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neutron star models are discussed in detail.

results for computations of oscillation modes from Newtonian equations in relativistic
contamination can significantly increase the obtained values. The implications of these
is necessary to know the shape of the eigenfunctions quite precisely, since a small f-mode
the multipole moments of all other modes must be small. In their numerical evaluation, it
the vector field being expanded, and therefore it takes the lion’s share of the sum. Thus,
moderate central condensation (such as neutron stars), the f-mode is well approximated by
moments. This expansion leads to a sum rule En |M,,;|2 = constant. For stars of wea.k to
the displacement fields of modes of given I and m are (proportional to) these multipole
to |M,,;|2. The coefficients in the expansion of the vector fields V[rlY],,,(O, 45)] in terms of
the power radiated by the mode in gravitational waves, both of which are proportional
mode determines the energy that can be absorbed by the mode in a tidal interaction and

The oscillating mass 2l-pole moment, Mug, of a star in a given (normalized) oscillation
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comes from the f—mode (of the corresponding I), whose displacement Held is very similar OCR Output
stellar models that are not very centrally condensed, most of the contribution to the sum
leads (for each I) to a sum rule for the squared amplitudes of the 2'-pole moments. For
vector Held for which the expansion coefficients are the 2'—pole moments of the modes. This
combination of all modal displacement fields. For each multipole order l, there is a simple
are orthogonal, and that (probably) any “smooth” vector field can be written as a linear
mitian, even in the often used Cowling approximation. This implies that the modes
out that the oscillation operator, whose eigenfunctions are the Newtonian modes, is Her
which appear not to have attracted considerable attention in the past. In §2, it is pointed
oscillations, whose physical significance was outlined in the previous two paragraphs, but

The general purpose of the present paper is to study the multipole moments of stellar

evaluation of the gravitational wave emissivity.
model. In these "hybrid” models, the “quadrupole formula” must also be used for the
modes by applying Newtonian dynamical equations to a relativistic stellar equilibrium
Van Horn, and Hansen 1988; Strohmayer 1991; Strohmayer et al. 1991) have also computed
a full discussion). Some authors (Balbinski & Schutz 1982; McDermott 1985; McDermott,
moment of the mode. It is correct to lowest post—Newtonian order (see Damour 1987 for
Balbinski & Schutz 1982). This formula gives the radiated power in terms of a multipole
the so-called "quadrupole formula" and its extensions to higher multipoles (Thorne 1969b;
framework, and to evaluate the damping due to the emission of gravitational waves from
many authors to compute the mode eigenfunctions and frequencies in a purely Newtonian
our lack of knowledge of the physics of matter at high densities. This has motivated
interest such as neutron stars, at least not if compared to the uncertainties introduced by
Other relativistic effects are usually not overwhelmingly important in cases of astronomical
star. This effect makes the calculations much more complicated and less transparent.
effect that appears in this case is the emission of gravitational radiation by the oscillating
Thorne 1970; Ipser 8: Thorne 1973; Detweiler 8; Ipser 1973). The most important new
(Thorne & Campolattaro 1967; Price & Thorne 1969; Thorne 1969a, b; Campolattaro &

The nonradial oscillation modes of relativistic stars have also been studied in detail

question or, equivalently, on the appropriate multipole moment of the mode.
depends on the overlap of the tidal force Held with the displacement field of the mode in
spiral of a close binary (Reisenegger & Goldreich 1994). The amount of energy absorbed
(differential) rotation (Zahn 1975, 1977; Goldreich & Nicholson 1989), or accelerated in
Rees 1975; Press & Teukolsky 1977), orbital circularization, modification of the stellar
from the relative motion of the two objects, leading to tidal capture (Fabian, Pringle, &
passing or captured in a binary orbit. In such an interaction, the modes absorb energy
suffers a tidal interaction with another object (Cowling 1941; Zahn 1970), which might be

Nonradial oscillation modes can be excited (among other possibilities) when the star

books by Cox (1980) and Unno et al. (1989).
Cowling (1941). The knowledge accumulated from this work has been summarized in the
history, going back to the pioneering work of Kelvin (Thomson 1863), Pekeris (1938), and

The study of nonradial oscillation modes in Newtonian stars has a long and rich



these modes have finite frequencies. OCR Output
frequency. However, in rotating or magnetic stars, or in stars with a finite shear modulus,

In spherically symmetric, purely fluid stars, toroidal modes are degenerate at zero

For a Huid star in the exact Newtonian formalism, 'H is H crmitian with respect to this inner
volume, *, of the imperturbed, spherically symmetric star whose density profile is p0(r).
for any two (complex) vector Eelds, §(x) and 1,b(x), where the integration is done over the

(4)(CI1/¤) E po(¢‘)C*(X) ·¢(X)d3¢,/*

It is convenient to deine the inner product,

radius §;,(r), §:·,(r), and §f,,(r) depend on the stellar model chosen.
Y},,,(0, ¢) are the standard spherical harmonics (e.g., Jackson 1975), and the functions of
(Aizenman & Smeyers 1977). Here, n is an arbitrary label for the radial eigenfunctions,

()€..im(X) = £$.i(r)*‘? >< VYim(9»¢)

and toroidal modes,

(2)£..zm(>¤) = €;1(")mm(9»¢)i` + €ri`1(")"`Vmm(9»d’)»

The oscillation modes come in two varieties, spheroidal modes of the form

grangian pressure perturbation vanish at the surface.
where R is the stellar radius. This condition is equivalent to demanding that the La

V°€lr=R : Ou (1)

tor” 'H (e.g., Cox 1980; Lynden-Bell & Ostriker 1967), with the boundary condition
symmetric stars in Newtonian mechanics are eigenfunctions of a linear "oscillation opera

The displacement fields €,,,,,,(x) associated with the oscillation modes of spherically

2. HERMITICITY OF THE OSCILLATION OPERATOR

the computed damping times The main conclusions of this work are given in §7.
case for some of the mode computations in the literature has important consequences for
a good approximation to the correct (fully relativistic) ones. The fact that this is not the
the Hermiticity of the operator should be preserved in the hybrid models in order to give
the damping due to gravitational radiation), its eigenfunctions are still orthogonal. Thus,
cillation operator is not Hermitian (its eigenvalues have imaginary parts that account for
in the previous paragraphs. In §5, I point out that, although the general—relativistic os
other modes must be quite small, with obvious implications for the applications discussed
to the vector field being expanded- This implies that the multipole moments of all
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and fl if the first term in square brackets is zero, or (using the definition of 6)
condition of the form given by equation The volume integral also vanishes for all {
The integral over the stellar surface, 5*, vanishes if the vector fields satisfy a boundary

I mcg [(V ·£ )€— (V ·€)€'] ·dSji
(8)

, (€'|H£) - (H€'|£) =(1 + €)P¤y + cf[(V ·€')£· (V ·€)€'l ·¤‘d3¢/ (* d g)

to show that

Using an integration by parts, and the spherical symmetry of the star, it is not hard

and therefore irrotational. (This is still true if the Cowling approximation is not used.)
6 = O = N 2), the displacement fields of all modes with non-zero frequencies are gradients,
and density in the star. Eq. (6) shows that, in the absence of stable stratification (i.e., if
(see, e.g., Reisenegger & Goldreich 1992), and p0(r) and p0(r) are the equilibrium pressure
is a dimensionless measure of the stable stratification, N is the Brunt-Vaiséila frequency

6 2 (7 )cz c,N ) --2 —— 1 = —— dP0/d/>0 ( 9

the acceleration of gravity,
1992.) Here, cg = (Op/3p)ad;abmc is the square of the adiabatic sound speed, g = —gf· is
(This can easily be derived, e.g., from the equations given in §2 of Reisenegger & Goldreich

(6)Hf E VICZV · 5 + s · 6] + ·€(V - £)s = —¤·¤“€

is used. In this case, the mode equations take the form
show here that the stellar oscillation operator is still Hermitian when this approximation
quite acceptable approximation.) For illustration and for reference in later sections, I will
the modes from four coupled first—order differential equations to two, and it is usually a
bations of the gravitational potential are neglected. (This reduces the problem of finding
calculated in the Cowling approximation (Cowling 1941), in which the Eulerian pertur

Often, instead of using the full Newtonian formalism, stellar oscillation modes are

where cl and cg are constants.

€1C·i`+€2V·CIr=R :O»

boundary condition of the form
& Lebovitz 1964; Lynden—Bell & Ostriker 1967). ln fact, 'H is Hermitian for any surface
satisfying the boundary condition of equation (1) (Chandrasekhar 1964; Chandrasekhar
product, i.e., (€|’H1,b) = (HQ for any pair of sufficiently well—behaved vector fields Q, 1/2



A different normalization is used in Reisenegger & Goldreich (1994). OCR Output
Cowling (1941).

That this should be the case had been pointed out, though not shown explicitly, by

M"' = ienlmlplmlv

where the coefficients,

(13)Pm) = ) ;M··r|€n1m}»

tion) on the star being considered. The formal expansion in terms of the modes reads
force field exerted by a binary companion (or a more complicated external mass distribu·
(solenoidal) and irrotational, and their linear superposition can describe, e.g., the tidal
are chosen so that (P;,,,|Pp,,,·) = 6;p6,,,,,,·.5 These vector fields are both divergenceless

N, E (12)1 2l + 1 _ p0(,.),,2(l Udsxl ’[%/7r *
1/2

where the constants of normalization,

(11)P1m(><) = %Vl"lYlm(0¤¢)l»

A particularly interesting set of vector fields to expand is

knowledge) not been proven, it will also be assumed in the present paper.
a linear combination of the normal mode displacement fields. Although this has (to my
i.e., that any (well-behaved) vector field defined on the stellar volume can be expressed as
Unno et al. 1989; Detweiler & Ipser 1973) that the normal modes form a complete set,
orthonormal, i.e., (€n,m|€,,,,,m,) = 6,,,,»6;p6,,,,,,1.4 It is usually assumed (e.g., Cox 1980;

A consequence of the Hermiticity of H is that the oscillation modes can be chosen

3. SERIES EXPANSIONS AND SUM RULES

equation in the presence of a finite shear modulus, see McDermott et al. (1988).
more complicated situation where a part (or all) of the star is solid. For the modified wave

This derivation can be extended, without any major modifications, to the algebraically

which is used in the derivation of equation

f = pay,
dp

equilibrium,
In particular, this is true if the equilibrium variables satisfy the condition of hydrostatic



frequency decreases with increasing number of radial nodes. These two sets are separated OCR Output
increasing number of radial nodes, and also (for I 2 1) an infinite set of g-modes, whose
For each pair of I and m, there is an in£.nite set of p-modes whose frequency increases with
sound modes) and low-frequency g-modes (gravity or buoyancy modes) (Cowling 1941).
according to their main restoring mechanisms into high-frequency p-modes (pressure or

Usually, the spheroidal modes of fluid, spherically symmetric stars can be classified

4. PARTICULAR MODELS

of eq. (17), with k = U.)
fact that they are eigenfunctions of ’H with eigenvalues —w$,,. (Eq. (15) is a special case
P;,,, on the left-hand side in terms of the modes, and using their orthonormality and the
where k is an arbitrary integer ?_ 0. The right-hand side can be obtained by expanding

(17)(P¢~·|HkPrm) = > l(·¤¤?.z)k|M·»¤l2»

A more general (though probably less useful) sum rule is

a complete set, the ‘=’ sign in equations (15) and (16) should be replaced by a ‘§°
to emission of gravitational radiation in the weak-gravity limit. If the modes do not form
where wu; are the frequencies of the modes and rn; are their amplitude-e—folding times due

1 L 2> -1 = -—— d zz, 16 7 wgga, zu - 1)(2I + 1)[(2I - 1)u]¤ @+1 "°(’)" ( )(z-1) 2.(I+ 1)(I+2) G

can derive the sum rule

for all I and m. From this result and equation (11) of Reisenegger 8: Goldreich (1994), one

(15)2 |M,,,|2 = 1

With the normalizations chosen here, it follows from equation (13) that

expansion.

Newtonian order). For this reason, only spheroidal modes need to be considered in the
1) are not excited by tidal forces, and 2) do not radiate gravitational waves (to lowest post
is clear that the coefficients Mn; will vanish for all toroidal modes, implying that the latter:

Since P1m(X) has the functional form of the displacement field of a spheroidal mode, it

radiation in the weak-gravity limit (Balbinski & Schutz 1982) are proportional to |M,,;
& Goldreich 1994) and the damping rate of the modes due to the emission of gravitational
linear regime) by a mode during a tidal interaction (Press & Teukolsky 1977; Reisenegger

These coefficients are of physical interest, because both the energy absorbed (in the

sponding mode.
are the strengths of the multipole moments of the stellar mass distribution in the corre



This is true independently of whether the Cowling approximation is used or not. OCR Output
cf. equation (61) in Reisenegger & Goldreich (1992).
approximation one does obtain a (physically meaningless) finite frequency for this mode,
displacement of the star, with no restoring force and zero frequency. In the Cowling

This is not true for I = 1, for which the f-mode corresponds to a uniform spatial

From this, it follows that, in order to calculate meaningful numbers for |Mnll2 (and
Goldreich (1994).
weakly excited by tidal fields, thus qualitatively confirming the results of Reisenegger 8;
and correspondingly these modes are inefficient gravitational radiators, and they are only
stars. The multipole moments of p-modes and g-modes in these models are still very small,
close to unity even for models of moderate 7 (~ 2) that could correspond, e.g., to neutron
zero for large 7 (i.e., nearly incompressible stars). Since the fall-off is so rapid, M0; is very
of 7, which takes values of order unity close to the stability limit (7 = 4/3) and approaches
polytropic (p oc pl') models show (Fig. 1) that 1 — |M0;|2 is a rapidly decreasing function
have f-modes nearly identical to Pym. In the second example, numerical calculations for
is of order e4, so that even models deviating appreciably from the constant density case
{mm 0: V[(1 + e2f(r))r'Yi,,,(9, q$)] (where is a function of order unity), and 1 — |M0;
the condition of hydrostatic equilibrium. One can show analytically that for these models
radius, and e is a dimensionless constant (0 g e < 1), and the pressure, p0(r), is given by
density is given by p0(r) = pc(1 -— erz /R2), where pc is the central density, R is the stellar
the Cowling approximation is used. In the first, I consider "toy” stellar models in which the
assume, for simplicity, that the stars are neutrally stable to convection (i.e., N 2 = 0), and
is still approximately true. This is made plausible by two examples, in both of which I
to the f-mode displacement field (cf. Chandrasekhar & Lebovitz 1964), so that eq. (18)
for stellar models with relatively fiat density profiles, P 4,,, is still a very good approximation
displacement Helds (Robe 1965), and therefore no mode can be identical to Pym. However,

For fluid stellar models of nonuniform density, there are no modes with divergenceless

tidal potential (in the linear regime), is the f-mode.
(in the weak-field limit), and also the only mode that could be excited by a time-dependent
negative integers. Eq. (18) implies that the only mode that emits gravitational radiation
lowest·frequency mode. One may, e.g., label the p-modes by positive and the g—modes by
Note that I have chosen to label the f·mode as n = 0, although in general it is not the

Mn; = 6,,0. (18)

with the vector field Plm defined above,7 and therefore
and study of stellar modes. In this model, the f—mode displacement field {mm is identical
all of its g—modes are unstable, but has nevertheless served as a guide for the classification
1980; Ledoux Sz Walraven 1958; and references therein). It is unphysical in the sense that
determined analytically, is the (compressible) fluid, uniform density model (see, e.g., Cox

A stellar model that has been studied extensively, because its oscillation modes can be

or Unno et al. 1989 for a more complete discussion of this classification.)
by an f—mode (fundamental mode or “Kelvin mode”)6 with no radial nodes. (See Cox 1980



e(A;, — A,)(§,|fk). This implies Ak = A; or (§,|€k) = 0, i.e., the eigenvectors corresponding OCR Output
Now, assume that statement 2 is true. Choose gb = fi and 6gb = cfk, then 0 = 6A =

eigenvector of L, then 6A = 0. This proves that statement 2 follows from statement 1.
perturbation of gb), gb is an eigenvector of L with eigenvalue A,,. Conversely, if gb is an
all k (which is equivalent to demanding that A be stationary with respect to any small
must have Ck = O unless Ak = A,|c;|2)/(Ei |c,|2) 5 A.,.. Since this must be true for
number. It is clear from equation (21) that, in order for 6A to vanish for a given k, one
where A, is the eigenvalue corresponding to fi, and Re refers to the real part of a complex

<2, new
, l 21 ‘ lAk Tl |¢s|2 ·· Z- Aelcslz 6A = ——-%--—-é——·R * "" °"

fk is an arbitrary eigenvector, and e is some small number. Then,
formed by a subset {fi} of the eigenvectors of L as gb = Z, qi,. Choose 6gb = efk, where

First, assume that statement 1 is true. Write gb in terms of an orthonormal basis of S

2 (¢|¢)
_ ((6¤/Jl·’J¢> + (¢I£6¤/¤})(¢|¢) ·· (¤/¤|£¢}((6¢|¢) + (¢I6¤/Jl) 6A - .

variation of A is

In order to see that this is the case, note that, for a variation 6gb of gb, the first-order

eigenvalue.)
tor of L. (Of course, the value of A[gb] when gb is an eigenvector of L is the corresponding
is stationary with respect to arbitrary (small) variations of gb if and only if gb is an eigenvec

(¢I¢}
(19)(¤/JIUP) [gbl = ·—··—·

2) The functional

1) Any two eigenvectors of L corresponding to different eigenvalues are orthogonal.

statements are equivalent:
vector space S in which an inner product has been defined. Then, the following two

Let L be a linear operator (Hermitian or not) whose eigenvectors span a (complex)

5. RELATIVISTIC EXTENSION

the result will be meaningless unless lc] < lM,,;| (< 1).
field {,,1,,,, the value of Mn; changes to ML, = (1 — |e|2)1/2M,,; + eM0;. Since [MOA ~ 1,
uses a displacement field {Lum = (1 -— \e|2 )1/2€,,,m+e€0,,,, instead of the correct displacement
precision (cf. Reisenegger & Goldreich 1992, 1994). For instance, if for such a mode one
neutron star models, the corresponding eigenfunctions have to be known to quite a high
quantities that depend on it, such as 1*,,;) for modes other than the f—modes in typical



earlier evolutionary calculations. OCR Output
Furthermore, relativistic stellar models were already available to the authors from

the "correct” stellar equilibrium model.
corrections are not applied consistently, but the hope is that something is gained by using
guaranteed to be more precise than the purely Newtonian calculation, since relativistic
gravitational waves emitted by these oscillations. Of course, this hybrid approach is not
because the relativistic equations include both the oscillations of the star itself and the
cantly more complicated in General Relativity than in the Newtonian theory, especially
However, the first-order oscillation equations and their boundary conditions are signifi
integrate numerically) than their (only approximately correct) Newtonian counterparts.
equilibrium equations are not much more complicated (and certainly not much harder to
Cowling approximation). The rationale behind this choice is the following. The relativistic
of the equilibrium model) are calculated from purely Newtonian mechanics (and with the
is the mass enclosed within radius F. However, the modes (the first-order perturbations
energy density and pressure as measured in a comoving local Lorentz frame, and r7z0(F)
where F is the radius in Schwarzschild coordinates, bg and fig are the local equilibrium

dig Gfhojiq < po ) < 4·rrF3;'$0) < 2Gr7z0) ···: = ··+ 1 + t—· I + T-- 1 ——·;— dr F2 poe? mgcz c2’r‘
(22)

dr
= 41rF§0,d"l° 2

(Oppenheimer & Volkoff 1939; see also Shapiro & Teukolsky 1983),
approach. The stellar equilibrium model is calculated from the relativistic "OV” equations
& Goldreich 1992 for complementary work). These calculations are based on a "hybrid”
references therein; Strohmayer 1991; Strohmayer et al. 1991; see Finn 1987 and Reisenegger
are those by the “Rochester group” and their collaborators (McDermott et al. 1988 and

The most extensive numerical computations of neutron star oscillation modes so far

6. HYBRID MODELS FOR NEUTRON STARS

part (corresponding to damping due to the emission of gravitational radiation).
Campolattaro 1967), but have a real part (corresponding to oscillations) and an imaginary
to this inner product. However, most eigenfrequencies w are not purely real (Thorne &
(4) (Detweiler 8: Ipser 1973). This implies that the modes are orthogonal with respect
(19) with an inner product that is a relativistic extension of that defined in equation
theory. There, the modes satisfy a variational principle of the form given in equation
still not be real. The latter is exactly what happens in general—relativistic stellar oscillation
sufficient to imply the Hermiticity of L, since both could be true, and the eigenvalues of L

If C is Hermitian, then statements 1 and 2 are both true. However, neither of them is

proves the "theorem” stated above.
to different eigenvalues are orthogonal. Thus, statement 1 follows from statement 2. This
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solid star, which considerably complicates the wave operator compared to that given in
therefore has (slightly) non-orthogonal eigenfunctions. (These authors consider a partially
equation (10), and therefore yields a wave operator that is (slightly) non—Hermitian, and
can be seen from the OV equations (eq. [22]) that this prescription is inconsistent with
written by McDermott (1985) and kindly made available to me by Strohmayer (1993). It
mass, r'h0(F), enclosed within radius F, as g = GH10(F)/F2, as can be seen from their code,
others, who take r = F, pg = [50, and pg = jig, but define g in terms of the (relativistic)

The prescription outlined above is not that followed by McDermott et al. (1988) and

but this does not appear to affect the consistency of the formalism.
of g implies that it will not in general satisfy the Newtonian field equation, V -g = —-47rGpO,
(10). Of course, if the stellar model is calculated in the relativistic formalism, this definition
model, and define the gravitational acceleration to be used in the wave operator by equation
computation is to take, e.g., F = F, p0(r) = ;'50(F), and p0(r) = ;$0(F) from the relativistic
as given by equation (10). Thus, one natural way of performing a consistent "hybrid”
general stellar models it requires that the star be in Newtonian hydrostatic equilibrium,
equation (9) is satisfied. If po = constant, this condition is trivially fulfilled, but for more
approximation, as given in equation As shown in §2, this operator is Hermitian only if
variables, consider the Newtonian oscillation operator 'H for a fluid star in the Cowling

In order to see how this constrains the "translation” from relativistic to Newtonian

be Hermitian.

clearly also desirable orthogonality of the modes, requires that the wave operator should
itational waves, and therefore the frequencies should remain real. This, together with the
modes are still orthogonal. The "hybrid" theory does not account for the emission of grav
part of the eigenfrequencies that accounts for radiative damping of the modes), but the
In theifully relativistic theory, the Hermiticity is not preserved (because of the imaginary
important consequences, in particular through the orthogonality of the oscillation modes.
§§3 and 4 that the Hermiticity of the wave operator in the purely Newtonian theory has
degree to which it approximates the relativistic formalism. For instance, it was shown in
librium variables gives a satisfactory formalism, even if one is not concerned about the

In fact, however, not every choice of the first post-Newtonian correction to the equi

an observer at rest at infinity?)
measured by an inertial observer instantaneously at rest on the surface of the star, or by
the relativistic ones, e.g., should the frequencies approach the relativistic frequencies as
not even clear in what sense the modes in the hybrid formalism are desired to approach
relativistic ones better then others, which seems very difficult to determine a priori. (It is
arbitrary, aside from the fact that some choices may give results that approximate the fully
post-Newtonian corrections are concerned), it may seem as if the choice were completely
are of course all equivalent. Beyond this approximation (i.e., as far as the lowest—order
pg could be [S0 just as well as 50 + po/cz. In the Newtonian approximation, these choices
tities that appear in the first-order equations. For example, the Newtonian mass density
functions of the Schwarzschild coordinate radius F) into the Newtonian equilibrium quan
tities (energy density [wg, pressure po, enclosed mass vim, and possibly other quantities, as
equations, one must have a convention of how to translate the relativistic equilibrium quan

In using the relativistic equilibrium models together with the Newtonian oscillation
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the mode referred to in the text.

shear mode. The true gp; has a period of 0.1815, rather than 0.1804, milliseconds. This is
The mode listed as gpl for NS05T8 in Table 5 of McDermott et al. (1988) is really a

gravity prescription suggested here, which gives 0.985 and 0.002.
that the sum rule given in equation (15) is already violated.° This is not the case with the
the gravity prescription of McDermott et al. (1988) are, respectively, 0.987 and 0.042, so
The numerically computed values of |M,,;[2 for the modes 2 f and gp; in this model with
model (as indicated by still fairly non-orthogonal modes), they will not be presented here.
the numbers are probably still affected by the unphysical discontinuity introduced in their
(by factors up to ~ 103 and more) than those presented by these authors. However, since
calculated as suggested here, indicate that the true damping times are significantly longer

Computations with the same code used by McDermott et al. (1988), but with g(r)

of the damping times.
the problems pointed out above have to be taken into account in numerical computations
close to the parameter values corresponding to the (arguably) correct model shows that
the correct modes in this model. However, the fact that these divergences exist and occur
values of oz the modes happen to be exactly orthogonal to Pgm, which is not the case for
04 z 1.26 (for the interface mode). Of course, these divergences only mean that at those
two modes show a strong dependence on oz, diverging at cv z 1.24 (for the shear mode) and
dependent on oz. However, as might have been expected, the damping times of the other
damping time of the f-mode due to the emission of gravitational waves is also not strongly
04 in the range 1.0 $ oz § 1.3, with typical changes of the order of the changes in a. The
and the model), shows that the periods of the modes are not very sensitive to changes in
terface mode (gig) of model NS05T8 (see McDermott et al. 1988 for details on the modes
applied to the quadrupole f-mode (2 f), lowest-order shear mode (2.91), and crust-ocean in
culating the modes for several oz, and seeing how their properties evolve. This experiment,
values of g(r) by multiplying g(r) (as calculated by McDermott et al.) by a factor oz, recal—

This fact suggests that one might check the sensitivity of the modes to the precise

(Here, M and R are the total relativistic mass and radius of the star.)

22 "2star of constant 50, with the lowest F-dependent corrections of order (GM/cR)~ 10
relativistic correction factors in parentheses in eqs. [22]) is z (1 — 2GM/c2R)"1 for a
value is not entirely surprising, since this ratio (which is the combination of the three
different method than that of the rest of the star. In retrospective, the nearly constant
surface layer ("atmosphere”) at 50 < 1010 gcm”3, whose structure was determined by a
models, turns out to be nearly constant z 1.25 (to within ~ 2%) for all r, except in a thin
above to the value used by McDermott et al. (1988), calculated numerically from their

The ratio of the gravitational acceleration calculated by the prescription suggested

of these other modes in their calculations quicker than it really is, as shown below.
not be exactly orthogonal to all other modes, which makes the gravitational-wave-damping
equation (6), but does not change the argument given here.) In particular, the f—modes will
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consistent approximation to General Relativity, such as the slow-motion formalism of Finn
purposes, it is probably desirable to consistently use the Newtonian theory, or some other
where the full formalism of General Relativity is regarded as too complicated for practical
tic corrections are applied in an inconsistent and arbitrary fashion. Thus, in those cases
is gained by using this hybrid approach rather than the Newtonian theory, since relativis
ing a prescription outlined in the present paper. However, it is not clear whether anything
ture is calculated in the full general-relativistic formalism. They can be avoided by follow
dynamical equations are used to compute the oscillations of stars whose equilibrium struc

Such f-mode contaminations may occur in "hybrid” computations, where Newtonian

change the results.
eigenfunction, in order to prevent even small f-mode contaminations that would drastically
meaningful numerical evaluation of these properties will require a precise knowledge of the
The smallness of their multipole moments compared to that of the f-mode implies that a
excited in any kind of tidal interactions, and 2) inefficient gravitational-wave emitters.
moments of the f-modes). Therefore, modes other than the f-mode are 1) only weakly
must be comparatively small (and the sum rules give good estimates for the multipole
contributing significantly to the sum. Thus, the multipole moments of all other modes
For stellar models that are not strongly centrally condensed, the f-mode is the only mode
amplitudes of the multipole moments of all modes with given l and m has been derived.

A rigorous upper limit (and probably the exact value) for the sum of the squared
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