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Abstract
This note gives an overview of the tools for predicting expectations in
the Standard Model effective field theory (SMEFT) at the tree level
and one loop available through event generators. Methods of event
reweighting, the separate simulation of squared matrix elements, and
the simulation of the full SMEFT process are compared in terms of sta-
tistical efficacy and potential biases.
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1 Introduction and Motivation
The Standard Model effective field theory (SMEFT) [1–5] provides a low-energy parametriza-
tion of phenomena beyond the standard model (SM) in terms of Wilson coefficients (WC). The
WCs are the prefactors of symmetry-preserving local field operators in the SMEFT Lagrangian
whose measurement allows for discriminating between different UV models.

The main organizing principle of the SMEFT operators is their mass dimension, starting
at six for phenomena relevant at the LHC. Accurate predictions for high-dimensional SMEFT
analyses require a versatile and robust toolkit whose ranges of applicability and potential short-
falls must be understood in detail. Earlier notes of the LHC EFT WG cover several important
steps forward in this regard. The relation between hypothetical high-scale physics and the
SMEFT operators can be obtained by matching the integrated effect of the high-scale BSM
phenomena to the SMEFT Wilson coefficients. Automated tools for this matching are reviewed
in Ref. [6]. A review of experimental SMEFT measurements and observables is provided in
Ref. [7]. Finally, strategies for treating uncertainties related to the truncation of the EFT ex-
pansion at finite mass dimension are discussed in Ref. [8]. In this work, we do not quote the
range of validity of the EFT expansion for the distributions used in the comparisons because the
consistency of the computational strategies is unaffected by the validity of the expansion.

This note serves as a guide to obtaining SMEFT predictions from event generators for us-
age in LHC data analyses. It assesses the quality of reweighting- and sampling-based strategies
for obtaining generator-level predictions by comparing them to a reference strategy of “direct”
simulation at a specific fixed parameter point. It also aims to highlight best practices and docu-
ment common pitfalls but does not establish authoritative guidelines.

Section 2 discusses the different methodologies for obtaining simulated SMEFT predic-
tions in terms of the WCs. In Sec. 3, the role of the initial- and final-state helicities is clarified.
Best practices and common pitfalls are summarized in Sec. 4. The main body of the work,
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a comparison of SMEFT predictions obtained from different methods, is presented in Sec. 5.
Section 6 gives a summary.

2 Strategies for simulated predictions
Our starting point is the SMEFT Lagrangian, extending the SM by a number M(d) of symmetry-
preserving operators O with mass dimension d > 4,

LSM-EFT = L(4)
SM +

∑
d>4

M(d)∑
a=1

θaOa
(d)

Λd−4
, (1)

where θa denotes the operators’ Wilson coefficients. Equation 1 is designed to capture non-
resonant phenomena beyond the SM (BSM) below a high unknown new-physics scale. In
practice, a dimensionful normalization scale Λ is introduced and often conventionally fixed
to 1 TeV. Because a generic SMEFT differential cross-section with single-operator insertions
can be expressed as

dσ(θ) ∝
∣∣MBSM(zp)

∣∣2 dzp =

∣∣∣∣∣MSM(zp) +
1

Λ2

M∑
a=1

θaMa
EFT(zp)

∣∣∣∣∣
2

dzp, (2)

the SMEFT predictions for event rates with parton-level momenta zp can be accurately de-
scribed by polynomials in the Wilson coefficients. The matrix-elements (MEs) from the SM
and SMEFT are denoted by MSM and MEFT, respectively.

In Eq. 2 and in the following, we collectively label observable features by x and unob-
servable (latent) variables by z. The only exception is the Bjorken scaling variables where we
do not break with the convention and denote those by xBjorken,1 and xBjorken,2 although these are
part of z. At the parton level, zp comprises the external partons’ four momenta and, generically,
the helicity configuration denoted by h. Whether or not h is considered a part of zp is a matter
of choice with important practical implications for the reweighting-based strategies which we
discuss in Sec. 3. In the former case, we have

dzp = f1(xBjorken,1, µF )f2(xBjorken,2, µF )dΩ
(h)
PS (3)

where fi(xBjorken,i, µF ) is an estimate of the parton distribution function for a factorization
scale µF . The per-helicity kinematic phase space element of the external particles is denoted by
dΩ(h)

PS and, consequently, includes the measure over the Bjorken variables, such that

dσ(θ) ∝
∣∣MBSM(zp, h)

∣∣2 f1(xBjorken,1, µF )f2(xBjorken,2, µF )dΩ
(h)
PS (4)

If unmeasurable, helicity is not part of the parton-level phase-space definition, for example when
this information is dropped by the matrix element (ME) generator, the helicity dependence of
the |M|2 terms is summed, and we have

dσ(θ) ∝
(∑

h

∣∣MBSM(zp, h)
∣∣2 f1(xBjorken,1, µF )f2(xBjorken,2, µF )

)
dΩPS (5)

with the important difference that dΩPS multiplies a sum over h.
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Either way, automated ME generators produce a numerical code for Eq. 2 which can be
efficiently re-evaluated for different θ for given zp. This computational efficiency is the basis
for the reweighting strategies discussed in this note.

In this note, we quantitatively compare three different strategies for obtaining SMEFT
predictions via event simulation using the SMEFT Lagrangian in Eq. 1. All studies truncate
the perturbative expansion at the leading order (LO) or next-to-LO (NLO) in QCD. The sim-
plest procedure chooses the desired value of θ and samples the SMEFT model at this param-
eter point (“direct simulation”). While this approach is conceptually clean and therefore our
reference, it is not efficient enough for most practical applications, because limits on Wilson
coefficients require the comparison of likelihoods for arbitrary θ, thus typically exceeding the
computing resources available for event simulation.

There are two main strategies for obtaining parametrized predictions. Firstly, the SMEFT
ME-squared terms in Eq. 2 can be expanded and the terms corresponding to the same poly-
nomial coefficient in θ can be sampled separately and independently (“separate simulation”).
Events from the resulting samples can then be weighted according to the desired value of θ. If
we denote the event sample at the SM by S0, the event samples obtained from the linear terms
in Eq. 2 by Sa, etc., a yield λ∆z in a small phase space volume ∆z around the parton-level
configuration zp is predicted to be

λ∆z(θ) =
∑

zi∈∆z ∩S0

wi,0 +
M∑
a=1

θa
∑

zi∈∆z ∩Sa

wi,a +
M∑

a,b=1
a≥b

θaθb
∑

zi∈∆z ∩Sab

wi,ab, (6)

where the constant weights wi,0, wi,a, and wi,ab are obtained from the generator. The normal-
ization can be chosen as

Lσ(θ) =
∑
i∈S0

wi,0 +
M∑
a=1

θa
∑
i∈Sa

wi,a +
M∑

a,b=1
a≥b

θaθb
∑
i∈Sab

wi,ab, (7)

where L is the integrated luminosity and σ(θ) the inclusive cross-section.
Secondly, the per-event parton level configuration of an event from a sample obtained

with a specific SMEFT parameter reference point θ0, not necessarily the same as the SM at
θ0 = 0, can be used to re-evaluate Eq. 2 at different values of θ. Because the differential cross
section is a quadratic function of the Wilson coefficients, a small number of evaluations can be
used to determine a polynomial that parametrizes the weight of the event when computing the
predicted yield as

λ∆z(θ) =
∑

zi∈∆z

wi(θ) =
∑

zi∈∆z

(
wi,0 +

M∑
a=1

θawi,a +
M∑

a,b=1
a≥b

θaθbwi,ab

)
(8)

To determine the per-event polynomial coefficients wi,0, wi,a, and wi,ab from the event generator,
a set of k = 1, ...., K different SMEFT base-points θ(k) is needed and K must be at least equal
to the number of degrees of freedom, that is, N = 1 + M + 1

2
M(M + 1) at the quadratic

order. If we let an index n enumerate the constant term, the M linear terms and the 1
2
M(M +1)

quadratic terms, we can take the constant factors from Eq. 8 to form the K ×N matrix Θ(k)
n =
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{1, θ(k)a , θ(k)a θ
(k)
b }. For K = N , that is, if we have obtained just enough coefficients wi(θ

(k)) at
the base points θ(k), we can uniquely solve the linear set of equations

wi(θ
(k)) =

∑
n

Θ(k)
n wi,n (9)

for the polynomial coefficients wi,n of Eq. 8 in terms of the event weights provided by the
generator. Again, the index n labels the constant term, the M linear terms, and the quadratic
terms. For K ≥ N , the polynomial coefficients can be determined if the K × N matrix Θ(k)

n

has full rank.
In the case of reweighting, it is an important practical difference whether the generator

computes the ME-squared separately for each helicity configuration (helicity-aware, Eq. 4) or
whether it first sums over helicities (helicity-ignorant, Eq. 5). In the former case, the simulated
helicity contributions are accurately predicted at each stage. In the latter case, only the sum
of the EFT predictions over all helicity configurations is correct. The advantage of helicity-
ignorant reweighting is to avoid large weights in the case a SMEFT operator introduces helicity
configurations that are suppressed in the SM. In both cases, the normalization of the reweighted
samples can be chosen at

Lσ(θ) =
∑
i∈S

wi(θ). (10)

There also are important differences between the “reweighted simulation” in Eq. 8 and the
separate simulation in Eq. 6. Firstly, there is no stochastic independence in the constant, linear,
and quadratic terms when reweighting. For each event, the probabilistic mass of its concrete
parton-level configuration, i.e., the weight of the event when computing yields, is known in all
SMEFT parameter space with potential benefits for machine-learning applications [9–12]. In
contrast, the separate simulation of the different ME-squared terms predicts the constant, lin-
ear, and quadratic terms with uncorrelated statistical uncertainty, thereby potentially increasing
the CPU demand for a given requirement on statistical precision. Secondly, the independent
sampling does not depend on a reference point. In practice, event reweighting can lead to
large weights in those regions of phase space where the parton-level differential cross sections
greatly differ for θ and the reference θ0. This can be particularly acute when SMEFT operators
introduce, e.g., helicity configurations not present in the SM and helicity-aware reweighting is
used.

Finally, let us clarify the relation to parametrized SMEFT predictions at lower-level rep-
resentations of the simulated data. Following the ME generators providing the parton-level
differential cross sections, a hierarchical sequence of staged computer codes is used to simulate
phenomena at lower energy scales and using, typically, much higher-dimensional representa-
tions of the events. The stages comprise the parton shower with ME-matching and merging
procedures, the hadronization of the shower algorithm’s output, the detector interactions, and
the event reconstruction. Many of these stages are at least partially stochastic. Provided S is
sufficiently large for the statistical uncertainty in λ∆z to be acceptably small for any ∆z in the
phase space covered by S, we use Eq. 6 or Eq. 8 to approximate the parton-level differential
cross-section as

1

Lσ(θ)
λ∆z(θ)

∆z
≈ 1

σ(θ)

dσ(zp|θ)
dzp

= p(zp|θ) (11)
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where the l.h.s. and r.h.s of the first equation each is a ratio of quadratic polynomials. The
last equality interprets the normalized differential cross section as the parton-level probability
density function. How do we transition to other data representations, e.g., at the particle level
or at the detector level, commonly used in LHC data analyses? As illustrative examples, we
first define the particle-level zptl comprising stable generated particles after hadronization and
before interaction with the detector material. Secondly, the detector level representation xdet

of the simulated processes shall consist of, for example, jets, b-tagged jets, leptons, and other
reconstructed high-level objects. It is the simulated equivalent of the detector-level observation
of real data in a generic analysis. Equation 11 can then be used to express, e.g., the detector-level
cross-section as

dσ(x|θ)
dx

=

∫
dzptl

∫
dzp p(x|zptl) p(zptl|zp)

dσ(zp|θ)
dzp

. (12)

The conditional distribution p(zptl|zp) is sampled by the shower simulation, the hadronization
model, and matching- and the merging procedures. The conditional distribution p(x|zptl) gov-
erns the detector simulation and the event reconstruction. Both distributions are intractable,
i.e., they can be sampled for a fixed conditional configuration but can not be evaluated as a
function of the condition for a fixed sampling instance. Nevertheless, it has been shown that
intractable factors cancel, provided that the SMEFT Wilson coefficients do not modify these
distributions [9, 13–16]. Concretely, the probability to obtain a certain observation x given
a particle-level configuration zptl shall not depend on the Wilson coefficients and neither shall
the probability to observe a certain particle-level configuration when a parton-level event is
given. In this case, dividing both sides by the total cross section and using Eq. 11 then triv-
ially re-expresses the detector level probability density in terms of the parton-level one. The
conditional sequence relating the parton-level with the detector level through the particle level
could even be more refined, with more intermediate integrations in Eq. 12, but as long as the
SMEFT effects do not affect anything other than p(zp|θ), it follows that we can approximate
any detector level yield λ∆x from separate simulation as

λ∆x(θ) =
∑

xi∈∆x∩S0

wi,0 +
M∑
a=1

θa
∑

xi∈∆x∩Sa

wi,a +
M∑

a,b=1
a≥b

θaθb
∑

xi∈∆x∩Sab

wi,ab (13)

using the same per-event weights as in Eq. 6. The corresponding prediction for the case of event
reweighting is

λ∆x(θ) =
∑

xi∈∆x

(
wi,0 +

M∑
a=1

θawi,a +
M∑

a,b=1
a≥b

θaθbwi,ab

)
, (14)

again using the same weight functions as in Eq. 8. To the extent that the intractable condi-
tional likelihoods do not depend on the Wilson coefficients, we can ignore the level we obtain
the predictions for and simply accumulate the event weight polynomials. In the case of event
reweighting, we can, furthermore, interpret the wi(θ) as the total cross section multiplied by the
per-event likelihood of the joint observed and generated features,

wi(θ) = σ(θ) p(xi, zptl,i, zp,i|θ), (15)
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which agrees with the joint likelihood in Ref. [9] up to an overall cross-section normalization.
The conceptual simplification of the reweighting strategy then appears in the ratio

wi(θ)

wi(SM)
=

σ(θ)

σ(SM)

p(xi|zptl,i)p(zptl,i|zp,i)

p(xi|zptl,i)p(zptl,i|zp,i)

p(zp,i|θ)
p(zp,i|SM)

=
|M(θ)|2(zp,i)

|M(SM)|2(zp,i)
(16)

via the cancellation of the extremely complicated, usually intractable, conditional likelihood
factors p(xi|zptl,i) and p(zptl,i|zp,i). Once wi(SM) are known for an event sample, the easily
calculable ME-squared ratios are enough to obtain detector-level predictions for any values of
the Wilson coefficients.

3 Helicity aware and helicity ignorant reweighting
Any reweighting method consists of modifying the weight of a parton-level event such that the
resulting weighted event sample reproduces an alternative scenario, leveraging the statistical
power of a given event sample, possibly removing the need of a dedicated shower- and detector
simulation. At the LO, matrix element generators customarily include the helicity configuration
associated to the events, even when using Eq. 5. For the nominal simulation, for example
at the SM parameter point, the Madgraph event generator [17] selects helicity configurations
randomly according to the probability

p(h|zp, nom) =

∣∣Mnom(zp, h)
∣∣2∑

h

∣∣Mnom(zp, h)
∣∣2 (17)

where
∣∣Mnom(zp, h)

∣∣2 is the squared amplitude for a given helicity configuration h, compris-
ing all initial- and final-state particles. Helicity-aware re-weighting at LO to an “alternative”
parameter point is implemented by modifying the event weights by a factor

walt = wnom

∣∣Malt(zp, h)
∣∣2∣∣Mnom(zp, h)
∣∣2 , (18)

while the helicity ignorant reweighting amounts to

walt = wnom

∑
h

∣∣Malt(zp, h)
∣∣2∑

h

∣∣Mnom(zp, h)
∣∣2 . (19)

A few remarks are in order regarding the range of validity of these methods. Firstly, even
if the method is correct in the asymptotic limit of infinite sample size, a real-world application
is limited by the size of p(h|zp, alt)/p(h|zp, nom) as a function of the parton-level momenta
zp. If the alternate scenario strongly differs in terms of helicity configurations or kinematic
dependence, this ratio can become very large. Because the statistical power of the helicity-
aware reweighted sample corresponds to the nominal sample, the relative statistical uncertainty
in the affected phase-space can grow arbitrarily, sometimes entirely removing the feasibility of
helicity-aware reweighting. In practice, this is reflected by large event weights.

Secondly, we remark that the requirement of a similar phase-space density of the alternate
and the nominal hypothesis applies beyond SMEFT reweighting. For example, reweighting can
not be used for scanning mass values far outside of the width of a resonance.
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Finally, we remark that similar to the case of helicity, a choice is needed for the reweight-
ing according to the (leading) color assignment of an event, which must be defined in the pres-
ence of a mixed perturbative expansion (e.g., the VBF process at LO with both QCD and QED
amplitudes included). So far, only color-ignorant re-weighting has been implemented which, in
fact, limits the applicability of re-weighting to BSM models that leave the relative contributions
of color assignments within a process unaffected by the Wilson coefficients. Color-aware re-
weighting is a theoretical possibility –even if currently not implemented– with the same limita-
tions and advantages as in the case of helicity, as far as the hard-scatter parton level is concerned.
The color assignment, however, has a substantial and direct impact on the parton-shower simu-
lation, warranting careful and process-dependent validation in case, e.g., four-fermion operators
are used.

The particular case of mixed expansion not only creates an issue for the color assignment
at LO, but also in the handling of the re-weighting at NLO accuracy. For technical reasons,
in the presence of a mixed expansion, each matrix-element is separated into terms with the
same power of the coupling constants. A correct re-weighting procedure then requires that each
order is re-weighted by the corresponding matrix element. Currently, this is not implemented
in MG5aMC re-weighting tool.

4 Best practices
We next address common challenges and pitfalls encountered during the studies presented in
Sec. 5. It should, therefore, be understood that the list is not exhaustive.
Renormalization and factorization scales choice. It is customary to employ a dynamic
scale for various generated samples, often opting for the CKKW-L clustering algorithm’s scale
choice [18], where only clustering compatible with the current integration channel is permit-
ted. The event-specific nature of this scale choice, dependent on both the channel of integration
and the event generation method, poses a potential issue for consistency tests comparing direct
simulation, separate simulation, and re-weighting. While this is not an issue for the validity
of the prediction, closure tests may only be consistent up to scale variations when employing
CKKW-L clustering. Conversely, fixed scale choices determined solely by the event’s kinemat-
ics remain unaffected. Unless noted otherwise, the scale choices in the closure tests in Sec. 5,
corresponding to HT/2 by default, avoid this problem.
On the NLO SMEFT simulation. Another important aspect to consider concerns the pertur-
bative order of the MC simulation. While an NLO calculation generally represents the best
solution, NLO SMEFT simulations with MadGraph can involve challenges with SMEFT oper-
ators involving electroweak vertices. These complications stem from the fact that, at the time of
writing, MadGraph SMEFT calculations can account for NLO QCD effects but cannot account
for QED loops. For this reason, restricting the QED coupling order of NLO samples is required.
This restriction does not permit tree-level diagrams with a QED order greater than or equal to
two plus the lowest QED order tree-level diagrams to enter; such tree-level contributions are
not permitted because they would enter with the same QED order as a QED loop added to the
lowest QED order diagrams. SMEFT couplings are assigned QED orders (which are somewhat
arbitrary and can differ between UFO models [19]), so tree-level diagrams (with QED order
larger than the QED order cutoff imposed for NLO calculations) must be excluded in NLO
calculations. However, LO calculations do not require restrictions on the QED order, so the
matched LO approach, where LO samples with extra QCD emissions are taken as a proxy for
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partial NLO effects (see below), does not involve this limitation.
When generating NLO SMEFT samples with operators and processes involving elec-

troweak vertices, it is advisable to also generate LO samples (without QED order restrictions)
to ensure that any SMEFT effects excluded at NLO by the QED order restriction are fully un-
derstood.
SMEFT simulation with extra partons. When NLO samples are not available, it can be ben-
eficial to include an additional parton in the LO matrix element calculation. Not only does this
help to provide more accurate modeling of SM kinematics, but it can also impact the SMEFT
dependence of processes on certain Wilson coefficients [19], though careful validation is impor-
tant. These effects are primarily due to the additional initial states that become available with
the inclusion of an additional parton, but other factors (such as the topology of diagrams, energy
scaling of vertices, and interference effects) can also be relevant. Since it is difficult to predict
a priori which combinations of processes and operators will be strongly impacted by the inclu-
sion of the additional parton, it is beneficial to include the extra parton whenever possible to
avoid inadvertently neglecting relevant SMEFT contributions. With the matched LO approach,
the harder emission is handled with MadGraph (with the extra parton explicitly included in the
matrix element calculation) while softer emission is handled by the parton shower; a matching
procedure (e.g. the kT -jet version of the MLM matching scheme [20]) is required to remove
the overlap between the two regions. This matching procedure involves choosing cutoff scales
for the matrix element and parton shower, and it is important to validate that the choices for
the values of these cutoff scales allow the matrix element generator and parton shower simu-
lation to smoothly fill the overlapping phase space. To perform such validation, it is useful to
study differential jet rate (DJR) distributions [21,22]; smooth transitions between the n and n+1
curves in a DJR distribution is an indication that the chosen matching scales have allowed the
matrix element generator and parton shower simulation to be able to work together to fill the
overlapping space smoothly.

Performing matching with SMEFT samples can introduce an additional complication.
Since SMEFT effects are included in the matrix element but not in the parton shower, it is
possible that the matching procedure could cause a mismatch by removing SMEFT effects that
the parton shower cannot replace. It is expected that these effects are subdominant due to the
additional momentum dependence introduced by SMEFT operators, as argued in Ref. [23].
For this reason, it is important to examine the DJR plots at various non-SM points within the
SMEFT space to ensure that there are no signs of mismatches between the matrix element and
parton shower contributions. These effects would be most relevant to investigate for operators
involving gluons or light quarks. The generation and validation procedures for matched LO
samples are described in more detail in Ref. [19].
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Table 2: The space of EFT operators under consideration in Sec. 5. They are categorized as operators
affecting multiboson and top based processes, adopting thee Warsaw basis defined in Ref. [24].

Operator (CP even) Multiboson Studied in
ϵIJKW Iν

µ W Jρ
ν WKµ

ρ OW Sec. 5.1
φ†τ IφW I

µνB
µν OHWB Sec. 5.2, 5.6

φ†φW I
µνW

Iµν OHW Sec. 5.2, 5.6
φ†φBµνB

µν OHB Sec. 5.2, 5.6
(φ†φ)□(φ†φ) OH□ Sec. 5.2, 5.6

(φ†Dµφ)
∗(φ†Dµφ) OHD Sec. 5.2, 5.6

Operator (CP odd) Multiboson Section
ϵIJKW̃ Iν

µ W Jρ
ν WKµ

ρ OW̃ Sec. 5.1
φ†φW̃ I

µνW
Iµν OHW̃ Sec. 5.2, 5.6

φ†φB̃µνB
µν OHB̃ Sec. 5.2, 5.6

φ†τ IφW̃ I
µνB

µν OHW̃B Sec. 5.2, 5.6
Operator (CP even) Vector boson and quark Section

i(φ†Dµφ− (Dµφ)
†φ)(q̄pγ

µqr) O(1)
Hq Sec. 5.2, 5.6

i(φ†τ IDµφ− (Dµφ)
†τ Iφ)(q̄pτ

Iγµqr) O(3)
Hq Sec. 5.2, 5.6

i(φ†Dµφ− (Dµφ)
†φ)(ūpγ

µur) OHu Sec. 5.2, 5.6
i(φ†Dµφ− (Dµφ)

†φ)(d̄pγ
µdr) OHd Sec. 5.2, 5.6

i(φ̃†Dµφ)(ūpγ
µdr) OHud Sec. 5.2, 5.6

(q̄pσ
µνur)τ

Iφ̃W I
µν OuW Sec. 5.2, 5.6

(q̄pσ
µνdr)τ

Iφ̃W I
µν OdW Sec. 5.2, 5.6

(q̄pσ
µνur)φ̃Bµν OuB Sec. 5.2, 5.6

(q̄pσ
µνdr)φ̃Bµν OdB Sec. 5.2, 5.6

Operator (CP even) Top quark Section
(q̄pσ

µνur)φ̃Bµν OuB Sec. 5.4
(q̄pσ

µνur)τ
Iφ̃W I

µν OuW Sec. 5.4
(q̄iσ

µνTAuj) φ̃G
A
µν O(ij)

uG Sec. 5.3
fABCGAν

µ GBρ
ν GCµ

ρ OG Sec. 5.3
φ†φGA

µνG
Aµν OφG Sec. 5.3
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Table 3: The space of EFT operators under consideration in this document. They are categorized as
operators affecting multiboson and top based processes.

Operator (CP even) Top quark (four fermion) Section
(q̄iγ

µqj)(q̄kγµql) O1(ijkl)
qq Sec. 5.3

(q̄iγ
µτ Iqj)(q̄kγµτ

Iql) O3(ijkl)
qq Sec. 5.3

(q̄iγ
µqj)(ūkγµul) O1(ijkl)

qu Sec. 5.3
(q̄iγ

µTAqj)(ūkγµT
Aul) O8(ijkl)

qu Sec. 5.3
(q̄iγ

µqj)(d̄kγµdl) O1(ijkl)
qd Sec. 5.3

(q̄iγ
µTAqj)(d̄kγµT

Adl) O8(ijkl)
qd Sec. 5.3

(ūiγ
µuj)(ūkγµul) O(ijkl)

uu Sec. 5.3
(ūiγ

µuj)(d̄kγµdl) O1(ijkl)
ud Sec. 5.3

(ūiγ
µTAuj)(d̄kγµT

Adl) O8(ijkl)
ud Sec. 5.3

(q̄iuj) ε (q̄kdl) O1(ijkl)
quqd Sec. 5.3

(q̄iT
Auj) ε (q̄kT

Adl) O8(ijkl)
quqd Sec. 5.3

11



5 Simulation studies of EFT prediction methods
This section presents studies of the consistency of the different strategies for obtaining SMEFT
predictions. Unless noted otherwise, both linear and quadratic terms are included. The vertical

bars in the histogram correspond to
√∑

i w
2
i where the index i extends over all events a bin and

the event’s weights are denoted by wi.

5.1 Helicity and reweighting of predictions for the WZ process
Diboson production in proton-proton collision is extremely important to study the electroweak
sector of the SM due to its sensitivity to the self-interaction of gauge bosons and to probe
anomalous effects in trilinear gauge couplings. The effects of dimension-6 SMEFT operators
in the associated production of a W and Z boson, referred to as WZ production, are studied in
this section. We restrict the study to the CP-even and -odd dimension-6 operators OW and OW̃.

Those operators affect the triple gauge boson coupling, i.e., the interaction vertex involv-
ing three electroweak vector bosons, as shown in Fig. 1. A detailed measurement of this process

Fig. 1: Feynman diagram for WZ production where effects of dimension-6 operators affecting the triple
gauge boson vertex are shown.

is performed by both the ATLAS and CMS Collaborations using Run-2 LHC data [25, 26].
For the SM, the WZ process is generated at LO using Madgraph5 aMC@NLO v2.6.5 [17].

The NNPDF3.1 NNLO PDF set [27] is used. The renormalization and factorization scales
chosen are half of the sum of the transverse mass of final state particles. The SMEFT effects are
simulated at LO using the SMEFTsim v3.0 [28] model with the topU3l flavor scheme. Event
samples are produced at both the SM point, i.e., setting all Wilson coefficients to zero and
with non-zero values of Wilson coefficients for the operators considered. Several weights are
stored for each event. Those are computed using reweighting for matrix element method [29]
following two approaches: helicity-aware and -ignorant reweightings. Ten million events are
generated for each of the samples separately with helicity-aware and -ignorant reweightings.
For the generated samples, one million events are generated.

The WZ production at the SM is dominated by the helicity configuration where both the
bosons are transversely polarized with opposite helicities (±,∓), whereas the SMEFT operators
considered here affect the configuration with both the bosons have the same transverse helicities
(±,±) [30]. This is depicted in Fig. 2 as a function of W boson pT using the event samples
produced for this study.

Both the SMEFT operators modify the W boson pT spectrum. So, it is used as an observ-
able to compare between samples where the prediction at an EFT point is obtained using event
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Fig. 2: Helicity composition as a function of W boson pT at the SM point (left) and a BSM point
with both cW and cW̃ set to 1 (right). Here, L and T refer to longitudinal and transverse polarizations,
respectively, whereas OS and SS refer to the opposite- and same-sign configurations, respectively. The
helicity eigenstates are defined in the laboratory reference frame.

weights and those produced directly at that particular EFT point, referred to as reweighted and
generated predictions, respectively. The comparisons are shown in Fig. 3 for the case where cW
and cW̃ have a value of 1. The top row of Fig. 3 shows the comparison of W boson pT spectra,
summed over all possible helicity configurations, in reweighted and generated samples for two
choices of the reference point in reweighting: SM point and a BSM point, where Wilson coef-
ficients of both the operators are set to 0.5. For the SM reference point, the helicity-ignorant
reweighting can reproduce the W boson pT spectrum predicted by the generated sample except
at very high-pT values, where statistics is small, but the helicity-aware reweighting fails. Both
helicity-aware and -ignorant reweightings model the generated W boson pT spectra very well
once the BSM reference point is used in reweighting. The bottom row of Fig. 3 shows the same
comparison as the top row but specifically for the helicity configuration affected by the SMEFT
operators. Here, it is evident that helicity-ignorant reweighting fails to model the pT spectra
for individual helicity configurations irrespective of the reference point chosen in reweighting,
whereas the helicity-aware reweighting with a BSM reference point can model the W boson pT

spectrum for a specific helicity configuration, affected by the SMEFT operators considered.
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Fig. 3: Comparison of W boson pT spectra between generated and reweighted (both helicity-aware and
-ignorant variants) at a BSM point (cW , cW̃ = 1, 1) for two reference points used in the reweighting: the
SM point (left) and a BSM point with both cW and cW̃ set to 0.5 (right). The upper row corresponds
to the case where all helicity configurations are summed, and the lower row corresponds to only the
same-sign transverse polarization configuration.
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5.2 Helicity and reweighting of predictions for the ZH process
In this section, we study the modeling of SMEFT effects in Higgs production in association
with a W or a Z boson, referred to as VH production. This particular Higgs production mode
is extremely important to look for the effects of new physics since its contribution becomes in-
creasingly important at high values of Higgs boson pT [31]. The VH process has been measured
by both ATLAS and CMS Collaborations across different decay channels [32, 33]. The VH
production is affected by a number of SMEFT operators at dimension 6 in the following ways:

– modifying the vector boson coupling to quarks or giving rise to a four-point interaction
– modifying the Higgs boson interaction with W or Z boson

For this study, we restrict ourselves to the ZH production only and focus on one vector
coupling operator O(3)

Hq and two HVV operators OHW and OHW̃ that affect both WH and ZH
productions. The final state with the Z boson decaying to the leptons and the Higgs boson
decaying to a pair of b quarks, measured by both the ATLAS and CMS Collaborations [34–36],
is considered. The O(3)

Hq operator mainly affects the helicity configuration where the Z boson is
longitudinally polarized, which is also dominant in the SM. The HVV operators, on the other
hand, also affect the interference of scattering amplitudes with different helicities of Z boson
that get reflected in the distribution of angles constructed using Higgs boson and leptons from
Z boson [37] as depicted in Fig. 4.

Fig. 4: Decay planes and angles in the Z(→ l+l− )H(→ b b̄) production. The angle Θ and ϕ are defined
in the ZH rest frame, while θ is defined in the Z boson rest frame.

The ZH production process followed by the leptonic decay of the Z boson and the Higgs
boson decay to a pair of bottom quarks is generated at LO with up to one additional jet using
Madgraph5 aMC@NLO v2.6.5 [17]. The NNPDF3.1 NNLO PDF set [27] is used. The renor-
malization and factorization scales chosen are half of the sum of the transverse mass of final
state particles. The SMEFT effects are simulated at LO using the SMEFTsim v3.0 [28] model
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Fig. 5: Comparison of Z boson pT spectra (absolute cross section per GeV on the y-axis) between
generated and reweighted (with both helicity-aware and -ignorant variants) ZH samples at c3Hq=0.1 (left)
and cHW=1 (right). The helicity eigenstates are defined in the laboratory reference frame.

with the topU3l flavor scheme. For each event, several weights are stored, which are computed
by ME reweighting [29] following two approaches: helicity-aware and -ignorant reweightings.
The SM point, i.e. all Wilson coefficients set to 0, is used as the reference point in reweighting.
Separate samples are produced by turning on one operator at a time with the following values:
a) c(3)Hq = 0.1, b) cHW = 1, c) cHW̃ = 1; in each case, values of all other Wilson coefficients are
set to 0. These are referred to as the generated samples. One million events are generated for
each of the reweighted and generated samples.

The particle-level Z boson pT spectra predicted by reweighted samples are compared to
the one from the generated samples as shown in Fig. 5. In this case, both helicity-aware and
-ignorant variants of reweighting model the effects of O(3)

Hq and OHW on Z boson pT well. Next,
we compare the distributions of angle θ and ϕ depicted in Fig. 4 between reweighted and gen-
erated samples in Fig. 6 for cHW and cHW̃ separately. For both HVV operators, two variants of
reweighting model the angular distributions obtained from the generated samples within statisti-
cal uncertainties. For the angle ϕ, one can notice that it follows a cos 2ϕ distribution for cHW=1,
which is modified for cHW̃=1 due to different terms in the interference between scattering am-
plitudes being relevant for CP-even and -odd gauge coupling operators, respectively. Therefore,
the variable ϕ can be used to probe the CP nature of Higgs to vector boson interaction.
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Fig. 6: Comparison of θ (top) and ϕ (bottom) distributions (absolute cross section on the y-axis) between
generated and reweighted (with both helicity-aware and -ignorant variants) ZH samples at cHW=1 (left)
and cHW̃=1(right). The angle ϕ is defined in the ZH rest frame, while θ is defined in the Z boson rest
frame.
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5.3 The tt process
In the SM, top-quark pair production (tt) in proton-proton collisions proceeds predominantly
via gluon-gluon fusion (∼ 90%) followed by quark-antiquark annihilation (∼ 10%) at LO. At
NLO in QCD and beyond, channels with quark-gluon initial states appear. In this section, we
aim to include all operators that significantly impact the tt processes. In Table 3, two-heavy-
two-light four-quark operators are listed that can impact the tt process. In addition, the O(ij)

uG

operator from Table 2 affects the tt rate significantly. Therefore, both the real and imaginary
parts of the WC for the O(ij)

uG operator, ctGRe and ctGIm, are considered in this study. In this
work, we only include those operators of the Warsaw basis that explicitly modify the couplings
of the top quark with the other SM fields. We therefore do not include the OG and OφG operators
that are well constrained by processes that do not involve top quarks [38, 39].

The signal contribution is modeled at LO using the Madgraph5 aMC@NLO v2.6.5 event
generator with the SMEFTSIM model to incorporate the EFT effects. The definitions of the
operators associated with all of these WCs are provided in [40]. As discussed in Sec. 1, the cross
section (inclusive or differential) depends quadratically on the WCs. We have parameterised
each event weight as a quadratic function of WCs, as described in Eq. 8, by including enough
reweighting points per event. The nominal tt sample is generated at a starting point in the WC
parameter space far from the SM point. The reference point of the nominal sample, called
“LO (sample 1)”, is set to Pt1 as defined below. To simulate EFT impacts on the tt production
from quark-gluon initial states and to predict distributions in the presence of extra jets more
accurately, we produce another sample that includes an additional final-state parton in the matrix
element generation. This sample is also produced at reference point Pt1, and is called "LO+1
jet (sample 1)". Both tt and tt +1jet samples include the dominant t → Wb decay followed with
the leptonic decays of W boson.

It is important to make sure that the generated sample is able to be consistently reweighted
to other points in EFT parameter space. In order to check that, we have generated independent
tt samples at the following points in EFT space,

– SM point: all WCs set to zero.
– Dedicated point: All WCs set to zero except one which is set to -4,-2, 2, and 4 indepen-

dently. The value of ctGRe is set to -0.4, -0.2, 0.2, 0.4 because of its large effect on the
cross section.

– Pt1: WCs set to cImtG = 0.7, cRe
tG = 0.7, c38Qj = 9.0, c18Qj = 7.0, c8Qu = 9.5, c8Qd = 12.0,

c8tj = 7.0, c8tu = 9.0, c8td = 12.4, c31Qj = 3.0, c11Qj = 4.2, c1Qu = 5.5, c1Qd = 7.0, c1tj = 4.4,
c1tu = 5.4, c1td = 7.0

– Pt2: WCs set to cImtG = 1.0, cRe
tG = 1.0, c38Qj = 3.0, c18Qj = 3.0, c8Qu = 3.0, c8Qd = 3.0,

c8tj = 3.0, c8tu = 3.0, c8td = 3.0, c31Qj = 3.0, c11Qj = 3.0, c1Qu = 3.0, c1Qd = 3.0, c1tj = 3.0,
c1tu = 3.0, c1td = 3.0.

The samples produced at Pt2 are called "LO (sample 2)" and "LO+1jet (sample 2)". In Fig. 7 and
Fig. 8, relative SMEFT contributions to the tt inclusive cross section are shown for individual
WCs. In each plot the quadratic function extracted from LO (sample 1) and the LO (sample
2) are compared to the cross section ratios calculated at the dedicated points. In general, there
is good agreement between the cross section ratio values predicted by reweighting and those
calculated at the dedicated points in EFT space.

In addition to the inclusive cross section estimation, LO+1jet (sample 1) should be able to
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predict differential distributions of various kinematic variables at different points in EFT space.
In Fig. 9, distributions of top quark pT , leading lepton pT , and ∆R between two leptons are
shown for tt events with two leptons (electron or muon) with pt > 20 GeV and |η| < 2.5, and
at least two jets with pt > 20 GeV and |η| < 2.5. In the left column, differential distributions
are shown for LO+1jet (sample 1) and LO+1jet (sample 2) reweighted to the SM point. In the
right column LO+1jet (sample 1) and LO+1jet (sample 2) are reweighted to Pt2, the starting
point of the sample 2. These distributions show that our nominal sample is able to describe the
tt differential distributions in different points in EFT space including the SM point.
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Fig. 7: Relative modification of the tt total cross section, σSMEFT/σSM, induced by the presence of the
SMEFT operators. Solid curves show the quadratic dependency of the relative cross section to the WC
values obtained from reweighting sample 1 and sample 2 in EFT space. Blue points are obtained from
dedicated simulations.
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Fig. 8: Relative modification of the tt total cross section, σSMEFT/σSM, induced by the presence of the
SMEFT operators. Solid curves show the quadratic dependency of the relative cross section to the WC
values obtained from reweighting sample 1 and sample 2 in EFT space. Blue points are obtained from
dedicated simulations.
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Fig. 9: Differential distributions for tt +1jet process with respect to the top quark average pT (top), lead-
ing lepton pT (middle) and ∆R(leading lepton, sub leading lepton) (bottom). Differential distributions
obtained from reweighting both sample 1 and sample 2 to the SM point (left) and reweighting sample 1
to Pt2 (right).
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5.4 Studies in the ttZ process at NLO
In this section, we analyze the EFT reweighting performance using as a benchmark process the
production of a top-antitop pair in association with a Z boson emission, namely the ttZ process.
This process has been extensively studied both from ATLAS [41,42] and CMS [43,44], showing
a high sensitivity to possible EFT effects coming from operators that modify the electroweak
vertices. In this case, we focus on the OtZ operator in Table 2, which modifies the interaction
between the top quark and the Z boson.

To simulate the ttZ process we use Madgraph5 aMC@NLO v2.6.5, while the EFT effects
are taken into account using the SMEFTsim [28] and the SMEFT@NLO [45] models. The
events are generated at NLO in QCD when using the SMEFT@NLO model and at LO plus
an additional parton with the SMEFTsim model, while the parton shower is modeled using
PYTHIA8 [46]. For the generation of the LO samples, particular attention is dedicated to
the matching procedure as discussed in Sec.4. Both simulations are performed in the 5 flavour
scheme choosing as scale half of the sum of transverse masses. We generate events assuming the
SM and assuming ctZ = 1 in the SMEFT@NLO convention. We then compare the definitions
of the operator in the two models to set the corresponding value of ctZ in the LO simulation with
the SMEFTsim model.

In Fig. 10 and Fig. 11, the distributions of the top quark and Z boson transverse mo-
mentum for the SM and the different EFT prediction generation strategies are shown. The left
plot shows the distributions from the LO simulation while in the right one, the NLO results are
presented. It is not possible to separate linear and quadratic EFT contributions in the NLO sim-
ulation in MG v2, so only the reweighted simulation and the separate simulation distributions
are shown.

In the two central panels in Fig. 10 the ratio between the EFT distributions and the SM
is shown, highlighting an increase in sensitivity to the EFT effects in the tail of the top quark
transverse momentum distribution. In the bottom panels, the ratio among the different EFT
generation strategies is presented, showing a good agreement along the whole spectrum.

The Z boson transverse momentum distribution, in Fig. 11, shows a higher sensitivity to
the EFT effect with respect to the top pT distribution. However, the agreement between the
reweighted simulation and the other two EFT prediction strategies gets worse at high Z pT in
the LO results. This arises from employing the helicity-aware reweighting using the SM as a
reference point. In the NLO results, where only the helicity ignorant reweighting is possible,
there remains a good agreement between the reweighted simulation and the direct simulation.

A downside of the reweighting simulation is the statistical fluctuations in poorly populated
phase space due to large event weights. This is evident in Fig. 10 (left) and Fig. 11, where
there are large statistical fluctuations in the reweighted distribution at high Z and top transverse
momentum.
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Fig. 10: Top pT distribution simulated at LO + 1 jet (left) and at NLO (right). In black is depicted the SM
distribution, while the other lines represent the different available simulation methods to compute EFT
predictions. The first ratio plot highlights the sensitivity to the EFT effects. While, in the second ratio
plot, the agreement between the direct simulation, the reweighted simulation, and the separate simulation
(only for LO + 1 jet) is shown.
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Fig. 11: Z pT distribution simulated at LO + 1 jet (left) and at NLO (right). In black is depicted the SM
distribution, while the other lines represent the different available simulation methods to compute EFT
predictions. The first ratio plot highlights the sensitivity to the EFT effects. While, in the second ratio
plot, the agreement between the direct simulation, the reweighted simulation, and the separate simulation
(only for LO + 1 jet) is shown.
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5.5 Helicity aware and ignorant reweighting in the ttZ process
In this section, we use the ttZ process, which was already introduced in Sec. 5.4, to showcase
the benefits and potential limitations of the helicity-ignorant reweighting approach. To do that,
we generate ttZ events using Madgraph5 aMC@NLO v2.6.7 and simulate EFT from the OtZ

operator from Table 2.
The OtZ operator, defined as − sin θWOuB + cos θWOuW , introduces ttZ vertices with

helicity configurations that are not present in the SM and for this reason, the choice between
helicity-ignorant and aware reweighting is particularly relevant. This is illustrated in Fig. 12,
where we show the distribution of the spin of the different partons involved in ttZ events. We
consider events generated assuming the SM and assuming ctZ = 5. The figure also shows
that certain helicity configurations that arise naturally in the BSM scenario are not present or
suppressed in the SM. Because of this, it is not possible to use the helicity-aware method to
reweight SM samples so that they reproduce this specific BSM scenario: the regions of the
phase space spanned by these helicity configurations will not be populated by SM samples.
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Fig. 12: Distribution of the different helicity configurations in ttZ generated at SM and ctZ=5 in the
partonic center-of-mass frame. Bins of the distribution are labeled as (hZ, ht, ht̄, hg1 , hg2), where hi
denotes the helicity of each particle. The distribution shows that some helicity configurations are not
present at the SM and, therefore, helicity-aware reweighting cannot populate those regions of the phase
space.

A consequence of this is shown in Fig. 13 where the inclusive ttZ cross section depen-
dence as a function of ctZ is shown. This dependence is computed using three independent
samples with the same number of events. Two samples are generated assuming the SM and a
third one is generated at ctZ = 5. The three samples are then weighted to ctZ = 0,−1, 1 to obtain
the inclusive ttZ cross section for those values. From them, we interpolate the dependence using
a second-order polynomial, whose coefficients are shown in Fig. 13. We take the ctZ = 5 as the
reference value, which we expect to be more accurate since that one is expected to populate the
full kinematic phase space. We use the helicity-aware and ignorant reweighting for each of the
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Fig. 13: Quadratic parametrization of the ttZ cross section as a function of ctZ obtained by reweighting
samples generated at the SM and ctZ=5 using the helicity-ignorant and aware methods.

SM samples.
The trend predicted by the helicity-ignorant reweighting approach agrees with the one

predicted by the reference value. In contrast, the helicity-aware predicts a significantly smaller
quadratic term than the reference value and features larger statistical uncertainties than the other
approaches. This is due to two reasons. On the one hand, the smaller value predicted by the
helicity-aware approach is because it cannot populate phase space regions that are forbidden in
the SM but present when ctZ ̸= 0. On the other hand, the larger uncertainties of this approach
are due to a degradation of the statistical power of the weighted sample, which is due to large
event weights arising from regions of the phase space that are suppressed but not forbidden in
the SM. This shows two possible advantages of helicity-ignorant reweighting: it can be used
to reweight SM samples to some BSM scenarios and, in addition, can be used in general to
increase the statistical power of weighted samples.

Although the helicity-ignorant reweighting populates the kinematic phase space more ef-
ficiently, it gives rise to reweighted samples that do not necessarily reproduce the helicity con-
figurations of the scenario that we are reweighting to. The helicity of the produced partons is not
directly measurable but it can introduce correlations among the kinematics of the different final
state particles. In analyses where these correlations are relevant keeping track of the helicity of
the different particles is necessary.

To study this effect, we consider two different methods to model the decay of the produced
partons. In both scenarios, we produce samples ctZ = 5 and reweight them to the SM and
samples produced assuming the SM. In one of the scenarios, we use Madspin to model the
decay of the top quarks and Z boson, and the weights are computed as a function of the top
quarks and Z boson, before their decay. In the other scenario, the decay is modeled using
Madgraph and the weights are computed as a function of the particles produced in the decay of
the top quarks and Z boson. We note that, for this process, we only expect shortcomings due to
the helicity-ignorant reweighting in the earlier scenario. In the latter scenario, the reweighting
is performed as a function of the particles produced in the decay, and changes in their helicity
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Fig. 14: Distribution of the ∆ϕ between the two leptons produced in the Z boson decay in samples where
the top quarks and the Z boson have been decayed using Madspin (left) and the Madgraph decay syntax
(right). Samples generated at the SM and ctZ=5 are both reweighted to the SM.

do not give rise to observable effects.
In Fig. 14 we show the ∆ϕ distribution between the two leptons produced in the Z boson

decay. The plot shows that only the Madgraph decay model can produce consistent results,
while Madspin is introducing artificial trends. These trends are present because Madspin com-
putes and samples implicitly over Mprod+decay/Mprod, the ratio of the production+decay over
production matrix elements, which is computed at the reference point. By default, Madspin does
not recompute this ratio for reweighted events, so it introduces artificial trends when reweight-
ing to a scenario for which Mprod+decay/Mprod is different from the reference points.
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Fig. 15: Feynman diagrams representing VBF Higgs boson production with EFT contributions to (a) the
HVV interaction, (b) the Vqq interaction, and (c) a VHqq contact interaction.

5.6 The VBF H process
Vector boson fusion (VBF) is one of the dominant Higgs boson production mechanisms at the
LHC. This process has been measured by the ATLAS and CMS experiments in a variety of
Higgs boson decay channels [32,33]. These measurements rely on the presence of two forward
(high |η|) quark-initiated jets to distinguish them from other H production modes.

Operators, including CP-odd ones, at dimension 6 in standard model effective field theory
can modify the VBF process in a variety of ways by:

1. altering only the total cross section,
2. introducing anomalous couplings between the Higgs and vector bosons as shown in

Fig. 15a,
3. introducing anomalous couplings between the quarks and vector bosons (Fig. 15b) or

HVqq contact interactions (Fig. 15c).

Operators impacting Higgs boson decays are not considered.
An SM VBF Higgs sample is generated at LO using Madgraph5 aMC@NLO v2.9.13 [17]

and the NNPDF3.1 PDF set [47]. The renormalization and factorization scales are not kept
fixed, and their values are the default in Madgraph5, namely the transverse mass of the 2 → 2
system resulting from kT clustering. The SMEFTsim framework [28] is used with the topU3l
model and mW input parameter scheme to provide per-event weights relative to the SM account-
ing for EFT contributions (both linear and quadratic) from each of the operators in Table 2. The
EFT scale Λ is chosen at 1 TeV, and Feynman diagrams with single-operator insertions are
considered. The reweighting procedure used for this sample is helicity aware. Since the OHud

operator induces a right-handed charged current, its effects are not captured in the simulated
sample.

Five EFT scenarios are selected as representative examples of the three classes enumer-
ated above cH□ = 1, cHW = 1, c̃HW = 1, c

Hq
(1) = 1, and c

Hq
(3) = 1. In each case, only the

listed Wilson coefficient is non-zero. In addition to the reweighted SM sample, each of these
five EFT points is simulated directly up to quadratic order. For each EFT point, two additional
samples are generated: one includes the linear term only, and the other includes the quadratic
term only. The sum of the standard model, linear-only, and quadratic-only samples is expected
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Fig. 16: Distribution of (a) the Higgs boson pT and (b) the angular separation ∆η between the spectator
quarks, for the cH□ = 1 scenario. The SM expectation is shown in black. The prediction for cH□ = 1

obtained by reweighting the SM point is shown in red. The direct simulation of cH□ = 1 is shown in
blue, and the sum of SM, linear-only, and quadratic-only is shown in orange. The middle panel shows
the ratio to the SM, and the lower panel shows the ratio to the directly simulated sample.

to reproduce the full sample. The cross section of each EFT sample is listed in Table 4. Good
agreement is observed between the various simulation methods.

Cross section [fb] SM cH□ = 1 cHW = 1 c̃HW = 1 c
Hj

(1) = 1 c
Hj

(3) = 1

Reweighted − 4.164 3.608 3.819 3.847 2.687
Direct sim. 3.675 4.140 3.618 3.829 3.859 2.778
SM + Lin. + Quad. − 4.135 3.617 3.824 3.865 2.804

Table 4: VBF cross section calculated by Madgraph5 from one million simulated events.

Figure 16a shows the distribution of Higgs boson pT for the cH□ = 1 scenario for each of
the simulated samples. The overall cross section is enhanced with respect to the SM, as seen
in Table 4. Note that the upper limit of the pT distribution (700 GeV) may be beyond the range
of EFT validity. However, as this study is intended to validate the performance of different
simulation strategies, the range of EFT validity is not considered. Figure 16b shows the angular
separation ∆η between the spectator quarks in the event, which is similar in shape to the SM
expectation.

Figure 17a shows the distribution of Higgs boson pT for the cHW = 1 scenario. Compared
to the SM expectation, a deficit is observed below 50 GeV, and an enhancement is observed
above about 150 GeV. Figure 17b shows the azimuthal separation ∆ϕ between the spectator
quarks for the cHW = 1 scenario. This distribution is strongly modified by the presence of
the EFT operator: while the SM expectation shows that large angular separations are somewhat
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Fig. 17: Distribution of (a) the Higgs boson pT and (b) the angular separation ∆ϕ between the spectator
quarks, for the cHW = 1 scenario. The SM expectation is shown in black. The prediction for cHW = 1

obtained by reweighting the SM point is shown in red. The direct simulation of cHW = 1 is shown in
blue, and the sum of SM, linear-only, and quadratic-only is shown in orange. The middle panel shows
the ratio to the SM, and the lower panel shows the ratio to the directly simulated sample.

preferred, the distribution for cHW = 1 is nearly flat in this variable as the OHW operator affects
only the transverse amplitude qVT → qH in VBF H production [48].

Figure 18 shows the distribution of Higgs boson pT (a) and azimuthal separation ∆ϕ
between the spectator quarks (b) for the c̃HW = 1 scenario. Compared to the SM expectation,
an enhancement in the pT is observed above about 150 GeV. The ∆ϕ distribution is also slightly
modified, though the effect is far weaker than that seen in Fig. 17b for the conjugate operator as
the linear term, which models the interference between the SM and the EFT scenario, is small.

Figure 19 shows the distribution of Higgs boson pT (a) and angular separation ∆η between
the spectator quarks (b) for the c̃

Hj
(1) = 1 scenario. Compared to the SM expectation, an

enhancement in the pT is observed above about 150 GeV. It should be noted that the value of
c̃
Hj

(1) = 1 is large compared to existing constraints [49], but the large deviation with respect to
the SM at high pT may fall outside the range of EFT validity. A small enhancement with respect
to the SM is also seen for |∆η| ∼ 0.

Figure 20 shows the distribution of Higgs boson pT (a) and angular separation ∆η between
the spectator quarks (b) for the c̃

Hj
(3) = 1 scenario. As for c̃

Hj
(1) , the value of c̃

Hj
(3) = 1 is

large compared to existing constraints [49]. Compared to the SM expectation, an overall lower
cross section and a deficit in the range 100 < pT < 300 GeV is observed. A small deficit with
respect to the SM is also seen for |∆η| ∼ 0.

The comparison of these simulated EFT samples indicates good agreement between the
predictions obtained by reweighting the SM prediction, directly simulating, and combining
separately generated SM, linear, and quadratic components. In regions where the SM sample
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Fig. 18: Distribution of (a) the Higgs boson pT and (b) the angular separation ∆ϕ between the spectator
quarks, for the c̃HW = 1 scenario. The SM expectation is shown in black. The prediction for c̃HW = 1

obtained by reweighting the SM point is shown in red. The direct simulation of c̃HW = 1 is shown in
blue, and the sum of SM, linear-only, and quadratic-only is shown in orange. The middle panel shows
the ratio to the SM, and the lower panel shows the ratio to the directly simulated sample.
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Fig. 19: Distribution of (a) the Higgs boson pT and (b) the angular separation ∆η between the spectator
quarks, for the c

Hj
(1) = 1 scenario. The SM expectation is shown in black. The prediction for c

Hj
(1) = 1

obtained by reweighting the SM point is shown in red. The direct simulation of c
Hj

(1) = 1 is shown in
blue, and the sum of SM, linear-only, and quadratic-only is shown in orange. The middle panel shows
the ratio to the SM, and the lower panel shows the ratio to the directly simulated sample.
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Fig. 20: Distribution of (a) the Higgs boson pT and (b) the angular separation ∆η between the spectator
quarks, for the c

Hj
(3) = 1 scenario. The SM expectation is shown in black. The prediction for c

Hj
(3) = 1

obtained by reweighting the SM point is shown in red. The direct simulation of c
Hj

(3) = 1 is shown in
blue, and the sum of SM, linear-only, and quadratic-only is shown in orange. The middle panel shows
the ratio to the SM, and the lower panel shows the ratio to the directly simulated sample.

contains a limited number of events, such as at the highest pT and small |∆η|, some fluctuations
and large uncertainties are observed in the reweighted spectrum.
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5.7 Multiboson processes
5.7.1 Choice of dynamical scale
The dynamical scale, defined by certain functional forms, represents the factorization (µF) and
renormalization (µR) scales. The following scale choices are implemented in Madgraph_aMC@NLO [50].

– Option 1: transverse mass of the 2 → 2 system resulting of a kT clustering 1
2

∑N
i=1

√
m2

i + p2T,i.

– Option 2: total transverse energy of the event
∑N

i=1

Ei·pT,i√
p
2
x,i+p

2
y,i+p

2
z,i

.

– Option 3: sum of the transverse masses
∑N

i=1

√
m2

i + p2T,i.

– Option 4: half of the sum of the transverse masses 1
2

∑N
i=1

√
m2

i + p2T,i.

– Option 5: partonic energy
√
ŝ.

The default scale choice is typically set to option 1 as defined above. This choice is
insufficient for the generation of dimension-8 operators as shown in the left panel of Fig. 21.
The dimension-8 operator under consideration is of the form shown in Eq. 20. However, the
inadequacy of the choice of the default scale is independent of the exact choice of the operator.

OT,0 = Tr[ŴµνŴ
µν ]× Tr[ŴαβŴ

αβ] (20)

Each process in Fig. 21 is generated separately representing the SM-only (as a red-
filled histogram), the interference between the SM and BSM components (as a green-filled
histogram), and the BSM-only (as a blue-filled histogram) contribution. The exact syntax is
given below (where the charge conjugate process was not generated in the interest of keeping
the computation time low):

- generate p p > w+ w+ w- T0=1 (for full generation, shown in black)
- generate p p > w+ w+ w- (SM generation shown in red)
- generate p p > w+ w+ w- T0^2==1
(Interference between SM and BSM generation shown in green)
- generate p p > w+ w+ w- T0^2==2 (BSM generation shown in blue)

The same syntax is used for both histograms on the left and the right. The only difference
is the choice of the dynamical scale, where the total transverse energy in the event (Option 2
above) is used for the plot on the right panel of Fig. 21. The total transverse energy in the event
is a superior choice for the generation of processes with the inclusion of dimension-8 operators
in triboson processes. A possible reason for this behavior is that the default scale choice is not
valid for processes that traverse a wide kinematic range. Therefore the a-priori expectation that
the same value of the scale will be sufficient for both the SM process and the BSM process is
flawed.

A similar effect is seen for vector boson scattering topologies as shown in Fig. 22. How-
ever in this case the distribution for the SM process is shown, where the SM distribution is
obtained by reweighting a BSM distribution down to the SM scenario. Other factors that could
impact the process generation non-negligibly such as the PDF are shown. In the ratio panel, the
net effect of the variation of these parameters can be seen, pointing to the need to include these
effects in analyses as possible sources of systematic uncertainty.
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Fig. 21: Impact of the choice of scale in a triboson process. The SM, BSM, and interference terms are
generated separately and represented by the red, blue, and green hatch-filled histograms. The full process
generated with all components of the generation is represented with a black hatch-filled histogram. The
syntax of the full process is analogous to the process definition when the reweighting feature of Madgraph
is used.
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Fig. 22: Impact of the choice of scale choice in a VBS process. The plot is produced for a direct
generation of the SM term as a 2 → 6 or p p > e+ ve j j j j QCD=0 NP=0 SMHLOOP=0

34



0.0

2.5

5.0

1/
σ

dσ
/d

pt T
(G

eV
−

1 ) ×10−3

SM generated
ctG = 10 generated
ctG = 10 reweight from SM
ctG = 10 reweight from comb.

0.9

1.0

1.1

re
w

.
/g

en
.

0 100 200 300 400
pt

T (GeV)

0

2

E
FT

/S
M

0

2

4

1/
σ

dσ
/d

m
tt

(G
eV
−

1 ) ×10−3

SM generated
ctG = 10 generated
ctG = 10 reweight from SM
ctG = 10 reweight from comb.

0.95

1.00

1.05

re
w

.
/g

en
.

400 600 800 1000
mt t (GeV)

0.75

1.00

1.25

E
FT

/S
M

Fig. 23: Top quark pT (left) and mtt (right) for SM (black) and SMEFT with ctG = 10 for different
production methods: Directly generated (orange), reweighted from an SM sample (blue) and reweighted
from a combination of SM and other EFT samples (green). Both reweightings were performed after
the sample generation. The panels show the normalized differential cross section (top), the ratio of two
reweighting schemes to the direct generation (center), and the ratio of EFT and SM (bottom).

5.8 Post-generation reweighting
The procedure of reweighting events is often done by the same application that generated the
events, and usually immediately after the generation, as part of a single execution of the appli-
cation. This is how all of the previous studies shown in this report have been performed. This
requires that the EFT model and desired Wilson coefficient values (EFT points) are defined at
the time of sample generation. However, the need for a new model, or different EFT points,
might arise after generation, and re-generating a sample can come with significant computing
costs, especially when a full detector simulation is involved.

Though it is less common, it is possible to reweight events post-generation, thereby
avoiding the significant computing costs associated with regeneration. In practice, this can be
achieved by generating an external matrix element library from MadGraph 5. These libraries,
which come in the format of a Python module, are specific to a particular model and set of
reweighting points. If provided with the LHE-level information from the original generation, a
new weight for each reweighting point can be provided by the module.

An advantage of the post-generation approach is that any UFO model can be used as long
as the initial and final states of the process match that from the original generation, and the phase
space is adequately covered. This makes it possible to reuse existing SM samples for an EFT
analysis, leading to a (possibly) quick interpretation of a SM measurement. Alternatively, an
existing EFT analysis could be easily reinterpreted with, for example, new flavor assumptions.
Furthermore, these advantages are not limited to samples generated with MadGraph. As long
as the LHE information is available, the reweighting module can be applied to events from any
generator.

An example of post-generation reweighting is shown in Fig. 23 for tt production using
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the ctG Wilson coefficient in the dim6top model. First, a SM tt sample is reweighted post-
generation to an EFT point with ctG = 10 (green), and compared to a direct generation of the
same point (orange).

Going further, it is also possible to combine multiple reference samples, each reweighted
independently to the same EFT point, into one large sample with higher statistics. This can
also be used if the different reference samples cover different areas of the phase space (though
care should be taken to remove very large-weight events). The green line in Fig. 23 shows
an example where the reweighted SM tt sample was combined with reweighted EFT samples
with original Wilson coefficient values of ctG = 1 and ctG = 3. The samples were combined by
scaling the event weights of each sample by

∑
w/
∑

w2, where the sums are over an individual
sample, not the combination, and then concatenating the events. Given the reference samples
used, this approach leads to the lowest statistical uncertainty in the inclusive sum of weights.
In Fig. 23, one can see improved statistics in the combined sample compared to the reweighted
SM sample, especially in the relevant high-energy tails of the distributions.

6 Summary
This note serves as a guide to strategies for obtaining simulation-based predictions in the context
of SMEFT. It does not aim at establishing authoritative guidelines on how those predictions
should be obtained but aims at assessing the consistency and computational efficacy.

We provide the statistical interpretation of simulation-based and weight-based strategies
and discuss in some detail the intricacies related to the choice of the role of the helicity config-
uration in the reweighting. Common pitfalls and limitations of the methodology are discussed
in Sec. 4 in the hope of alerting the unaware user.

In the main body of the note, we compare predictions for various final states. We study
helicity-aware and ignorant reweighting in the WZ and ZH production process. In the top
quark sector, pair production and associate production of a top quark pair and a Z boson are
investigated. Good closure is observed in almost all the cases and for most of the considered
kinematic phase space. The VBF production of an H boson and triboson processes complete
the studies and lay the ground for future EFT measurements at the LHC.
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