

*
Ai(x) - A; (_X‘}
(3 -
A Yo - et o)

~¥
F,bo —» F_oh (6.3
+

With respect to (6.5) the real (imaginary) parts of A+ and F, are scalars
(pseudoscalars) and the ordinary scalar and pseudoscalar densities formed out

of the Dirac spinor ¢ (cf. (5.13)) transform as

Yoo Yo — Yo" Y

:{:(’O fg'\h\ﬂ —_ - :l'(xl‘ﬁg*u‘) . (6.6)

From the constraint equations (3.9) and (3.7) '

§--a-0DD) | b b

one obtains the transformation properties of the Goldstone fields,

}
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¥
i

HWt

* 1y ) — '+|:l (xi)

*
Fm X - Fm&"') ) (6.7)

From (6.7) we infer that under parity the "left-handed” and "right—~handed”
spinors X, and R do not transform into each other. Indeed, the Lagrangian
(6.4) is invariant under parity which has to be the case because the funda-
mental Lagrangian (3.1) as well as the vacuum expectation value (4.12) are
invariant under the parity transformation (6.5). Therefore we have to
conclude that the two quasi-Goldstone fermions L and xR do not form a genuine

Dirac fermion whose mass term connects spinors of opposite chirality.

It is conceivable, however, that the peculiar behaviour of the quasi-
Goldstone fermions under parity is a special feature of the supersymmetric
Nambu-Jona Lasinio model whereas the structure of the Lagrangian {(6.4) is more
general. The doubling of quasi-Goldstone fermions which occurs in (6.4) can be
made plausible by simply considering the effect of a small chiral symmetry

breaking mass term (u<e¢ m)

1y - r(¢+¢.l% * Q(b.lgé) : (6.8)
From Dashen's theorem33), we know that the Goldstone boson w will acquire a
mass mi ~ u. Since (6.8) is supersymmetric, one also expects a mass for the
Weyl fermion ¢). Yet a Majorana mass lerm {;¢) would violate the unbroken
R-invariance because ¢; carries R-charge -1. The problem can be circumvented
through a Dirac mass term ¢y with a second quasi-Goldstone fermion ¢; whose
R-charge is +l. Given the resulting doubling of Goldstone supermultiplets, the
asymmetry betwen the "left—handed”™ and the "right-handed” multiplet is
expected because non-linear realizations of broken symmetries require only the
supermultiplets containing Goldstone bosons to have residual interactions of
the form (6.1). Finally, in a non-parity invariant theory, the two types of
Goldstone supermultiplets may very well correspond to states of definite

chirality.
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7. = CONCLUSIGNS

Let us summarize our results. We have studied the supersymmetric Nambu-
Jona Lasinio model with a supersymmetry breaking scalar mass A. The explicit
breaking of supersymmetry strongly influences the vacuum structure of the
theory: for large enough breaking, A S Ab (cf. (4.10)), the axial UA(1)
symmetry is spontaneously broken and a supersymmetric Dirac mass m is
generated for the two fundamental chiral supermultiplets ¢4 and @ . For strong

enough coupling « = {(g2A%/87n2), m can be much larger than A.

The Goldstone sector of the theory consists of two composite chiral

multiplets, &; and &,, whose bound state structure is given by
-1 -

¢ ~ -DDS,6)

(b1 ~ cth d>- .

The order parameter of the spontaneous chiral symmetry breaking is the F-
component of @+¢L. This does not indicate a spontaneous breaking of
supersymmetry because the vacuum expectation value disappears for vanishing
supersymmetry breaking A. The pion field n has the interesting structure
(cf£. (5.12))

T Fgt g afa,«arale.’)

where ¢ is the Dirac spinor built from the Weyl spinors b, and ¢ ; thus the
Goldstone boson appears to be predominantly a fermion—antifermion bound state.
The residual self-interaction of the supermultiplet &;, which contains the
Goldstone field w, leads to a Lagrangian for the Goldstone sector whose
fermionic part strongly resembles the low energy Lagrangiam of the standard
model of electroweak interactions: a "left-handed” spinor X with current-
current self interaction is coupled to a "right-handed" spinor xR through a

"Dirac mass term”.
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Due to the peculiar transformation property of the "Dirac fermion™
under the conventionally defined parity, however, the above interpretation
cannot be maintained. Nevertheless, it seems to us that the following features
of our model could be part of a preon theory of quarks and leptons:

- the strong influence of supersymmetry breaking terms on the vacuum
structure;

~ the doubling of Goldstone supermultiplets, i.e., the appearance of two
quasi~Goldstone fermions for one Goldstone boson;

- the occurrence of "residual weak interactions” for left-handed particles

only.

Our investigation of the dynamical symmetry breaking in the super-
symmetric NJL model revealed a Goldstone sector with interesting structure. We
expect an even richer and more surprising structure in supersymmetric
confining gauge theories which are the most promising candidates for a

description of the substructure of quarks and leptons.
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APPENDIX

In the following, we list the propagators which are needed for the

calculations in Sections 2-6. The action

S = Kcl“x i Ycl“@(-@q)\s "6_@)(1—3) + W (0‘19 (b»,dP- + C.C.}

- | (Alm-da, « ATD-R) A

+nu\hg‘" :l_’l- * i%“‘iv“'“‘h + F-}*F\. * F*F_

rwm(RA_+ BF -t Y ) + ce.

with

T - 00008 &

yields the following propagators

CTAL B0 D, = © A0 e a)

CT( F00 F.i*tx‘}) D, = (Q-a1) IS‘.;(X—J("i lmlten)

T Eo) D - - \M*I)F(v_x'-} a4 ALY

CTH( A;u) F:(x‘i) A

n

“lwm DX bl + A0
5 . g ¥
CTMy 0 Ho)D, = 08, w p ey wt)

T LI 3 ]
C \("\'i(x\ "{'ii!(x‘)boz 0o -Pw f_\FU(-x'} lwal )

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(a.7)
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2k

_- 3 - 1 2
( ‘Hia""*i{:‘*‘l)l - G“F G ; (A.8)
with 3 | cr ;F“
0;;“'1“‘ Y "ﬁg"rk%ﬂ“‘f’i
O-n Qf)P+H—d

For A = 0, (A.2)-(A.8) are the various components of the familiar

superfield propagators

(T(h,x,9,8) §.,6,8)D
(A.9)
<~iu" 510-0) o [i(008- 658 1., ] nor ) |

CT(,0,0,0) o6 8D,

(A.10)

- Lo [ (0“0 + 0D - 1060 %M‘] B x-x'; )
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FIGURE CAPTIONS

Figure 1  Tadpole graph which leads to vev of ¢ in the NJL model.

Figure 2 One-loop contributions to effective action of ¢.

Figure 3 Additional bosonic tadpole graph which coentributes to vev of A; in
the SNJL model.

Figure 4 Relation between the coupling a = (g2A2/8n2) and the spontaneously
generated mass, 7 = (m?/A%), implied by the supersymmetric gap
equation for different wvalues of the supersymmetry breaking scale,
g = (22/22).

Figure 5 = (m2/p2) as a function of the supersymmetry breaking scale

= (A2/A%) (schematic).
Figure 6 One—loop contributions to effective action of Ay, ¢;, Fq. '
Figure 7 One—-loop graphs contributing to the residual interaction of ¢j.
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