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Abstract
A physically motivated extension of the SUy(2) model of rotational nuclear spectra
is introduced, which is applicable in the vibrational and transitional regions as well. The
deformation parameter is related to the centrifugal stretching effect, while the new param-
eter ¢ allows the spectrum to be an expansion in terms of J(J + ¢) instead of J(J + 1),
thus describing nuclear anharmonicities in a way similar to the Interacting Boson Model

and the Generalized Variable Moment of Inertia model.
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N oohin Devcaclaas Vet M

Quantum algebras (also called quantum groups) 1] and their applications in physics
are recently attracting much attention. One of the first applications of quantum alge-
bras in physics came with the realization that rotational spectra of deformed nuclei [2],
superdeformed nuclei [3] and diatomic molecules {4-6] can be accurately described by the
quantum algebra SU,(2). The correspondence between the SU,(2) expression and the
Variable Moment of Inertia (VMI) model [7] has also been established [8]. It has been
shown that in both cases the energy is described by a series in powers of J(J + 1), the
deformation parameter ¢ of the algebra been connected to the softness parameter of the
VMI model. When the deformation parameter ¢ is set equal to 1, the usual Lie algebra
SU(2) is obtained.

It is not surprising that the applicability of the SU,(2) formalism is limited to the
rotational region (where the ratio Ry = E(4)/E(2) obtains values between 3.0 and 3.33),
since it is based on a deformation of the rotation algebra. For describing nuclear spectra
in the vibrational (2.0 < R4 < 2.4) and transitional (2.4 < Ry < 3.0) regions it is clear
that an extension of the model is needed. In order to be guided towards such an extension,
we briefly review the existing experience of other successful models:

i} In the rotational (SU(3)) limit of the Interacting Boson Model (IBM) [9] the spec-
trum is described by a J(J + 1) expression, while in the vibrational (U(5)) and transitional
(O(6)) limits expressions of the form J(J + ¢) with ¢ > 1 appear. In the U(5) limit, in

particular, the energy levels are given by
E(N,nq,v,na,J,Mj) = Eg + eng + ang(ng + 4) + B2v(v + 3) +y2J(J + 1), (1)

where the usual notation is used. The ground state band, in particular, is characterized
by quantum numbers ng = 0, 1, 2, ..., v = nq, ny = 0, J = 2ny, so that the energy
expression for it reads
€ @ B8
E(J)=E0+3J+ZJ(J+8)+EJ(J+6)+2~,J(J+1). (2)
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In the O(6) limit the energy is given by
E(N,o,7,va,J,Ms) = Eg + B21(r +3) + ¥2J(J + 1) + n20(0 + 4), (3)

with the usual notation used. The ground state band is characterized by the quantum
numbers e = N, 7 =0,1,2, ..., va =0, J = 27, so that the relevant energy expression

takes the form
E(J)=Eo+gJ(J+6)+‘72J(J+1)+172N(N+4). (4)

The message from eqs (2) and (4) is that nuclear anharmonicities are described by
expressions in which J and J? appear with different coefficients, and not with the same
coefficient as in J(J + 1). The earliest introduction of this idea is in fact the Ejiri {10]
formula E(J) = kJ(J + 1) + aJ, which has been subsequently justified microscopically in
{11}.

ii) The two-parameter VMI model is known to continue giving good fits in the tran-
sitional and even in the vibrational region. In these regions, however, the accuracy of the
model is substantially improved by adding a third parameter, which essentially allows for
treating J and J? with a different coefficient [12,13].

In the usual VMI model {7] the levels of the ground state band are given by

J(J+1)

ED ==

+ C(G(J) —09)?, (8)

where C and ©y are the two parameters of the model, the latter being the ground state
moment of inertia. The moment of inertia for each J is determined by minimizing the
energy with respect to the moment of inertia for constant J. This procedure leads to a

cubic equation with only one real root. The energy can be written as an expansion in

powers of J(J + 1) as [8]

E(J) = if)—o-(J(J +1)— %(J(J + 1)) +AJT+1))P =3I +1) +..), (6)

where the softness parameter 0 = 1/(2C0}) is serving as the small parameter of the
expansion.

One of the (essentially equivalent) three-parameter extensions of the model, which
give improved fits of vibrational and transitional spectra, is the generalized VMI (GVMI)
model [12], in which the energy levels can be written as

J(J +z')

EUY = Sy

+ %k’(Q’(]) — @), 0

where ' = z~1 — 2. It is clear that for £ = 1/3 the GVMI reduces to the usual VMI, while
for transitional and vibrational nuclei z obtains lower values [12], so that z' becomes greater
than 1. The moment of inertia for each J is still determined by minimizing the energy with
respect to the moment of inertia for constant J, while the expansion of the energy turns
out to be the same as in eq. (6) with the substitutions J(J +1) = J(J + z'), ©o — &4,
o — o' = 1/(2k'(2},)?). We remark that an expansion in terms of J(J + z') is obtained,
as compared to an expansion in terms of J(J + 1) in the case of the usual VML The
physical content of the parameters is clear: the centrifugal stretching effect is accounted
for by the softness parameter o', as in the case of the usual VMI, while anharmonicities,
important in the vibrational region, are introduced by z' > 1. Since centrifugal stretching
and anharmonicities are two effects of different origins, it is reasonable to describe them
by two different parameters.

In the case of the SU,(2) model the energy spectrum is given by the eigenvalues of

the second order Casimir operator of the algebra, i.e.
1
E(I) = gy + 1, ®)

where q-numbers (with ¢ = '") are defined as [z}, = ":I(n':) In this case the energy can

be expanded as [8]

E(J) = gz 7z UGo(r)I(J + 1) = ti(n)(J(J + 1))* + T 2j2(r)(I(J + 1))

"I (3o ( 7))?



‘%T“ja(r)(J(J +1)) + %T‘J‘«(T)(J(J +1)°-..), 9

where j,(7) are the spherical Bessel functions of the first kind. It has been proved [14]
that eq. (8) gives better fits to rotational nuclear spectra than the first order expansion,
containing only the first two terms of eq. (9), both formulae containing two free parameters
each.

The evidence coming from the IBM and the generalized VMI model described above,

suggests a model in which the spectrum is given by
1
E(J) = 57[71lJ + e, (10)

which contains 3 parameters: the moment of inertia I, the deformation parameter ¢ and
the new parameter ¢, which is expected to be 1 in the rotational limit and larger than 1
in the vibrational and transitional regions. This expansion of this energy expression looks
like eq. (9) with J(J + 1) replaced by J(J + ¢).

It is expected that the deformation parameter r, which plays the role of the small
parameter in the expansion, as the softness parameter does in the case of the VMI, will
describe the centrifugal stretching effect, while the parameter ¢ will correspond to the
anharmonicity effects. These expectations are corroborated from least square fits of the
experimental data. In Tables 1, 2, 3 some examples of vibrational, transitional (or near-
transitional) and rotational nuclei of the rare earth region are given correspondingly. The
following comments can be made:

i) The anharmonicity parameter c is clearly decreasing with increasing Ry, i.e. with
increasing collectivity. It obtains high values (8-18) in the vibrational region, while in
the rotational region it stays close to 1. (It should be noted that by fixing ¢ = 1 in the
rotational region the fits are only very slightly changed, as expected.) In the transitional
region its values are close to 3.

ii) The deformation parameter 7, which corresponds to the centrifugal stretching, is

known from the SU,(2) model to obtain values close to 0.3-0.4 in the rotational region, a

5

fact also seen here. The same range of values appears in the vibrational region as well,
while in the transitional region r reaches values as high as 0.6. It is not unreasonable for
this parameter, which is connected to the softness of the nucleus, to obtain its highest
values in the region of v-soft nuclei.

iii) It is worth remarking that eq. (10) coincides for ¢ = 1 and c=integer=N with the
eigenvalues of the Casimir operator of the algebra SO(N+2) in completely symmetric states
(16]. In the rotational region the fits gave N=1, which corresponds to SO(3), as expected,
while in the transitional region the fits gave approximately N=3, which corresponds to
SO(5), which is a subalgebra contained in both the U(5) and O(6) limits of the IBM.

iv) It is also worth remarking that a special case of the expression of eq. (10) occurs
in the g-deformed version of the O(6) limit of the Interacting Boson Model [17-19]. The
construction of the q-deformed version of IBM has been achieved by studying the chain of

subalgebras

SU*%(1,1) ® SO(6) D SU%(1,1) ® SO(5) D SO(3), (11)

where SU®%(1,1) is the algebra closed by the pair operators formed out of the s and d
bosons, while SU%(1,1) is the algebra closed by the pair operators formed out of d bosons
alone. The irreps of SU*?(1,1) are characterized by the same quantum numbers as the irreps
of O(6) in the O(6) chain of the IBM, while the irreps of SU%(1,1) are characterized by the
same quantum numbers as the irreps of O(5) in the O(6) limit of IBM. (This fact is based
on the concept of complementary subalgebras, introduced by Moshinsky and Quesne {20].)
Therefore in the Hamiltonian one can use the Casimir operators of the SU*9(1,1), SU4(1,1)
and SU(2) subalgebras (the deformed versions of which are well known [21-23]) instead of
the Casimir operators of O(6), O(5), O(3) respectively. Keeping the same notation as in

eq. (3) the final result rcads

E(N,o,7,va,J, M) = Eo + 8 [g]q[T;‘"’] 72 T[T + 1)y 4178 ["E]q[“;“‘] . (12)
q q
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For the ground state band then the analog of eq. (4) is
E(J)=Ey+ ﬂIS[J]qx/clJ + 6]‘,1/4 + ’72[.}]q[.] + llq + 17'8[N]q./z[N + 4]q|/z, (13)

where the identities

z — - z - - - -
5], = ledan@+a)7, (3] = lelare(@ 447 )@+ g7, (9
q

have been used and ', n' are related to 3, n and g in an obvious way. We remark that the
Casimir operator of SU:(I,]), which is complementary to O(5) in the undeformed case,
leads to a term of the form [J]y[J + 6]y with ¢’ = ¢*/4.

v) The SU,(2) symmetry is known to make specific predictions for the deviation of
the behaviour of the B(E2) values from the rigid rotator model [24]. It will be interesting
to connect the spectrum of eq. (10) to some deformed symmetry, at least for special values
of ¢, and examine the implications of such a symmetry for the B(E2) values. Such a study
in the framework of the g-deformed version of the O(6) limit of IBM, mentioned in iv), is
also of interest.

vi) It is worth noticing that an expansion in terms of J(J + ¢) can also be obtained
from a generalized oscillator {25] with a structure function F(J) = [J(J + ¢)]g, with
[zl = (Q* — 1)/(Q — 1) and Q@ = €7, with T real. This is similar to the oscillator
successfully used in [26] for the description of vibrational spectra of diatomic molecules.
It can also be considered as a deformation of the oscillator corresponding to the Morse
potential [27].

In conclusion, we have introduced an extension of the SU,(2) model of rotational
nuclear spectra, which is applicable in the vibrational and transitional regions as well.
This extension is in agreement with the Interacting Boson Model and the Generalized
Variable Moment of Inertia model. In addition to the overall scale parameter, the model
contains two parameters, one related to the centrifugal stretching and another related to

nuclear anharmonicities. In the rotational region the model coincides with the usual SU,(2)

7

model, while in the transitional region an approximate SO(5) symmetry is seen. These
results give additional motivation in pursueing the construction of a deformed version of
the Interacting Boson Model [17-19].

Support from the Bundesministerium fiir Forschung und Technologie under contract
06 Ti 736 (DB) and from the Bulgarian Ministry of Science and High Education under
contract No 10 (PPR, RPR) is gratefully acknowledged.
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Table Captions

Table 1 Experimental (exp) and theoretical (th) spectra for ground state bands in the
vibrational region. Experimental data are taken from [15], while the theoretical
results are obtained from eq. (10) with the parameter values reported in the lower
part of the table. The quality of the fits is measured by % = f:::(E s{exp) —
Ej(th))?. Energies and 1/2I are measured in MeV, while z2 is measured in MeVZ.
T, c, Ry are dimensionless quantities.

Table 2 Same as Table 1, but in the transitional (or near-transitional) region.

Table 3 Same as Table 1, but in the rotational region.

11

o0 O & N

12
14
16

1/21

10322

150G,
exp
0.3340
0.7734
1.2788
1.8371
2.4320
3.0480

2.316

150G,
th
0.3399
0.7704
1.2757
1.8374
2.4350
3.0464

0.0147
0.0479
10.3
0.065

Table 1

152Gd 152Gd

exp th

0.0093
0.0285
18.0
0.174
2.194

12

154Dy
exp
0.3346
0.7467
1.2237
1.7473
2.3043
2.8930
3.5092

2.232

154Dy
th
0.3392
0.7486
1.2195
1.7421
2.3055
2.8978
3.5067

0.0111
0.0362
14.2
0.100

156 By
exp
0.3445
0.7969
1.3403
1.9587
2.6329
3.3146

2.315

156Er
th

0.3421
0.7955
1.3426
1.9616
2.6283
3.3163

0.0171
0.0497
8.45
0.046



10
12
14

1/21

10322

Ry

1526,
exp
0.1218
0.3665
0.7069
1.1254
1.6093
2.1489
2.7363

3.009

152G,
th
0.1311
0.3677
0.7015
1.1208
1.6110
2.1549
2.7335

0.0139
0.0468
2.76
0.186

15434
exp
0.1231
0.3710
0.71177
1.1445
1.6372
2.1850
2.7780

3.015

Table 2

15434
th
0.1316
0.3720
0.7124
1.1401
1.6391
2.1909
2.7749

0.0144
0.0483
2.62
0.169

13

156Dy
exp
0.1378
0.4041
0.7703
1.2157
1.7250
2.2859
2.8878

2.932

1567y
th
0.1475
0.4059
0.7650
1.2111
1.7267
2.2920
2.8849

0.0148
0.0493
3.05
0.195

158,
exp
0.1922
0.5272
0.9706
1.4943
2.0741
2.6829

2.743

158
th
0.1953
0.5244
0.9669
1.4958
2.0788
2.6802

0.0187
0.0620
3.34
0.064

1/21

10322

154G
exp
0.0820
0.2667
0.5443
0.9031
1.3333
1.8262

154Sm
th
0.0837
0.2666
0.5425
0.9026
1.3350
1.8255

0.0128
0.0453
1.29
0.010

15834
exp
0.0795
0.2614
0.5389
0.9044
1.3505
1.8667

3.288

Table 3

18G4
th
0.0804
0.2613
0.5382
0.9044
1.3508
1.8666

0.0128
0.0392
1.14
0.001

14

162y
exp
0.0807
0.2657
0.5485
0.9213
1.3752
1.9030
2.4940
3.1430
3.8330

3.294

162Dy
th
0.0839
0.2677
0.5477
0.9186
1.3731
1.9026
2.4967
3.1439
3.8318

0.0127
0.0348
1.31
0.036

166
exp
0.0806
0.2650
0.5454
0.9112
1.3495
1.8465
2.3893
2.9685

3.289

166 2y
th
0.0833
0.2668
0.5449
0.9089
1.3475
1.8472
2.3924
2.9662

0.0129
0.0441
1.24
0.036






