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theoretical evidence is provided in favour of the conjecture.

conjecture about its universal statistical behaviour is put forward. Numerical as well as
tum systems. A novel quantity to measure quantum chaos in spectra is proposed and a

We discuss fingerprints of classical chaos in spectra of the corresponding bound quan
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two-point statistics. Moreover, the expectation based on RMT does not really provide a criteOCR Output
gerprints of classical chaos that manifest themselves in the level spacings distribution or in the

The example of arithmetical chaos clearly teaches us that there do not exist universal fin
of Berry that explains the observed peculiarities of the spectral statistics
periodic orbits [5, 6]. It was, however, possible to devise a periodic-orbit analysis in the spirit
systems excel in their classical dynamics by exponentially growing multiplicities of lengths of
cial assumption in Berry`s periodic-orbit analysis is strongly violated in that the arithmetical
the notion of arithmetical chaos was introduced. It was observed that for these systems a cru
negative Gaussian curvatures, whose fundamental groups are of an arithmetical origin [5); thus
for geodesic flows on hyperbolic surfaces, i.e., Riemannian surfaces with metrics of constant
nearly behave as it is expected for classically integrable systems. This phenomenon occurs
sures of spectral fluctuations, i.e., the level spacings distribution and the two-point statistics,

In addition, a class of strongly chaotic systems was found [4) for which the traditional mea
the relevance of the fine structure in the periods of short periodic orbits.
scales in contradiction to the predictions based on RMT; long-range correlations occur due to
scales in the spectra. Berry, however, obtained a saturation of the two—point statistics on large
assertions on spectral statistics were confirmed for “generic” systems on small and medium
analysis to the spectral rigidity for both integrable and chaotic systems. In this way the above
analysed the level spacings of classically integrable systems, and later Berry [3) extended the
once the classical dynamics is known. Using periodic-orbit theory [1), Berry and Tabor
the corresponding classical systems and which would allow to predict the spectral statistics
desirable to find a theoretical justification of the results which makes use of the properties of
different types of spectral fluctuations has been a purely phenomenological one; it is, however,
systems should be described by Poissonian random processes. So far this characterization of
system). In contrast, statistical properties of quantum energy spectra of classically integrable
the results of random matrix theory (RMT) if only the classical limit is strongly chaotic (a K
individual systems with even a low number of degrees of freedom (2 2) can be described by

The present perception of spectral statistics in QC asserts that quantum energy spectra of
also in quantum mechanics.
excel in a random behaviour of these fingerprints that qualify the systems to be called “chaotic”
quantum states one could use these to define QC. Ideally, classically chaotic systems should
identify unique fingerprints of the corresponding classical dynamics in properties of stationary
properties of stationary states, that is of eigenvalues and eigenfunctions of H. If one were to

Instead, one could consider the limit t : oo in quantum mechanics and would thus study
that manifests itself in the long-time behaviour of the dynamics.
integrable or chaotic nature of the classical limit. There thus exists no quantum chaos (QC`}
f -+ oo this neither increases nor decreases but rather fiuctuates perpetually, irrespective of the
Lt‘,L,9 from the quantum mechanical Hilbert space reads < ;b,U(t)<p >: [QQ, cn c`iTE"i. For
nian with (discrete) spectrum {En, n E HV}. Thus the time—correlation function of two states
spectrum of the time-evolution operator U(t) : e'hHl, where H denotes the quantum Hamilto
sequel, the quantum mechanical time-evolution is almost periodic. This is due to the discrete
correlations. For bound conservative systems, which we are exclusively considering in the
tems, however, excel in quasi-periodic time-evolutions which result in non-decreasing time
the mixing property, reflecting a complete loss of information on the system. Integrable sys
of classical observables decay (possibly exponentially) for t —> oo when the system shares
the most obvious property being a sensitive dependence on initial conditions. Time-correlations

In classical physics chaos can be characterized by the long-time behaviour of the dynamics.



Hows and for scaling potentials this holds with : The mean spectral density then behaves OCR Output
~ cxg, 1 —> oo, with some positive constants c and ln the case of billiards or geodesic

We now suppose that the asymptotic behaviour of the spectral staircase is given by
integrable systems a representation (2) of !\/'f;(;c) in terms of a zeta function does not exist.
formula suggests that Eq. (2) holds in the semiclassical limit. We stress that for classically
manifolds where Z(s) is given by Selberg’s zeta function [10]. In other cases Gutzwiller’s trace
can in general not be proven rigorously, but is known to be true for geodesic flows on hyperbolic

Z(i1‘) ei”N(’l = Z(—ix) e"f"A/(Il We remark that the assertion on the meromorphy of Z(s)
and K/#(1) is such that Z(i:c) emvlzl is real valued for av 6 1R, implying the functional equation

(2)./Vf;(ar) : E arg ,

principle, which is a common tool in analytic number theory, yields that
in the interval [0,1). Once Z(s) is meromorphic in a strip [Res) § 6, 6 > O, the argument
staircase iV(.r) thus counts the number of zeroes of Z(.s) on the critical line s : —i;r, ar 6 IR,
limit the scaled eigenvalues an are given by the zeroes of Z(s) at Sn = ;I;i:c,,. The spectral
the Euler product Using Gutzwiller’s trace formula one obtains that in the semiclassical
(cr, : -1) orbit; og > 0 denotes the abscissa of absolute convergence (the entropy barrier) of
and ox, = il depends on whether 7 is a direct hyperbolic (ow = +1) or an inverse hyperbolic
classical system a.nd uw denotes the stability exponent of 7; X, is a phase factor attached to 7,
s : —i;r. where the outer product in Eq. (1) runs over all primitive periodic orbits 7 of the
as it arises from Gutzwiller°s semiclassical trace formula Z(s) is a function of the variable

'Y 71:0

(17Zfs) Z H H (1 _ Xwgjr €—(¤R~+(n+$)~7)
Res > on

orbits are isolated and unstable, by the dynamical zeta function which reads for f : 2 and
One can now express ./Vf;(;r) for strongly chaotic systems, i.e., K—systems whose periodic

.l\((x), and a fluctuating part ./\/'f;(:r).
and can in general be decomposed into a smooth part A/'(at) describing a °‘mean behaviour" of
in the form {.1*,, : EQ; n € [N}. lts spectral staircase reads /V(;c) z: U f sen f ir},
spectrum {En; n E IN} of the Hamiltonian H will be studied in terms of the variable 1*, i.e.,
systems with scaling potentials, V(/\q) = }\"V(q), A > U, yield oi = é + The discrete
(in suitable units) and R, = Z, is the geometrical length of 7. Furthermore, Hamiltonian

geodesic flows on Riemannian manifolds, where sr : p : \/E is the modulus of the momentum
where Rx does not depend on the energy E. Examples of scaling systems are billiards and
,\ > O. VVe denote the positive root EO by .r : EO so that SAE) : (E/EO)"*S,(EO) :2 .1*R,,
actions SAE) : fw p-dq of classical periodic orbits 7 that scale according to SA/\E) : /\°‘ SAE),

ln the following we will discuss bound conservative systems of f 2 2 degrees of freedom with
to provide evidence in favour of it. A preliminary announcement can be found in
of this Letter to put forward a conjecture on a suitable quantity to measure QC in spectra and
way expresses the random character of spectral fluctuations in the former case. It is the aim
chaotic classical limits from those with integrable ones, and which in a more direct and intuitive
thus seems desirable to introduce a quantity that clearly distinguishes quantum systems with
expressed by the considered quantities are stronger (Poissonian-like) in the integrable case. lt
rion in which chaotic systems excel in a particular randomness, since the spectral Huctuations





So far we have been dealing with signatures of QC in spectra. The same question can, OCR Output
perpendicular to the xyaxis.
that one of the desymmetrized hyperbola billiard, see Ref. [9], truncated by a circular arc
of the truncated hyperbola billiard. The billiard domain on the euclidean plane is given by
in Fig. 1(b). Finally we present in Fig. l(c) the result obtained from the first 1850 eigenvalues
is known to show arithmetical chaos. The result, based on the first l040 eigenvalues, is shown
provided by a billiard on the hyperbolic plane in a triangle with angles (rr/2, rr/3,rr/8), which
Ref. [15), for an :r—interval containing the 4500*** — 6000fh eigenvalue. A second example is
results for the geodesic flow on a non—arithmetic compact hyperbolic surface of genus two, see
form of the distributions is already clearly statistically significant. In Fig. l(a) we present the
one, which by construction has to be attained for 1: —> oo. But most importantly, the Gaussian
that the observed distributions show variances that have not yet reached the limiting value of
ir -—> oo. We observe that with our finite :c—values we could not pass to the asymptotic regime so
saturation value AOO(:1:) enters which, as mentioned above, is only known asymptotically for
finite intervals are presented together with Gaussian fits. In the definition (5) of the
systems. In Fig. l histograms of the distributions of the respective quantities on certain

We now provide numerical evidence in favour of our conjecture for three strongly chaotic
asymptotically for ac —> oo and then to study its distribution (6) for ;r,l —> oo.
respective arithmetic surface. This informtion thus enables one to construct the quantity I/I/(sv)
In arithmetical chaos one observes [7] that AOO(x) ~ $@;, where A denotes the area of the
yield AOO(r) ~ l% log :1:, whereas those without such a symmetry show AOO(a:) ~ g-i}log:c.
results, see Ref. [I4]. “Generic” classically chaotic systems with an anti-unitary symmetry
integrable billiards AOO(:c) ~ cir, ar —> oo, with some non—universal constant c,. For rigorous

From Berry’s semiclassical analysis of the spectral rigidity [3] one obtains that for classically
conjecture is that classically strongly chaotic systems have maximally random quantum spectra.
here, is maximized by a normal distribution of mean zero. Thus the contents of our
measure for spectral randomness. Under the constraint of a fixed variance, which is always one
measures a mean unlikelihood for I/V(:v) to be of a specific value and thus provides a quantitative

(9)5lfl ¤= —dw f(w)1<>sf(w)+<>o /OO
The spectral entropy
distribution can be viewed as the validity of a central limit theorem for the spectral fluctuations.
systems have been analysed numerically in their spectral properties. (iv) A Gaussian limit
a simple manner. It should also be pointed out that so far almost exclusively scaling chaotic
available. But notice that one cannot extend the analogy to the (Riemann) zeta function in
then have to be considered in the energy variable E itself since no other suitable variable seems
that our conjecture extends to general bound conservative systems. The fluctuations would
(iii) We restricted our analysis of spectral fluctuations to scaling systems. One could expect
most accessible ones for a proof of the conjecture (possibly by Selberg’s moment formalism).
equation is assured for geodesic flows on hyperbolic surfaces. These systems may hence be the
chaotic systems a.s expressed by the conjecture. VVe remind that the existence of a functional
in a semiclassical approximation) we are led to expect a Gaussian limit. distribution for strongly
functions (I) can be represented by Dirichlet series and they obey a functional equation (at lea.st
a Dirichlet series and the existence of a functional equation. Since in general dynamical zeta
had to be required for the Gaussian limit distribution to be proven was a representation as
obtained by Selberg [I3) for a more general class of zeta functions. The crucial properties that
OCR Outputdistribution a.nd thus is in accordance with our conjecture. lVIoreover, the same result has been
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Several numerical tests have been performed in the past confirming also this conjecture [17].
classically integrable systems the density is non-Gaussian.
classical system is strongly chaotic this limit distribution has a Gaussian density, whereas for
absolutely continuous disti‘ibution with respect to Lebesgue measure. Once the corresponding
The distributions ofthe values 0f individual eigenfunctions of H converge for n —+ oo t0 an
functions reads analogously to the one concerning spectra:

on the invariant tori in phase space. Thus the conjecture on the statistical behaviour of wave
the classical system is chaotic. For iiitegrable systems eigenfunctions are known to concentrate
Ll1@ values 0f cigcrrfuuctiorrs ;j·,l(q) would be Gaussian distributed in thc semiclassical limit when
10w€v<2r, also be addrcssccl to eigeufuuctions 0f H. Already in 1977 Berry <;0njcctr1recl [16] that



exp1air1ed in the text.
Figure 1: The distributions of the quantity W(;r) are shown for the three chaotic systems as
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