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Abstract
We discuss the Landau damping of coherent instabilities

in the presence of betatron tune spread. This tune spread
can originate from dedicated non-linear magnets such as
octupoles, or through the beam-beam interaction. In the lat-
ter case we have to distinguish the contribution from head-
on and parasitic beam-beam interactions and the collision
pattern of different bunches plays an important role. The
interplay of these sources of tune spread and the resulting
stability is discussed for the case of the LHC.

INTRODUCTION
The effect of Landau damping originating from lattice

non-linearities is usually evaluated by the means of stability
diagrams [1]. In the presence of linear detuning, e.g. from
octupolar magnetic component, and considering a Gaus-
sian transverse beam distribution, the stability diagram can
be computed analytically. This is no longer possible when
considering detuning originating from beam-beam interac-
tions in configurations as complex as those encountered in
the LHC. The computation of stability diagram can how-
ever be addressed numerically [2, 3].

NUMERICAL EVALUATION OF
STABILITY DIAGRAM

Considering a case without coupling, the stability dia-
gram of each plane is obtained by solving the following
dispersion relation for a given detuning q(Jx, Jy) and dis-
tribution function ψ(Jx, Jy) where Jx and Jy are the un-
perturbed action in each plane,

−1

∆Qi
=

∫ ∞∫
0

Ji
dψ
dJi

Q− qi(Jx, Jy)
dJxdJy, Q ∈ R, i = x, y.

The ∆Qi found for different values of Q are the complex
tune shifts at the limit of stability, therefore, they define
an area in which the coherent modes are stable. The dis-
persion integral can then be evaluated by standard numeri-
cal techniques, in our case by adding a vanishing complex
part to the denominator. A code was developed to solve
such integrals, taking as input amplitude detuning numer-
ically evaluated by tracking simulation, with MAD-X [4],
in arbitrarily complex configuration, including beam-beam
interactions and lattice non-linearities. As opposed to an
analytical computation, it it also possible to use any type of
distribution function. Applications to real LHC configura-
tions are presented.

LONG-RANGE INTERACTION

In the LHC, the effect of Long-Range (LR) interactions
becomes a significant component of the beams dynamics
during the squeeze. The effect on the tune footprint and
consequently on the stability diagram is shown on Fig. 1.
Before the squeeze, the non-linearities are dominated by
octupolar magnets, which can be powered with two polar-
ities. The impedance induced tune shifts expected in the
LHC have negative real parts, therefore the negative po-
larity is preferable in the configuration before the squeeze,
when LR interactions are negligible [5]. With this polarity,
however, the effect of LR is detrimental, leading to a reduc-
tion of the stability during the squeeze. The opposite is true
for the other polarity. The choice of the polarity of the oc-
tupole results in a compromise between stability before and
after the squeeze. The observation of instabilities at the end
of the squeeze during the 2012 run of the LHC motivated
the use of the positive polarity [6]. The instability at the end
of the squeeze was, however, still visible after this change
of configuration, indicating that the LR contribution to the
stability diagram is not a satisfactory explanation for these
instabilities.

HEAD-ON INTERACTION

The tune spread due to Head-On (HO) collision is usu-
ally larger than the one due to octupoles or LR. Moreover,
the detuning is more important on the core of the beam
rather than the tails, which significantly enhances its contri-
bution to the stability diagram, as shown by Fig. 2. This in-
dicates that bunches colliding HO should be stable, without
requiring other stabilizing techniques, such as non-linear
magnets or transverse feedback. In 2012, the LHC con-
figuration included few bunches without HO collision, en-
forcing the usage of octupoles and the transverse feedback
during luminosity production [7]. As these techniques may
have detrimental effects on the luminosity lifetime, there
is an interest in reducing their needs, by ensuring one HO
collision for every bunch.
Also, the stabilizing effect of HO collision may be used to
stabilize the beams earlier in the operational cycle, in par-
ticular before the end of the squeeze, as discussed in [8].

INTERMEDIATE SEPARATIONS

There are configurations during which the beams col-
lide with intermediate separations, of a few σ (RMS beam



(a) Tune footprints before and after the squeeze.

(b) Maximum imaginary part of the tune shift of a stable mode
as a function of its real tune shift (i.e. stability diagram) and the
time during the 2012 squeeze [9].

Figure 1: Analysis of the stability during the squeeze for
both octupole polarity (±450 A). The β∗at t = 0 are 11
m in IP1&5 and 10 m in IP2&8, at the end 0.6 m and 3
m respectively. This analysis considers the most common
bunch, with the largest number of LR interactions. The
effect is similar but of lower amplitude for bunches with a
lower number of LR.

Figure 2: Comparison of stability diagrams from either
octupoles powered with -450A, LR in IP1&5 or HO in
IP1&5, with LHC 2012 parameters.

size), e.g. when bringing the beams into collision and while
leveling luminosity with a transverse offset. As shown
on Fig. 3, the tune spread, while reducing the separation,
changes sign, which has a significant effect on the stability
diagram (Fig. 4). In particular, there exists a minimum of
stability for separations in the order of 1 to 2 σ. The exact
separation, and the amplitude of this minimum depends on
the configuration. Nevertheless, in the four configurations
considered on Fig. 4, the stability is most critical between
1 and 2 σ transverse separation.
Bringing the beams into collision takes several seconds in
the LHC, as the separation bumps are ensured by supercon-
ducting magnet. When going as fast as possible to HO col-

Figure 3: Example of tune footprint of a bunch colliding in
IP1 with different (full) separations in the horizontal plane.

(a) With LR interactions.

(b) Without LR interactions.

Figure 4: Stability diagram as a function of beam separa-
tion in IP1&5 for a bunch with either maximum number of
LR interactions or none, and both polarity of the octupoles.

lision, the time spent at the minimum of stability is smaller
than the rise time of expected instabilities. If this condi-
tion would not be met, instabilities could be observed while
bringing the beams into collision, as presented in [6].
When leveling luminosity with a transverse offset, a sig-
nificant time is spent at intermediate separations. In this
case, the stability has to be ensured by other means, e.g. by
colliding HO at another Interaction Point (IP), using lattice
non-linearities and/or by the means of a transverse feed-
back.

PERTURBED DISTRIBUTIONS

The beam distribution function plays a crucial role in the
computation of the stability diagram and is usually poorly
known experimentally. A Gaussian distribution is usu-
ally assumed, whereas not always justified by measurement
[10]. The effect of distribution with tails cut have been con-



(a) Relative difference to initial distribution in action
space after 2 · 104 turns.

(b) (Un)perturbed stability diagrams.

Figure 5: Stability diagram derived from a distribution per-
turbed by external noise in the presence of amplitude detun-
ing. The noise is a sinusoidal excitation with a correlation
time of a 100 turns.

sidered in [11], here we consider the effect of a distribution
perturbed by external noise. Figure 5 shows such a distri-
bution obtained by tracking simulation with linear detuning
and a sinusoidal excitation of finite coherence. As expected
[12], the diffusion has been enhanced for resonant particles,
creating under/over populated areas in the distribution. The
stability diagram, being a function of the derivative of the
distribution function is very sensitive to such modifications,
resulting in a hole in the stability diagram (Fig. 5b).
While very simple, this model gives an insight in the diffi-
culty to probe the beam stability experimentally, as modi-
fications out of measurement reach can dramatically dete-
riorate the stability. In fact, non-measurable modifications
of the distribution have often been invoked to explain dis-
crepancies in stability measurement in the LHC [11, 13].
Different mechanisms can be envisaged to create such
modification of the distribution, on going studies suggests
that configurations where both a transverse feedback and
amplitude detuning are required to ensure the beam stabil-
ity can be critical in the presence of wideband noise [3].

CONCLUSION

Stability diagrams are derived numerically in arbitrarily
complex configurations including beam-beam interactions

and lattice non-linearities, allowing to treat real LHC con-
figurations. In particular, it was found that the stability due
to octupoles can be deteriorated or improved by the inco-
herent effect of LR interactions, depending on the polarity
of the octupoles. Also, the stability of the beams was found
to be critical for separations in the order of the beam size,
having an impact on the strategies to ensure the stability of
all bunches, in particular when leveling luminosity with a
transverse offset.
HO collisions are shown to be more effective to provide
Landau damping than other sources of detuning, to the
point that other stabilizing techniques are no longer re-
quired for bunches experiencing at least one HO collision.
While a powerful tool, the concept of stability diagram rely
on a good knowledge of the beam distribution function,
which is usually poorly known. It was shown that non-
measurable modifications of the distribution, caused by the
external sources of noise, can compromise the stability.
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