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ABSTRACT

We present QCD predictions for the
production of vector bosons at small
transverse momentum in  hadron—~hadron
collisions by the Drell-Yan mechanism.
By using Fermilab and ISR data to fix the
parametrization of non-perturbative
effects we are able to define clearly the
region of transverse momentum in which a
leading logarithm analysis applies for
the production of W and Z bosons. We
also investigate the sensitivity of the
cross—section to recently calculated
coefficients in this analysis.



1. Introduction

The transvérse momentum (qT) dfstfﬁbution of lepton pairs produced
by the Drell-Yan brobéss ié of.considefab1é theoretical interest as it
should provide a good test of QCD. fn the naive parton modei the only
source of transverse momentum is an intrinsic cbmponent associated with
the motion of quarks fhside hadrdns, with <q%> ~1 (GeV/c)2. 1In QCD
the quarks which annihilate to form the vectok boson can pick up
transverse momentum by g]uoﬁ radiation, produciﬁg a ﬁucﬁ broader
distribution.

A difficulty in calculating the G spectrum in QCD is that there
are collinear and soft singularities associated with the emission of
real gluons. These are cancelled by diagrams containing virtual gluons
(excgpt for those collinear singularities which are to be associated
with the stfucture funcfions), but the cancellation is not complete
when q%<<02 (= dilepton-mass-squared) since the virtual gluon phase
space is not inhibited by a condition on %4 whereas the real gluon
phase space is. The result is that large 1ogarithms‘£n(Q2/q%) appear
multiplying s so that a perturbative ca1cu1atibn to fixed order in
asis not sensible. Since ﬁost of the cross-section is at small ar it
is important to find a way of summing these large logarithms to aTll
orders.

Much progress has been made since the early work of Dokshitzer,

1)

D'yakonov and Troyan ', but the structure of the result remains the

same. The Fourier-Bessel transform of the cross-section factorizes
into two structure functions (D) and a form factor (T) which contains
the Targe logarithms from the soft and collinear gluon emission.

2)

In a previous paper”™’ the coefficients of some of the Togarithms



in T were calculated from the O(ag) differential cross-section 5'%%_66

for the production of a virtual photon. In section 2 we briefly review
the results obtained there and report a value for the previously
undetermined coefficient B(z).

In sections 3 and 4 we describe the numerical calculation of the
cross-section using these coefficients and compare the results with
experiment. Data from Fermilab and the ISR serve mainly to fix non-
perturbative parameters which dominate at low Q2. The production of W
and Z bosons at the CERN pp collider, on the other hand, provides an
excellent opportunity for testing the form factor T, since we now have
values of Q2 such that there is genuinely a region of 4 in which
A2<<q%<<Q2, where the large logarithms ln(Qz/q%) will dominate other
terms. Using the parameters from the lower-Q2 data we can clearly

define this region and show the relative importance of the different

calculated coefficients there.

2. Calculation of the form factor
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02 d% - | Q2,1 -$(b,Q)
L = [dx,dx, 8{(XaXp= == ) & [ db b J _(bg )e »
Go doqu% A°"B ATB S 2_ o 0 T
) b i b
x ) ez { Dq /A (xp, /) Dq B (xg, 0/}) (1)
f f f
+ {q +> a}}
_ bro?
o Us
-y
b =2e ©



A1l corrections which vanish in the limit Gr> 0 are ignored in equation

(1). The function Dq/A is the quark structure function for quark g in

S

hadron A and e ~ is the Sudakov-like form factor, called T in section 1.

The coefficients A and B are defined by writing

Q2 dqz 02
s, = [ 42 {40 L ae () + Bla(a)]
(bopy2 o q*
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A and B may of course be changed by redefining the limits of the

integral in (2) and keeping the value of S(b,Q) the same3)

. HWe believe
that A and B have the simplest expressions using the limits above.
As in Ref. 2 our derivation of the coefficients is done using the

quantity I,

{(3)
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where the Nth moments with respect to © are taken at fixed Q2,
integrating over s. In this section we specialize to the non-singlet
case so0 that D refers to the valence quark distribution qf-af. The nth

moments of these distributions can be written
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where f represents the probability distribution for a valence quark in
a hadron A at renormalisation scale u [i.e. we take the factorisation
mass M equal to the renormalisation point u]. d satisfies the usual

renormalisation group equation, whose solution is
b u dq?
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where vy

&1) are the anomalous dimensions for the space-like evolution of

the non-singlet quark density (qf-af).

If we write the quantity T as

L o= Zf et [fo/n () fop(Non) + aea) (6)
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then the an can be written in terms of A(1), B(1), 551), Y§1) and
2

t=4an Sz-- By expanding the exponential and taking the Bessel

transform we can write
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where the nCm are expressible in terms of the an. By comparing this
expressfon with a calcutation of I at O(asn) we can find values for nCm

and therefore for A(1), 8(1) and CN(i).

As in Ref. 2 we use the work of E11is, Martinelli and Petronzio

who have calculated at O(ag) the parton level cross-section S'%%du' By

5)

analytic integration over kinematic variables at fixed Q2, q% in the
Timit qT+0 we derive a form for the parton level version of ©. This is
to be compared with equation (7) where fq/A has been replaced by the

quark distribution fq/q’

04
Forgliom) = 1+ N (S i S B (8)

since the calculation is done using dimensional regularisation and WS
renormalisation.
In Ref. 2 we discussed the results from a calculation of 1C1, 1Co,

203, 2Cy and ,€; which confirmed the structure of equation (6) and gave

{2) (1) -
and Cy {see Table 1). Equation (6)

2)

values for the coefficients A

predicts that ,C; should have the form

2 2 2
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We find
1
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and S{x) = - 1 anZx + 28nx An{1+x} + 2Li, (-x) + g—-, which is

jdentical to the second-order space like non-singlet (qf-ﬁf) kernel

determined by Curci et al 6).

We also find
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The form of the A(1) and B(1) is rather interesting. Kodaira and

Trentadue4) have argued that the leading contribution to the cross-



section as qT+0 is determined by the behaviour of the non-singlet
1
Altarelli-Parisi functicns. Thus A( ) should be the coefficient of the

1
leading (1-x)~! singularity in the lowest order kernel Pq; )(x), and

1
B( ) is twice the integral over the non-singular remainder. Kodaira

and Trentadue worked in a light-like axial gauge, in which the term

1
proportional to A( ) arises from the emission of soft and collinear

gluons by the guark line when the gauge vector is along the antiquark
(1)

1line. The term with coefficient B is due to emission of gluons, at

least one of which is not soft, from both lines and also from inter-

ference terms between emissions from each line. (Using a different

(1 (1)

gauge would give the same values for A and B but they would be

produced from different diagrams.)
2
Kodaira and Trentadue further conjectured that A( )wou1d arise in

1
a similar way to A( ) from the second order space like non-singlet
(2}
qq2
results of Ref. 2. We now find that B( ) differs from twice the

Altarelli-Parisi kernel for (qf-af) P' {(x). This was confirmed by the
integral over the non-singular parts of P(Z)(x) only by a term
proportional to Bo The origin of this extra term is unclear but it
does appear that not all logarithms at O(aé) can be derived from the
Altarelli-Parisi kernel and there is a contribution from gluons which
are soft but not collinear. For reference, we collect in Table 1 the
expressions for all the coefficients we have calculated and their

numerical values.



3. Calculation of the cross-section

We now describe how equation {1} may be used to compute values for

the cross-section dc/dq% for virtual photon production at small

transverse momentum, e's(b’Q) is flavour independent so the same A(i)
and B(i) coefficients arise in the general cross-section as those
presented in section 2 for the non-singlet case. In that section we
expanded S in terms of as(p) to compare with an O(aé) calculation. We
can now use a form for S which includes the terms in all orders that
(1) and B(1')

are generated from A by the running of the coupling

constant (at 2 loop order).

This gives a form factor e'S(b’Q)

which strongly suppresses the
large b region. It is shown in Fig.l together with the effect of
successively adding the coefficients B(l), A(z) and B(z) to A(l). It
is encouraging to note that the contributions of successive terms are
decreasing. The shape of the form factor depends chiefly on the value
of anQ. For Targer Q values it falls much more sharply with increasing
b.

The structure functions in equation (1) become more complicated
when the singlet contribution is included as we must consider gluon
initiated processes. The structure functions defined by equation (1)
are not the same as those measured in deep inelastic scattering (DIS)

which are defined by

Fz(x,k) '
= J ez [ D (x,k) + D= (x,k}] (12)
X £ e /a 9/
The relationship D = D! is spoiled by the different finite 0(« )
9%/n  9f/a s

corrections to the two processes.

We find, writing
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that, to this order
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The functions fq(z) and fg(z) are the difference between the

(13)

(14)

(15)

coefficient functions for structure functions defined in equations (1)
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and (12). That the scale of o in equation (14) is b0/b is shown by
the analysis of the coefficient ,Cg in section 2, where a term ﬁOCN(l)
is clearly seen. It is generated by expressing as(bolb) in terms of

as(p), the expansion parameter for the ncm' We can define a K factor,

KDYQT in a similar way to that for the total DY cross-section, KDY by

Qlxg%g-"0/y) = Koyar (XaXgs"0/p) Q' (xy,x5, 0/,) (16)

A study of KDY7) has shown it to be fairly constant independently of =,

the scale at which the structure functions are evaluated (in this case
02) and the type of beam and target hadrons. This is because KDY is
dominated, for most values of t, by the terms proportional to &(1-z}
that appear in the equivalent of fq(z).

KDYQT has quite different behaviour. The &(1-z) terms in fq(z)
(equation {15)) almost cancel against the other terms so the final
contribution comes mainly from the gluon corrections which are
sensitive to the type of annihilating hadrons, at least at large t.
The pp and pp values of KDYQT are similar at small t but for large =t
the pp K factor becomes much 1arger8} {at small scales) because the
gluon structure function is harder than the sea. KDYQT is also very
scale dependent largely because the corrections appear with
ag(Po/y)

For the DIS structure functions used to calculate Q‘(xA,xB,bolb)
9)

in equation (16) we take the recent parametrisation of Duke and Owens

who provide 2 acceptable sets of structure functions, set 1 with
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A = 0.2 GeV and set 2 with a much harder gluon distribution and A = 0.4
GeV. Although their parameter A actually corresponds to a lowest order
evolution equation, we may take it to represent Aﬁg within the present
margin of experimental uncertainty. We shall present results for both
sets of structure functions and consider the difference between the
cross-sections that arises to be an indication of the uncertainty
associated with our poor knowledge of the value of e

The Duke and Owens structure functions are parameterised in terms

nQ2 /42
2 /72

2nQO/A

of s = 2an ( ) where Qg is the starting point for their evolution.

They take Qp to be 2 GeV, above the charm threshold, so that their
evolution equations are consistent with 4 flavours. The structure
functions are unreliable below 2 GeV for this reason and also because
no target mass corrections or other higher twist effects have been
included.

Using these DIS structure functions we are able to calculate
values for our K factor KDYQT' The problem is, as usual, that KDYQT is
not small,being ~ 1.6 at small scales. We therefore cannot be
confident that uncalculated higher order corrections will be
negligible.

In the next section we describe the fit to data at low Q2.

Because large b is not very well suppressed at these values of Q2 the
K factor at small scales appears as an overall normalisation to the
cross-section, and we might hope, by comparing to the data, that the
size of higher order corrections to KDYQT could be assessed. The data,
however, have a normalisation uncertainty of ~ 25%.

We find that, for Duke and Owens set 2 structure functions, the

predicted cross-section fits the data adequately with only O(as) terms
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in KDYQT’ but for set 1 structure functions it is slightly Tow. An

improved fit is obtained by rewriting the terms explicitly proportional
to 6(1-z) in equation (14} as

o a

2
Q'(xA,xB,bo/b) [ Ce S 1+ gﬁ—-) + exp(—E-CF 1) ] (16)
2n 3 en
ie. we perform an exponentiation of 'continuation n‘lO) terms which are
also found to improve the fit to data of KDY7)‘

Figure 2 shows the K factors K for set 1 and set 2 as a

DYQT
function of &n b at two values of v and y = %-zn xA/xB = 0. We see
that exponentiating the nZ terms for set 1 and using only O(as) terms
for set 2 makes the two X factors become very similar at large <
{corresponding to the low energy data) but at small © (relevant to W
and Z production at the collider) the K factor for set 1 is larger (it
would be almost the same as that for the set 2 if only O(as) terms were
considered).

We will use the two different forms of KDYQT consistently
throughout section 4, since we want to know the range over which the
cross-section can lie within theoretical uncertainties. Altering the
set 1 KDYQT by exponentiating n2 terms produces an effect on the cross-
section in the same direction as decreasing A so in this way we can
combine the two sources of uncertainty.

The integration in equation (1) is from b = 0 to =. The summation
of large logarithms in b space that we use is only a good approximation
for 1/¢ < b < 1/A. The region of integration between 0 and 1/Q is not
& problem because it is suppressed by the kinematic factor b and

consequently the way in which we choose to continue the form factor
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from 1/Q to 0 makes no difference for g < 0/5. (We take Gr= Q/5 to
represent the upper limit for our analysis since 0(1) is then still
large compared to power suppressed terms O{qT/Q)).

The region b > 1/A is more of a problem. The perturbative
expansion of S is not reliable in this region and also the structure
functions are not defined for scales less than Qo = 2 GeV. We take QO
to represent the lowest scale where perturbation theory is sensible and
assume that below this value some non-perturbative effects take over
that we can only parameterise.

11)

Following Collins and Soper we define

b= D (17)

1/2
[1+620Z]

s0 that as b » =, b* > 1/00. In principle we could introduce 01>Q0 in
place of Qo but this would cause us to lose predictive power since we
would then be describing calculable effects by a parameterisation. We
rewrite the form factor and structure functions in equation 1 replacing
b by b*; they are thus never evaluated outside the perturbative
regime.

The smearing in transverse momentum introduced by non-perturbative

effects is taken to be of the form
o-b? [91 + 92 an 0/20Q,] (18)

where we expect 4g; = O(Q%) since g; represents the presence of an
intrinsic transverse momentum. The g, term reflects the smearing from
our failure to resolve gluons with Oy < Qo as the structure functions

evolve from scales O(Qo) to those 0(Q).
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So, finally, the equation that we use to calculate the cross-

section at small transverse momentum is

*

2 ® ) N
; Ek%?aif_" =L w J(bap) e S(b ,Q) -b2[g1+g24n Q/20Q,]
o, d?doqdy 2 o

b
2
X ; e2 Qlx,,Xgs 0/ %)
Xp = vre¥ XB = /gy 1o)

replacing equation (1). The only free parameters are g; and g, which

are fixed by comparison with data in Section 4.

4. A Comparison with data

To use equation (19) to calculate the cross-section we need
Q > 7 Ge¥, say, to have a reasonable range of Oy for which our analysis
is valid. We use data from two experiments: £288 at Fermi]ablZ)and

R209 at the CERN 1SR1%)

, heglecting the region 9 < Q < 11 GeV which has
a considerable contribution from decays of the T family.

A study of the form factor at Q ~ 10 GeV shows that it is still
quite broad in b space (Fig.l). Values of b ~ 1/Q0 are not effectively
suppressed and so in b* space the form factor js almost a constant.

The cross-section, therefore, sees no details of the perturbative
effects and depends mainly on the smearing factor. This does make the
data useful however for finding the values of g; and g,.

Figures 3 and 4 show predicted cross-sections using g;= 0.15

(GeV)2,g,= 0.4 (GeV)2 compared to the data from E288 for set 1 and set

2 structure functions respectively. For set 2 structure functions the

cross-section for Q > 11 GeV is unacceptably far above the data. This
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9}

we expect because Duke and Owens™ ', in deriving set 2, rejected data on

the total DY cross-section from proton-heavy nucleus scattering, on the

18) night indicate that

grounds that the recently noticed 'EMC effect'
heavy nucleus structure functions were softer than those of individual
nucleons. Thus set 2 is allowed a harder gluon distribution than set
1.

It may be that we could still fit the data for Q > 11 GeV by
introducing a © dependence into g;, which is not excluded in

11)

principle**’. (g, on the other hand should be independent of t.) Since
we are interested in t < 0.04 for W and Z cross-sections at the
collider, however, we shall ignore the high Q2 Fermilab data as far as
set 2 structure functions are concerned.

Figure 5 shows the predicted cross-section for set 1 and set 2
using the same parameters as before, compared to R209 data. The
agreement is well within the errors.

We can now use the values of g; and g, above to calculate the

transverse momentum cross-section for W and Z production at the CERN

pp collider. The normalisation 00/02 in equation (19) must be changed
Y2nGe M 2 . V2nGe MZZ

3 (mg— ) for W production and —T§——-(—§—
83 Gev, Mz= 94 GeY. The strugture function sums that contribute to

to — T

} for Z. We take Mw =

Q(xA,xB,bo/b) become the relevant ones to make W and Z bosons and e% is
15)

changed to the appropriate weak charge " . The functions fq(z) and

fg(z), of course, remain the same. We find that K has similar

_ DYQT
behaviour to that shown in Fig. 2 for © = 0.02.
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To compare the predicted distribution of events with data from the
collider we need to include the branching fraction for decay of W or Z

into the detected decay mode,
B(wrev) = 0.089 , B(Zse'e’) = 0.032 , (20)

the integrated luminosity received by the detector and the detector
efficiency.
Figure 6 gives a comparison of our prediction with the W»ev events

from UAllG}.

We use an integrated luminosity 136 nb~! and the quoted
UAL overall efficiency of 0.65 {assumed uniform over the rapidity and
Pt of the W, when summing w* and W events).

A comparison to UAZ results 17)

is shown in Fig.7, where we take
an integrated luminosity 131 nb~! and detector acceptance 0.5.

The predicted cross-section looks generally narrower than the data
but this may be an artefact of the experimental resolution smearing the
observed distribution.

It is important to be clear about which regions of the cross-
section are a prediction of QCD and which are still dependent on the
parameterisation of non-perturbative effects. In Fig.8 we show the
effect of changing the smearing function on the cross-section in the

- 2 _ 2
e 0.8b 1.8b

'"UAl units' of Fig. 6. and e are extreme cases requiring

values of g; and g, which are just'about compatible with low Q? data.

- 2
[gl = 0.15 and g, = 0.4 give e 1.36b

at the W mass]. We conclude that
for 6<qT<16 GeV the cross-section receives little contribution from the
non-perturbative region of b (b > 1/00) and so should be a firm
prediction of QCD.

For the benefit of future collider experiments we give in Fig.10
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the absolute cross-section dc/qu, integrated over y for the summed
production of N+ and W at vs = 630 GeV. The two predictions for set 1
and set 2 structure functions represent the difference between A =

0.2 GeV and A = 0.4 and include uncertainties from higher order
corrections to KDYQT as explained in Section 3. For A = 0.4 GeV the
cross-section is broader, corresponding to a narrower form factor in b
space.

The question to ask now is, how sensitive is the cross-section to
the perturbative coefficients that we have calculated? In Fig. 10 we
show the effect on the cross-section calculated using set 2 structure
(h (1) (%

functions of successively adding to A the coefficients B .

2
and B( ). We see, as expected from Fig.1 that the size of the

contribution to the cross-section decreases in the order
(1), o1, (2), o (2) (2) .
At 2B >A' '>B . The effect of A is to broaden the cross-
section in gr space by slightly more than the effect of changing A from
2
0.2 GeV to 0.4 GeV {compare Fig.9). B( ), on the other hand, produces

3
very Tlittle effect and the unknown next term A( )

(3

probably even less.
Roughly speaking A would have to be of the order of 50 for its
effect to be comparable with that of B(Z).

Turning now to Z° production, Fig, 11 shows the absolute cross-
section dc/qu at vs = 630 GeV. Its shape is very similar to that for
W as 2nQ has not changed significantly. A comparison with existing
collider data is not meaningful as the number of events is so Tow.

Finally, in Figs. 12 and 13 we give the expected production cross-
section dc/qu for (WT+W™) and Z° at vs = 2 TeV. The cross-sections

are slightly broader than at vs = 540 GeV because = has now decreased

to the point where the structure function sum Q' is increasing with
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increasing scale. This behaviour is cancelled by the fall of KDYQT 50
that Q(xA,xB,bo/b) is almost constant in b space and no Tonger
suppresses the small b region. The peak in the cross-section in 4

space is broadened as a result.

5. Conclusions
We have presented a calculation of the cross-sections for vector

boson production at small transverse momentum by the Drell-Yan process.

This calculation is based on the summation of large logarithms in b

space, whose coefficients we have determined in full to O(ag). Several

of these coefficients were previously unknown and we are able to assess
their contribution.
OQur calculation has the following desirable features:

{1) MNo terms in the cross-section such as the form factor or
structure functions are evaluated outside the perturbative regime.
Non-perturbative effects are included in a consistent way via a
parameterisation that fits Tow Q2 data.

(2} The correct structure functions are included, related to those
measured in DIS by a calculated b dependent K factor.

We predict the cross-section for qT50/5' For ar larger than this
our calculation will not be correct since it does not predict the
power-suppressed terms which start to dominate there. A recent paper

by Altarelli et a1i®)

successfully joins the full O(as) cross-section
at high 9 to the all orders leading logarithm result at small Oy~ Qur
treatment of the small Ay region differs mainly in that we have been

2
able to establish that the effect of the extra coefficient B( ) is
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fortunately small and that we have, we believe, a more complete
treatment of non-perturbative effects based on the approach of Ref. 11)
and on a detailed study of lower energy data.

Qur main conclusion is then that W and Z production in the region
6<qT<16 GeV is insensitive to non-perturbative effects and should be
firmly predicted by QCD. The main uncertainty in this region is the
value of A and we give two sets of predictions, for A = 0.2 GeV and

A= 0.4 GeV.
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Appendix 2

The expression for the calculated coefficients and their

numerical values.

(1y _
A <o,
= 2.67
Iy _
1) = 3.
= -4.0
2 2
A s [ & L=y, Ly
18 6 9
= 10.69 - 1.88 (N - 4)
2
B) 2z w2-3nc @)
4
soCy [z o192 460 (3) ]
9 12
4 17
+ C.T [——n2+—
FlR b~ ;

I

6.75 + .85 (Nf - 4)
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Figure Captions

Fig.l

Fig.2

Fig.3

Fig.4

-S(b,Q}

The form factor e as a function of b (in (GeV)=1) for Q

= 10 GeV, A = 0.2 GeV. The solid line shows the form factor

1 1
with only coefficient A( ), the dashed line has B( )

(2)

added, the

and the dotted line has all
{(3)

dot-dashed Tine includes also A
calculated coefficients. The unknown coefficient A would
need a value greater than 20 for its contribution to be
distinguishable from the dotted Tline.

The K factor KDYQT in b space, for pp scattering at y = Q. The
solid line and dashed line use set 2 structure functions, A =
0.4 GeV, for v = 0.16 and 0.02 respectively. Only O(as) terms
are included in KDYQT' The dot-dashed {t = 0.16} and dotted
lines (v = 0.02) are for set 1 with A = 0.2 GeV and n? terms

exponentiated in K When integrated over y the K factor

DYQT”
takes very similar values.

3
E 99 4t y = 0.03 for ¥ 5 = 27.4 GeV in units of

dp3
pb {GeV/c)~2 for pN scattering where N = 0.4p + 0.6n. The

curves are for set 1 structu?e functions, A = 0.2 GeV and non-
perturbative smearing as described in the text. The data are
from experiment E288 for the following mass bins:

(1) 7<Q<8 GeV

(2) 8<Q<9 GeV

(3) 11<Q<12 GeY

(4) 12<0<13 GeV

(5) 13<Q<14 GeV
As Fig. 3 except that the curves are for set 2 structure

functions, A = 0.4 GeV.



Fig.b

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

24—

dc/dq% integrated over y at vs = 62 GeV, in units of

pb (GeV/c)~2 for pp scattering. The solid Tine is for set 1
structure functions, A = 0.2 GeV and the dashed Tine for set 2.
The data are from experiment R209 for 11<Q<25 GeV.

The cross-section for W production at vs = 540 GeV in units of
events per 2 GeV/c seen in a detector of efficiency 0.65 after
an integrated luminosity 136 nb~l. The dashed line is the set
1 prediction and the dotted line set 2. The data are from the
UAl 43 W+ev events.

The cross-section for W production at vs = 540 GeY. Evenis per
3 GeV/c seen in a detector of efficiency 0.5 after an
integrated luminosity of 131 nb~l. Dashed line : set 1, dotted
line: set 2. Data are from UAZ 37 W+ev events.

Cross-section as for Fig.6 with various smearing factors.
- 2
o 1.36b [

Solid line: g; = 0.15(GeV}?2, g, = 0.4(GeV)?]

- 2
Dashed line: e 0.8b

_ 2
Dotted line: e 1.8b

do/dg; in nb (GeVYc)™1 for W production at vs = 630 GeV from pp

I

Solid line: set 1, A = 0.2 Gey

It

Dashed line: set 2, A = 0.4 GeV.

do/dg, in nb(GeY/c)~1 for W production at /s = 630 GeV, 4 = 0.4

GeV, 1in pp showing the effect of successively adding the

calculated coefficients to e's(b’Q)
1
Dashed-dotted Tline: A( ) only
1
Dashed 1ine: add B( )
ine: (2)
Dotted line: add A

2
Solid line: add B( ) i.e. the complete O(ag) S(b,0Q).
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Fig.11 do/dgr in nb{GeV/c)~L for Z° production in pp at vs = 630 GeV

n

Solid line: set 1, A = 0.2 GeV
Dashed line:set 2, A = 0.4 GeV¥

Fig.12 do/dq, for W production at /s = 2 TeV, pp in nb(Gev/c)-1.

Solid 1ine: set 1, A = 0.2 GeV¥

0.4 GeV.

Dashed line: set 2, A

Fig.13 do/dq. for Z° production at vs = 2 TeV, pp in nb(GeV/c}-1,
T

Solid line: set 1, A = 0.2 GeV

Dashed 1ine: set 2, A = 0.4 GeV.
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