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ABSTRACT
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"energy" in the colour fields to the mass
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glue-lump states. The colour electric and
magnetic components are extracted and
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1. INTRODUCTION

In considering a hadronic state such as a glueball, it is
natural to ask about how the energy of the state is built up from
the colour fields which compose it. In lattice gauge theory
calculations one can extract the mass (or total energy) in_a well
established way from the long-time correlations of operators which
have an pverlap with the state. One can also attempt to study the
construction of the state by probing it‘with local (e.g.
plaquette) operators - as has been done for the colour field

1’2’3. This is an

configuration in the static source potential
important field of study - it will provide answers to such
questions as the width of the flux tube joining static colour
sources, the size of a glueball, the electric/magnetic nature of
the colour fields,etc.

In a classical Minkowski approach, one would be able to
identify the total energy in the colour fields with the mass of
the state directly for a glueball. In a field theoretic apprqach,
only energy differences are meaningful. Furthermore, the lattice
gauge theory approach has only been sucqegsful in‘extracting
spectrum values in Euclidian space-time. Our aim is to derive
identities which relate the ‘energy’ in the colour fields as
measured by lattice techniques with the total ‘energy’ Qf the
system. as measured also by lattice technigues. These idqntities
can then be used as a check of lattice Monte Carlo calculations.
They are also powerful enough to allow some conclusions to be
drawn without relying on Monte Carlo results. For instance, the
colour electric and colour magnetié cﬁﬁtributions to a glueball
are found to be of equal strength. For the interquark potential,
one can likewise obtain the_relative-strength of the electric and

magnetic components - finding the electric component to be
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somewhat stronger because of the self-energy of the static
sources.

The main technique used to derive the identities is to
consider derivatives with respect to 3 of expressions involving
transfer matrix eigenvalues. In this respect, the method is
similar to that used to discuss the finite size dependence of the
average plaguette action4. Another element we need is the
treatment5 of asymmetric lattices with space separation a_ and
time separation a . Our first application is to giueball
observables. Then we consider the self-energy components arising
from static sources. This enables us to extend our analysis to

potentials,etc. We conclude with a discussion of the consequences

of our results on the energy density of colour fields.

2. GLUEBALL STATES

Gluebzll states can be studied in lattice gauge theory by
considering correlations of two Wilson loops at separation At.
Then on a Euclidian lattice of sufficiently large size in the
t-direction this correlation decreases as exp{-m At) so that at
large At the lightesﬁ glueball (with non-zero coupling to the
Wilson loops used) is dominant. For convenience a combination G
of Wilson loops is chosen so0 that it excites glueball states in a
specific representation of 0h and a sum over all spatial sites at
a fixed t-value is used to give a zero-momentum state. Thus if

At = na, one measures

[ &?® 6(0)a(na)
[
A2 = ol e "% (2.1)

<G{0)G(na)>

I
¢

0
Q
Q

where

S = £ g ReTr(U,) = Lo in SU(N).
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Here Ka are eigenvalues of the transfer matrix and correspond to
glueball states with energies Ea. The Wilson loop combinations G
acting on the vacuum can be decomposed in these eigenmodes as
G(0)YI0> = &, c, I ‘ (2.2)
where we assume for simplicity of presentation that c, = 0, namely
the vacuum mode is orthogonal to G. Now as n = o, only the lowest
energy glueball with C, # 0 will contribute, assuming a discrete

spectrum for the lowest lying glueballs, so

Lt <G(0)G(na)> = <01GI1> A] <11GI0> = o o Nk, (2.3)
n - w

This is how E1 may be determined in principle.
To study the coupling of glueballs to plaguettes, consider

the derivative of Eq.2.1 with respect to 3

I ¢ 5 6(0)G(na) ™ c(0)a(na) [ & s
- (2.4)
I JUEE _ I eﬁs I eﬁs
ac _ a(ak ) _
- Zh 2°a —% me\Ec‘l - nc’ a’ o naEa
an ar
Now the dominant terms for large n are those like ne‘naEi . Again

assuming a discrete spectrum, one can neglect other terms as

n = o So one has
2 d(ak )
-nc,
an

Now § refers to the total action, so that there are contributions

e M2E, | (5i0) S G(na)> - <G(0)@(na)> <S>  (2.5)

from every plaquette, including those not between 0 and na.
However, for such contributions there will be a cancellation
betwesn the two terms on the right hand side of Eq.2.5. To see
this consider the plaquettes at m > n. Then

<G(0)G(na)a(ma)> -<G(0)G(na)> <o(ma)> =

~{m-n)ak

nak o <ojo(ma)l0>

£, u(OIG(O)Iu) e DA%, (u1G(na)lo> e
- £,<01G(0) lu> e P8E, ,1G(na)10> <0lo(ma)l0> (2.6)

Then the term with a = 0 cancels in Eq. 2.6, while the terms with
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a ='1,.. are small unless m X 'n and are not comparable to the
" Jeading term dfisize'ne—naEi for large n. The terms in Eq. 2.5
with 0 < m < n yield
K. ,<01G(0) le> e ™, (ajo(ma) e e (PT™EL (u1a(na)o>

£ <01G(0)te> ¢ P2Fx <alG(na) 10> <O1a(ma)]0> (2.7)
" ‘which can be simplified by noting that at large n the dominant
term (of order e*naEt) involves the a = p = 1 eigenstate |1> only.

So Eq. 2.5 reduces at large n to (this amounts to picking the

terms extensive in n)

8(aE1) .
- —p— - <1IZ ofjl1> - <0jZ-o|0> (2.8)

whére'10> is thé vacuum eigenState'and ¥ o refers to the sum over
plaguettes at one time-value (i.e. GLxLyLz plaquettes on a
L x Lyx L x o lattice). We ghall refer to these plaquettes as
magnetic o_ if they are purely spﬁtial and eléctric o, if they
have time-directed links. For electric plaquettes, the notation
of Eq. 2.8 implies

| <1;t=0fo l11;t=a>

E

<iim i1> = <1;t=01o, |1;t=a>e™1 (2.9)

<1:t=0]1;t=a>
which is the combination that arises in the derivation. This

quantity (and <1|maI1> which only involves one t-value) are both
measurable in latﬁice Monte Carlo simulations by evaluating the
expectation #alﬁe‘of blaquettes in a glueball state -~ that is
<G(0)a(ma)G(na}> / <G(0)G(na)> for large n ,m and n—m. They are
aiso of relevance to finite size effects - see ref(4).

The derivaﬁion of Eq. 2.8 that we have given is in terms of
the lattice observables which allow the quantities on either side
of.the equation to be determined in practice. A more formal proof
is.possible and this is preSentéd in the Appendix. There alsoc we
éive some identities for'quantities such as <1|Z oj0>.

Now as the continuum 1imit is approached, on a lattice of
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sufficient spatial extent,-Ei‘will be independent of. 3 and a if

the state has zero momentum. Then, writing m for E:’

ma

e L _ - e o Olra A S
<l|Zo]1> <0{zal0> = m a 37 x 4Nbo (2.10)

where'lso =.11N/(48n2) in SU(N;. .This identiﬁy ié of the.fdrﬁ wé
seek - it relétes the difference.of.ﬁhe action inlthetbolouf
fields of a glueball and of the vacuum to the glueball mass. To
expresé.iﬁlin terms of éolour fielas direétly, we use the'néive
cléssiéal limi£ {a » Q) exﬁaﬁsioﬁs |

I m = 6 - fa‘F;vF;;# 0(a%) (2.1
where the sum is over the six orientations of a plaQﬁette. Then

Eq. 2.10 becomes

: = 3 -
1.3 _c < _ dina _ g .. _ n, '
L 3@ P Fodig = Mgt ™ 355 ~ 70 (2.12)

o
2N/g", ﬁg iz the beta-function, and the suffix 1-0

,where 3
implies the difference of the expectation value_in the glueball
state |1> and in the vacuum. The left hand side is just thel
classical (Euclidian) expression for the action in the colour
electric and magnetic fields. One sees that in thelcontinuum
limit (%> ®) the right hand side becomes much larger than m 80
that the action of the colour fields is much lérger than the
total energy m .

This identity Eaq. 2.12 is similar to the trace anomaly6 for
the energy-momentum tensor GHH. For a pure gauge theory this is

£ - 1 c 3
05, & = 3 FFin | o (2.13)

Thus the integral over the colour fields is related to the energy
in the same way as for our glueball relation Eq. 2.1Z2. The
difference is that unlike the trace anomaly expression which is
divergent, our expression is a difference of energies and is
finite at finite g. Somewhat similar considerations have been

used by Svetitsky et al in discussing7 the energy difference
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(latent heat) between confined and deconfined phases in lattice
gauge theory.

s c t can be considered so allowing the colour
fields to be resolved into electric and magnetic components. The
basic formalism is that of Karsch5 who considers an action
B_5S_+35, generalizing # 5. This ieads to a latfice with
time-spacing a, and spatial-spacing a_ (= a) with asymmetry
= aﬂ/at. The relationship between the couplings {3 and 3, and
the coupling 3_ of the equivalent symmetric action is given by5

AL =B _(a) + 2N c_(Z) + O(B")

BL™ = B (a) + 2N o (£) + 0" (2.14)
The renormalization scale on a lattice with asymmetry £ is related
to the equivalent symmetric one by

AE) = A_ e (Gt @)/40 (2.15)
and we shall need the identity for the ¥-derivatives which ensures
symmetry at £ = 1, namely c;+ c:= bo.

The generalization of the procedure used above is to consider

derivatlves with respect to ﬁa or Bt. Thus Eq.2.8 becomes

a(a E )
- —F—— = <l1Zg,11> - <0|%= 10>
t
é(a E )
t7L _
- —gx— = <l1Zo_11> - <01Za_10> (2.16)

where the sum is over all electric or magnetic plaguettes at one
time-value (i.e. 3L L L plaquettes). As the continuum limit is
approached, E1 will depend on ﬁg and ﬁt only through the
£ -dependence of the renormalization scale A({) as given in Eq.
2 15. Then using the derivatives evaluated from Eq. 2.14 (with
symmetry restored after taking the derivative, so ﬁ;w%:ﬁ and
ag:atza)
ain A(t)at ‘ alna 1 —»
T__«_-.z_._arr-m+0(ﬂ) (2.17)

¢
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aln A(C)at . dlna 1 2 . _
— :;—5?;--#%-!-0({3 ) (2.18)
-]
This then gives the ratios
<o > T<82> 8Nb _
t.ize _ 10 _ 4 4 To + 08 %) (2.19)

<ga_> . <& |
Here we define & = EﬁLFiL, etc. So at large 3 the electric and
magnetic contributions are of equal magnitude. As well as the
Euclidian action =(8°+8%)/2 , 1t is of interest to evaluate the
combination £(-$-+8%)/2 which corresponds to the Minkowski energy
since ¥ in Euclidian space has one time component which introduces
a factor of ¢t. This latter combination is from Eqs 2.12 and 2.19

Lra (8 + 2 _=m +o@) o (2.20)

This is the classical Minkowski-space result that the energy in
the colour fields should sum to the rest mass m . It is very
reassuring to recover it as a cross check on this approach which
has used Euclidian lattice regularization. In the limit as. a
becomes small, the transfer matrix of the Euclidian formalism is
closely related to the Hamiltonian which generates infinitesimal
time translations. In our derivation, we have related ° and &
to o, and o_ respectively, and this is only valid at small a. It
may be possible to find improved lattice observables which are
closer to 8° and 3zlfor larger a, one proposal is given in ref(3).

In summary, we have derived exact lattice identities (Egs.
2.8 and 2.16) using the assumption thaf a discrete lowest excited
giﬁéball enefgy 1ével exists. These are ap?licable'to Zero
momentuﬁ glueballs of'any J¥%. The combination of these exact
identities and of results valid‘as £ » o gives the overall picture
of the electric and m&gnetic field'energy'inLa-élueball. We find
.(ih Minkowski‘spéce cdnveﬁtion) the electziC"Component to be large

and positive while the magnetic compoment is négative and cancels



leaving the rest energy m, .

3. STATIC SOURCES - POTENTIALS

The potential energy between static colour sources at spatial
separation R can also be studied using transfer matrix methodsa.
' The static sources are represented by Wilson lines in the time
direction and the transfer matrix eigenstates can be decomposed as
a sum over paths (directed link products including disconnected
loops in principle) at one time-value which start at one source
and end at the anti-source. Let |R,a> label the eigenstate a
with sources at separation R, the corresponding eigenvalue is
ha(R), where this is equal to exp(—Ea(R)a) with'Ea the energy of
this eigenmode. To extract these eigenvalues one can consider
Wilson loops composed of a path (or a linear combination of paths)
P.(0) from 0 to R at time t=0 and another similar path P (na) at
t=na joined to the former by the straight source lines. It is
cohvenie‘nt8 to classify these paths Pn-using the discrete group
D, . Then such a path P, acting on the vacuum can be expanded

P,10> = L, d, [R,e> (3.1)
As in the gluebsall case, we assume a discrete spectrum for the
lowest such eigenmodes. Then the Wilson loop referred to above
can be used to extract the lowest energy EO(R),since at large n

O > = <P,(0) 7 B (na)> = L, &’ Ap(R) = d2 AD = &f o "o (R)

n - ow
: : (3.2)
where 7 represents the source lines in the Wilson loop. ‘Again as
in the glueball case, we now consider the f-derivative of this
identity. The left hand side yields
<PR(O) F P (na} S) - <P (0) 7‘P;(ng)> <S> | | ‘(3.3)
where S implies a sum over all plaguettes and again we distinguish

the case when this plaquette is between G and n or not. For

0 <n < m, this yields
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=T

tal m
<OIP_IR,u> KM(R) <R,ulPRlcx> A ’{alul(ma_)io;

~<OIPRIR,H> A (R) <R,#|PRIO> <0|m{ma)l0} (3.4)

N
“ .
which cancels for o« = 0 (the vacuum), so there is only a

“naB, ven m is close (of order the inverse

contribution of size e
of the glueball mass) to n. The contribution from terms with
0 <m <n is of order ne_nan since approxiﬁately_all n values of
m give contributioos

<OIP_IR,u> x"‘(R) <R,ulo(ma)|R,»> A7 (R) <R,»|P 10>

—<OIP_IR.#> k (R) <R,ulP_10> <Oln(ma)l0> _ | (3.5)
where at large n , &4 = v = 0 glives the dominant piece Then, for
n » o, equating these terms of size ne_nan to those from the
3-derivative of the right hand side of Eq 3.2, gives J

a3 aE (R)

- 3‘3‘"" = <R,0|Zo0(R,0> - <0[Zn|0> = (Zn) | (3 6)
where the sum is over all plaquettes at one time value as before
The quantlty on the right of Eq. 3 8 is directly measurable 1n
principle by lattice simulation from <W a)/(W > where the Wilson
loop W _is that introduced above and one measures the plaquette
‘average (at t = ma with 8] << m << n) in the presence of this
Wilson loop compared to the plaquette average without the loop

1,2,3 in the study of

This is Jjust the quantity evalqated hitherto
the energy distribution of the gluon;coloor;flux between static
sources. What is new is the'exeot i&entitVQreléting tﬁe‘
f3- derivative of the potential to these plaquette actlon shifts
. summed over all space. | |
This f-derivative is 1ese‘straiéhtfor§ard than in the

glueball case becaose of the sélf*energy of the static soﬁrces.
Thus the lattice energy E (R) is related to the contlnuum
potential V(R) by | |

E_(R)a = V(R)a + F(a)a | O (3.T)

where F(a) is the lattice source self-energy which'islindependent
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of R. The self-energy can be eliminated by considering
Eo(R1) - Eo(Rh) and if R and R, are kept constant at physical
values, one can evaluate the f3-derivative of Egq. 3.6 since V(R) is
prhysical and so independent of 3. Alternatively one can try and
déduce the f3-dependence of the self-energy term as will be
discussed next. |

Just as for the glueball case, the spatial (ns) and temporal
(9,) piaquettes can be studied by taking derivatives with respect

to ﬁs and ﬁt. This gives exact identities

a atEo(R)

K2 A (Z0 )p o (3.8)
¥, ] aLED(R)

- 3 f§ = (zua)n-o (3.9)

Now as /3 » ®, one can again use weak coupling perturbation theory
arguments to extract the electric and magnetic field contributions
and thence éheck that the total (Minkowski space) energy in the
fields matches the potential energy EO(R). The component V{(R)
will satisfy this check just as for the glueball case since it is
a physical measurable. Let the self-energy component be F{(a,¥} on

a lattice with asymmetry . Then the energy conservation

constraint requires at ¥ = 1 that
2 a F(a.?) 2 a F(a,l)
a;E(a,f) = - , B — + Nbo . B BE— (3.10)

One expects this self-energy term afF(a,E) to be a short distance
effect so that its dependence can be estimated from one (lattice)
gluon exchange. This behaves like at(gz,/aa) ~ '3 50 that it
becomes relatively more important at large /3 where a is tiny - as
expected since it diverges in the continuum l1imit. Now, Egq. 3.10
is consistent with a parametrization of aF(a,{) as f(#)/ which
is also in accord with the one gluon exchange estimate. Then with
this form for the self-energy component,

E_(R) = V(R) + £(B)/a (3.11)
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and one can express the electric and magnetic contributions to the

energy as

i), VR G Fo= - E 0E™")) + % 55 - 5,01 0™
L a3, =VR®) (§ g-,g;‘-a v 2 row™) + 58+ 3,00 0w™)

(3.12)
Thus the sums over space of the electrlc and magnetic field

enefgies corresponding to the continuum potential V(R) are
enhanced by a factor of "ﬁ/(BNbo) F 0.5 which makes them equal at
large 3. Whereas, with the estimated behaviour of £(3) of ~ A,
one sees that the self-energy component is not enhanced and lies
entirely in the electric field.

We have derived exac£ lattice sum iules (Egs. 3.8 and 3.9)
which constrain the sums over all space of plaquette averages in
the presence of a potential. Now the spatial dependence of such
plagquette averages has been studied to try and detérmine the

1,2,3. Our

extent of the flux tube between static sources
identities serve as é strinéent crossléheck on such-
determinations. Furthermoie; we have clarified the link bétween
these action sum rules and the approximate (in Euclidian space}
energy conservation requirements. This leads to predictlons for
the ratio of total colour electrié (Euclldlan sign conventlon) to
colour magnetic energy in the flux tube of 1 + 8Nb_ /B or
approximately 1.28 at 8 = 6.0 in SU(3). This ratio refers to the
continuum piece V(R) which can be‘extracted by considering
differences of R-values on a lattice. Some evidence for such a
ratio has been found in Monte Carlo studiess.

The spatial distribution of these colour fields is of course
not obtainable from our identitieé. Héwever,.oné would expect the

self-energy component which is R-independent to be localized close

to the sources, to be a sum of terms symmetric about each source,
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" and we estimate that it is predominantly in the colour electric
field. Some evidence for such a contribution is seen in ref(2).
In Qeneral it is clear that a study of the 8° and 3° distributions
can help 1n separating the self“energy contribution

A direct lattice study of the (Minkowski space) energy
density (—8 + 3 )/2 associated with the potential energy V(R)
will be difficult both because of the strong cancellation between
the two'terms and because of the need to remove the self~energy
component which grows at small a. A study of the action density
(8° + 8° )/2 is relatively easier and can give indications about
the spatial distribution of the fields. In this case a nice cross
cneck‘is provided by our exact lattice sum rules. As well as the
usnal potential our metheds apply eqnally to excited potentials
'(e g. in other representations of D,,) which correspond to gluonic
excitations relevant to hybrid mesons8

An gdj_;ntﬁgtatig_ggurgg can be con51dered in close analogy
to the case of a fundamental source and anti-source just
conaidered. In this case the.physical interpretation of the
eigenstates of the transfer matrix is as glue—lump statesg. These
.are like a glueball except that one gluon is static. This
facilitates the study of the spatial distribution of the colour
field since the state‘is not translation invariant (as the
‘glueball.itself is in our approach). Such a study is currently

underﬁayio.

4. CON S

ﬁe have derived exact identities for a Enclidian lattice
regulariéed theory. These identities are similar to the conformal
trace anomaly, but they are defined for the difference between a

hadronic system and the vacuum. On a lattice, our identities take
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the form of sum rules relating the sum of the action over all
‘space to the energy of the system itself. As well as ‘these action
. sum rules one also has, at small‘lat%iCeispacing a, approximate
energyiconservatipn relating the energy in the colour fields over
all- space to the energy of the system itself. ' We have shown that
-thase two conditions are consistent and yield the following
plcture for the Minkowski space electric and magnetic field energy

densities ~82 and 8% which build up 2 physical state of energy E

£5d (= Bf (-3mp+1+06™))
Lio® (&), =EF (*5mp+1+06™)

Since &lra/dinf3 is about -7 for 3 = 6.0 with SU(3), this implies
that there is a substantial cancellation of electric and magnetic
energy, and the magnetic energy is lower in the state E than in
the vacuum. As well as applying to glueballs, we extend these
_relations to the potential energy of static sources. Again the
continuum component of’tﬁe gluon flu#laround such static.scurces
- obeys the same relations as above. Lattice s.j.rm.llat.ion.ﬁ:.1’2’.3 of
this flux distribution are consistent with our results but have

vet to achieve the required precision to allow the striﬁgent test

that ocur sum rules provide.
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AQPENDIX.
Consider an eigenstate joa> of the transfer matrix 7 so that
Ay 1> = 7 Jo> = j eﬁ“‘a:l Ja> (A.1)
where Zo is the sum over space of %ns(t=a) + nt(t=0~a) + %ﬂﬂ(t=0),
the plaquettes with links at two adjacent time values. Now Aa
and |lo> both depend on /3, but the eigenstates are orthonormal for
any 3. Then the derivative with respect to 5 yvields

F

_ @ -
kq =3 Kaf T |a> = <al T Zoa jad>
= ka ( <a|£nsla> + <a3?‘£ath:>/<a|?1a> 3 (A.2)
= Aa { <aIZusla> + <alth]a> )
where we have used the definition of Eq. 2.9. Then since
Ka = hoexp(—aEa) , one obtains Eq. 2.8.
An identity for matrix elements such as <0} 7 Zala> can be
obtained by taking the f3-derivative of the orthogonality condition

<Q) & ja> = 0 for a« = 0. this gives

g;}'. 7 le> + <01 7 Tole> + <0l 7 P22 = 0 (A.3)
now since <0ja> = ¢ , one has
alo> a<0Q| _
<01 35 + F.7e) ja> = 0 (A.4)
0l # Sole> = ~(A_-A_) <Ol 3?;—""” | (A.5)
50 - o o .

One can evaluate the matrix element on the right in a path bhasis
o> = Z; diu3) Pt 10> (A.B)
where Ea are Wilaon loops (closed for a glueball) acting on the

vacuum. Then

aja> _ 4 ajo>
ET— = }; di. P,L jo> + z;- di. Pi. W (A.7)
so  <0] %"2 = 2§ d, <0IP, 10> (A.8)

because of Eq. A.4. Thus Eg. A.5 can be rewritten as
1 _ _ 1 -
<0|£u9|a>;(x°+xa) + <012nt|a>"¢xo’f\'ct = (ho kd)z I;di<OIPi|0>
where we have defined <0|ut|a> 30 that it is to be evaluated at
the time value of the centre of the plaquette. Introducing the

energy EOl this can be written



_15._

<0I%a_la>/tanh(aE,) + <01%o, la>/sinh(aE,) = -Ld; <O0IF 10>
(A.10)
Equation A.10 relates the plagquette overlaps of a glueball state

to the ff-dependence of the path coefficients. Such relations can
be extended to B; and f3, derivatives easily. One possible
application is to the 0% glueball where lattice measurements’
show that'<0IuﬂlG> = <0|DtIG>. This could be explained if cl.L for

this state had the same dependence on ﬁ; as on ﬁn ,that is it was

independent of the asymmetry ¥.
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