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Abstract

Neutral triple gauge couplings (nTGCs) are manifestation of new physics beyond the
Standard Model (SM), as they are absent in the SM and are first generated by dimension-
8 operators in the SM Effective Field Theory (SMEFT). We study the UV completion
of nTGCs in a renormalizable model with vector-like heavy fermions. We compute the
one-loop heavy fermion contributions to nTGC vertices by matching them to dimension-8
operators in the low energy limit. Such fermion loops contain either heavy fermions only
or mixture of heavy fermions with light SM fermions. We find that their contributions
can induce dimension-8 nTGC effective operators containing two SM Higgs-doublet fields,
which are formulated with a complete set of 7 dimension-8 operators generating off-shell
CP-even nTGCs. We present the results in terms of SMEFT coefficients and in terms of
nTGC vertices (form factors) with two on-shell gauge bosons. In the heavy-light mixing
case there appear terms that cannot be accommodated by conventional parametrizations
of form factors due to extra logarithmic corrections. We further discuss the implications
for probing such UV dynamics via nTGCs at high-energy colliders.

KCL-PH-TH/2024-45, CERN-TH-2024-143

1

ar
X

iv
:2

40
8.

12
50

8v
1 

 [
he

p-
ph

] 
 2

2 
A

ug
 2

02
4



Contents

1 Introduction 2

2 CP-Conserving nTGC Operators of Dimension-8 4

3 Structure of Heavy Fermion Loop Contributions to nTGCs 8

4 Matching to UV Completion and Induced nTGCs 10

5 Results for Induced nTGCs 18
5.1 Heavy Fermion Loop Contributions to nTGCs . . . . . . . . . . . . . . . . . . . 18
5.2 nTGCs from Fermion Loops with Heavy-Light Mixing . . . . . . . . . . . . . . 20

6 Conclusions 23

References 24

1 Introduction

Neutral Triple Gauge Couplings (nTGCs) are sensitive probes of new physics beyond the
Standard Model (SM) because they are absent in the SM and first show up in the SM Effective
Field Theory (SMEFT) [1][2][3] as manifestations of dimension-8 operators. For these reasons,
they have been subject to experimental searches by the ATLAS [4] and CMS collaborations [5],
and have recently attracted widespread phenomenological interest [6]-[11]. In most of these
studies, the nTGC signals would appear in the production of two on-shell neutral bosons
Zγ or ZZ via an s-channel virtual neutral vector boson.1 When the momentum dependence
of the vertex is polynomial, as when it is generated by tree-level contributions from effective
operators, it is a convenient practice to enumerate the relevant tensor structures and associated
form factors of the vertices with one off-shell and two on-shell neutral gauge bosons. Up to
cubic dependence on the particle momenta, there are 6 CP-conserving tensor structures for
all possible combinations of triple gauge boson vertices [12].

The parametrization of nTGCs in the framework of the SMEFT operators [6]-[8][13] has
several benefits over the conventional form factor formulation. Most notably, it maintains the
SM gauge symmetry manifestly, which is essential to eliminate unphysical energy dependences
as required by the SM with spontaneous electroweak gauge symmetry breaking [6][7]. It also
provides a general framework for studying processes with one or more off-shell gauge bosons in

1The general formulation of the nTGC vertices and form factors with two off-shell vector bosons as well as
its important application to analyzing the LHC production of Z∗γ (νν̄γ) was presented in Ref. [6].
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the nTGC vertex. The effective operators that generate nTGCs first appear at the dimension-
8 level of the SMEFT, and have been the starting point of many recent phenomenological
studies [6]-[11]. Computationally, the effective field theory (EFT) approach has the benefit of
separating clearly the UV and IR contributions from the underlying physics [14], a feature
that we use extensively in this work.

An EFT analysis is general only when all the operators satisfy the assumed symmetry
under consideration. But, such an analysis could become cumbersome and non-intuitive if
the number of contributing operators is large. The common compromise such as operator-by-
operator analysis trades generality for simplicity of the analysis. Because of the freedom in the
choice of operator basis, a simple UV model does not necessarily correspond to a small number
of effective operators in the IR unless the symmetry of the UV theory restricts it tightly.
Moreover, in a given UV model various operators may be generated at different loop orders
and the coefficients of the operators may have different magnitudes from the naive dimensional
power counting, so it is important to analyze explicitly certain UV models as benchmarks and
understand their low-energy contributions to the corresponding SMEFT operators.

Previous literature on the UV origin of nTGC vertices conventionally focused on U(1)-
invariant form factors [15][16] rather than SMEFT operators. The main purpose of this work
is to explore how CP-conserving nTGC operators that generate SM SU(2)⊗U(1) form fac-
tors can be generated from the underlying renormalizable and perturbative UV models. We
demonstrate that the dimension-8 nTGC operators induced by fermionic one-loop contribu-
tions must contain two Higgs-doublet fields, and that the dimension-8 higgsless (pure gauge)
operators for nTGCs cannot be generated in this way. The fermionic UV models we study
either contain two new heavy-fermion multiplets that couple to the SM Higgs field through
Yukawa-like couplings (the “all-heavy” case), or contain a single heavy-fermion multiplet that
couples to the SM chiral fermions via a Higgs doublet (the “heavy-light” case). In order to
match the nTGC vertices in the UV models to those of the low-enenrgy effective theory, we
compute the loop diagrams using the method of regions [14][17]-[22] that separates the con-
tributions from loop momenta in the IR and UV regions. The former (soft part) matches the
light-fermion-loop diagram of tree-level effective operators, whereas the latter (hard part) di-
rectly matches the heavy-fermion-loop-induced effective operator in the SMEFT. A nontrivial
technical issue concerns the treatment of the mixed loop diagrams that contain both the light
SM chiral fermions and the new heavy fermions.

Another technical issue arising in the computation of the fermion loop diagrams is the am-
biguity of the γ5 definition [23] in dimensional regularization (DREG). Here we adopt the naive
dimensional regularization (NDR) scheme [24]-[26] that maintains the anti-commutativity of
the γ matrices in D dimensions and has been shown to preserve gauge invariance automati-
cally in the renormalization of loop diagrams. This is more convenient than non-anticommuting
schemes such as the Breitenlohner-Maison-’tHooft-Veltman (BMHV) scheme [27]-[31], where
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gauge invariance is imposed manually by adding finite counter terms. Nevertheless, in the
context of EFT matching, the soft and hard parts of the loop diagrams may contain canceling
finite terms that violate the gauge invariance of each part separately. This is closely related
to the irrelevant anomalies in the EFT calculation discussed in the recent literature [32]-[34].
In order to circumvent the need to introduce finite counter terms, we discuss carefully the
Ward-Takahashi identity associated with the loop diagrams under consideration and prescribe
a rule for choosing reading points of spinor traces in NDR that eliminates the appearance of
irrelevant anomalies in all the intermediate steps of matching.

Our calculations yield comparable nTGC vertices for the “all-heavy” and “heavy-light”
scenarios. The familiar perturbative loop factors reduce the values of coefficients of the corre-
sponding dimension-8 SMEFT operators to be smaller than what might be expected from naive
dimensional analysis. We compare the sensitivities of collider probes of nTGCs estimated by
the recent phenomenological studies [6]-[10] with the contributions of the heavy fermion loops,
discussing the prospects for direct confrontations between direct and indirect searches for such
new physics. Observation of some nTGCs without the corresponding discovery of new heavy
fermion would suggest that the nTGCs originate from strong dynamics beyond the SM.

The layout of this paper is as follows. In Section 2 we give the complete set of seven
dimension-8 SMEFT operators that contribute to nTGCs, and their matching with one-loop
perturbative calculations is studied in subsequent sections. In Section 3 we discuss the general
structure of heavy-fermion one-loop diagrams that contribute to the nTGCs. Section 4 de-
scribes our calculational method of momentum integration by regions and the matching to the
coefficients of dimension-8 SMEFT operators that contribute to nTGCs, where our treatment
of γ5 in diagrams involving heavy-light mixing is discussed in detail. We present in Section 5
our results for the contributions to nTGCs from loops with heavy fermions only and from
loops with heavy-light mixing. Finally, we draw conclusions from this study in Section 6.

2 CP-Conserving nTGC Operators of Dimension-8

In this Section we present the complete set of dimension-8 nTGC operators in the SMEFT,
which are needed for matching with the perturbative one-loop contributions of the UV com-
pletion model. These operators contain terms with three neutral gauge bosons and a number
of Higgs fields that acquire expectation values in the symmetry breaking phase. At this level,
the renormalizable fermionic model that we consider as the UV completion can only induce
nTGC SMEFT operators that contain Higgs-doublet fields. To make this clear, we render
manifest the SU(2)⊗U(1) electroweak gauge symmetry of the SMEFT by working in the sym-
metric phase, so that all particles appearing in the loop are gauge multiplets of SU(2)⊗U(1).
It is then easy to see that loop diagrams with only SU(2)⊗U(1)-invariant pure gauge ver-
tices do not induce nTGC interaction at one-loop order. This is because, in the symmetric
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phase, the SM gauge interactions do not mix chiral fermions with new massive fermions. Any
fermion loop diagram with only fermion-gauge vertices must either contain massless SM chiral
fermions only or heavy vector fermions only. However, loop diagrams with only massless SM
chiral fermions do not induce effective operators of the SMEFT, which arise from integrat-
ing out heavy particles in the UV theory. We note also that such loops with three external
gauge bosons are also constrained by gauge anomaly cancellation conditions and so cannot
contribute to nTGC vertices. On the other hand, in the absence of chiral fermions, the gauge
interactions preserve charge conjugation (C) symmetry with C-odd vector bosons. In this case,
triple gauge boson couplings violate charge conjugation, and thus nTGCs cannot be gener-
ated by loop diagrams with only gauge vertices that preserve charge conjugation.2 Thus, the
loop diagrams should contain other C-violating sources such as Yukawa couplings to the SM
Higgs doublet or Yukawa-like couplings to certain new heavy scalar fields. Hence, the SMEFT
nTGC operators containing pure gauge fields alone can only arise from contracting the ad-
ditional fields (such as the new heavy scalars) with C-violating vertices in the loop which
should be at least of two-loop order. Such Higgsless contributions should be suppressed by the
two-loop factors unless the UV theory is strongly-coupled and generates the nTGC operators
non-perturbatively [15]. Such a strongly-interacting UV theory is an interesting possibility, but
is beyond the scope of this study. For the present work, we focus on a perturbatively renor-
malizable UV theory including vector-like new heavy fermions, whose one-loop contributions
can induce the dimension-8 nTGC operators containing Higgs-doublet fields in the low-energy
SMEFT.

There are seven independent CP-conserving nTGC operators with two SM-Higgs-doublet
fields after accounting for the equivalence due to integration by parts. We choose the following
operator basis for our nTGC analysis:

O
W̃W

= iH†W̃µνW
νρ{Dρ, Dµ}H, (2.1a)

O′
W̃W

= iH†W̃µν(DρW
νρ)DµH, (2.1b)

OB̃B = iH†B̃µνB
νρ{Dρ, Dµ}H, (2.1c)

O′
B̃B

= iH†B̃µν(DρB
νρ)DµH, (2.1d)

and
OB̃W = iH†B̃µνW

νρ{Dρ, D
µ}H, (2.2a)

O′
B̃W

= iH†B̃µν(DρW
νρ)DµH, (2.2b)

OW̃B = iH†W̃µνB
νρ{Dρ, D

µ}H, (2.2c)

where we denote Wµν=W I
µνσ

I/2 and F̃µν=
1
2
ϵµνρσF

ρσ. The Jacobi identity implies:

1

2
(DµF̃γδ)F

′γδ =
1

2
(DµFγδ)F̃

′γδ = (DαFβµ)F̃
′αβ . (2.3)

2Effective actions induced by heavy fermion loops with only gauge vertices were studied in the litera-
ture [35][36] using the covariant derivative expansion.
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Hence, operators of the type iH†F̃µνF
µνD2H or iH†F̃ ′

µν(DρF
µν)DρH can be converted to those

in Eq.(2.2), up to terms that do not contribute to nTGCs. The seven operators in Eqs.(2.1)
and (2.2) are general in the sense that every dimension-8 SMEFT operator that contributes to
nTGC with two Higgs-doublet fields can be reduced to linear combinations of these operators
plus terms that are irrelevant for nTGCs, up to integration by parts or the Schouten identity,

gµνϵαβγδ + gµαϵβγδν + gµβϵγδνα + gµγϵδναβ + gµδϵναβγ = 0 . (2.4)

The completeness of these operators can be verified by counting the number of indepen-
dent tensor structures of the off-shell vertices that contain three powers of momenta, an
anti-symmetric tensor, and three non-contracted indices from external gauge bosons. After
accounting for bosonic symmetry, the triple gauge boson vertex W µ(−p1−p2)-W ν(p1)-W ρ(p2)

has only two independent Lorentz structures:[
− p22p1σ+ p21p2σ−2(p1 · p2)(p2− p1)σ−2p22p2σ+2p21p1σ

]
ϵµνρσ, (2.5a)[

(p1+ p2)
µϵνραβ+ pν1ϵ

µραβ− pρ2 ϵ
µναβ

]
p2αp1β , (2.5b)

which correspond to linear combinations of OW̃W and O′
W̃W

. For W µ(−p1−p2)-Bν(p1)-Bρ(p2)

vertices, the Bose symmetry and Schouten identity enforce:

0 =
(
−pµ2 ϵ

νραβ+ pν2 ϵ
µραβ− pρ2 ϵ

µναβ
)
p2αp1β+(p22p1σ− p1 · p2 p2σ)ϵµνρσ+(p1↔p2, ν↔ρ). (2.6)

Hence the W -B-B vertex has five independent structures:

(p21p1σ− p22p2σ)ϵ
µνρσ , (2.7a)

(p1− p2)
µϵνραβp2αp1β , (2.7b)

(pν1 ϵ
µραβ− pρ2 ϵ

µναβ)p2αp1β , (2.7c)

(pρ1ϵ
µναβ− pν2ϵ

µραβ)p2αp1β , (2.7d)

(p1 · p2)ϵµνρσ(p2σ− p1σ), (2.7e)

which do not receive any contributions from OW̃W and O′
W̃W

, and thus correspond to five
more independent operators. These together account for all the seven independent operators in
Eqs.(2.1) and (2.2). By inspection, we find that they also span the 7 different tensor structures
of the B-B-B and B-W -W vertices. Hence, these 7 operators form a complete basis for the
tensor structures of nTGC vertices including two Higgs-doublet fields. These operators are
linear combinations of

(
O(9)

W 2ϕ2D2 , O(17)

W 2ϕ2D2 , O(14)

WBϕ2D2 , O(15)

WBϕ2D2 , O(18)

WBϕ2D2 , O(10)

B2ϕ2D2 , O(12)

B2ϕ2D2

)
listed in Table 2 of the dimension-8 SMEFT analysis in [37], up to non-nTGC terms.

In general, equations of motions (EOMs) can be used to convert some of these operators
to operators with currents but no explicit TGC structure, as was done in [13]. Using this
procedure, one could reduce the set of seven operators to just one remaining operator with
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explicit nTGC structure. However, for this study we work with the complete set of seven nTGC
operators in Eqs.(2.1)-(2.2) for the following reasons. (i) It is more convenient to perform
SMEFT matching with the off-shell nTGC diagrams in such a basis that is redundant under
EOM (the “Green’s basis” [38][37]), because we only need to consider diagrams with external
gauge bosons rather than fermions and scalar fields in the currents. (ii)While it is possible to
use EOMs to relate the two nTGC operators OG1,2 and operators with currents (denoted by
OC), i.e., OG1=OG2+OC+ · · · , the process induced by OC is still mediated by gauge bosons in
the underlying theory. The operator OC just hides part of the effect of a virtual gauge boson
in OG1 by replacing it with currents in OC . (iii) In a general SMEFT analysis, one needs to
include all the operators of the given order that satisfy the SM electroweak gauge symmetry
SU(2)⊗U(1), without making further assumptions on the underlying UV physics, which we
consider in this work to that generating the triple gauge boson interactions. From the IR
point of view, the complete prediction for a process, such as f̄f→ two gauge bosons induced
by nTGCs should include either the contributions from all the seven nTGC operators listed
above, or a single nTGC operator and all other operators with currents that are obtained by
using the EOMs. Here we choose to work with all seven nTGC operators, anticipating that a
given UV theory would contribute to the coefficients of most of these operators. Restricting to
only a few operators in the SMEFT is not justified before knowing the low-energy predictions
of a given UV theory.

The nTGCs can be formulated through effective vertices of the types V ∗Zγ and V ∗ZZ,
where V ∗ denotes a virtual Z∗ or γ∗ gauge boson. Conventionally, the nTGC vertices can be
parametrized as follows [39][12][13][7][6]:

Γµνα
V ∗γZ(q, p1, p2) =

cV ∗γZ

m2
Z

(q2−m2
V )p1β ϵ

µναβ, (2.8a)

Γµνα
V ∗ZZ(q, p1, p2) =

cV ∗ZZ

m2
Z

(q2−m2
V )(p1− p2)β ϵ

µναβ, (2.8b)

which contribute to the simplest production process ff̄→V1V2 . The above nTGC form factor
coefficients (cV ∗γZ , cV ∗ZZ) are connected to the conventional (hV

3 , f
V
5 ) notation for nTGC form

factors [13][7][6] via the relation:
(cV ∗γZ , cV ∗ZZ) = (ehV

3 , ef
V
5 ), (2.9)

where e is the electric charge. These expressions are enforced by bosonic symmetry, the gauge
invariance of the photonic interactions, the on-shell condition of the external vector bosons
γZ and ZZ, and the assumption of cubic dependence on external momenta. We have also
neglected in (2.8) any terms that are proportional to qµV , since in collider processes such as ff̄→
V1V2, they will be contracted with the on-shell fermion current and thus their contributions
to production amplitudes are suppressed by the negligible light fermion mass mf . In this
approximation, the vertices with two on-shell photons vanish.

The nTGC operators (2.1) and (2.2) correspond to the hard parts of the loops in the UV
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theory. Their contributions to the coefficients are given by

∆cγ∗γZ = 1
4
m3

Zv
[
− sin(2θW)c

′
B̃W

+4 cos2θW c′
B̃B

+sin2θW c′
W̃W

]
, (2.10a)

∆cZ∗γZ = 1
8
m3

Zv
[
4c

B̃W
− 4c

W̃B
− 4 cos2θW c′

B̃W
− 4 sin(2θW )c′

B̃B
+sin(2θW)c

′
W̃W

]
, (2.10b)

∆cγ∗ZZ = 1
8
m3

Zv
[
− 4c

B̃W
+4c

W̃B
+4 sin2θW c′

B̃W
− 4 sin(2θW )c′

B̃B
+sin(2θW)c

′
W̃W

]
, (2.10c)

∆cZ∗ZZ = 1
4
m3

Zv
[
sin(2θW)c

′
B̃W

+4 sin2θW c′
B̃B

+cos2θW c′
W̃W

]
. (2.10d)

Corresponding to the number of coefficients, only 4 independent operators contribute: O′
B̃W

,
O′

B̃B
, O′

W̃W
, and O

B̃W
−O

W̃B
. One notable feature is that the contributions of OW̃W and OB̃B

are negligible in the nTGC on-shell production of gauge bosons, since they only contribute to
vertex terms that are proportional to qµV , and result in negligible amplitudes suppressed by
the incoming fermion mass, as discussed in the text below Eq.(2.8).

When the loop diagrams of the UV theory that generate nTGCs contain only heavy parti-
cles with masses of the order of the cutoff scale Λ, the operators (2.1)-(2.2) and thus Eq.(2.10)
include the complete contributions of order 1/Λ4. However, when a loop diagram contains both
heavy and light particles, it contains soft parts that are not contained in Eqs.(2.1)-(2.2). The
soft parts of the loop diagrams contain logarithmic dependences on the external momentum
that violate the conditions enforcing the form of Eq.(2.8). For the SMEFT in the IR region,
it must be accommodated by a loop diagram by contracting light fermionic fields in effective
operators obtained by tree-level matching. In this case, the full one-loop contribution of the
UV theory is captured by two types of contributions in the SMEFT: 1) the tree-level contribu-
tion from the nTGC operators (2.1)-(2.2) obtained by one-loop matching, and 2) the one-loop
diagram of operators involving fermionic fields obtained from tree-level matching. This point
will be discussed in detail in the following sections.

3 Structure of Heavy Fermion Loop Contributions to nTGCs

Since the Lorentz structures of the relevant dimension-8 operators incorporate the Levi-Civita
tensor, we restrict ourselves to extensions of the SM with heavy fermions. We consider the
Yukawa interaction between a fermionic weak doublet N and a fermionic weak singlet E with
hypercharges YN and YE=YN−1/2, respectively. The interaction takes the following form:

N̄H(cV + cAγ5)E + h.c. (3.1)

The mass scales of the fields N and E differs in the two scenarios that we are going to consider.
(i) In the “all-heavy” case both N and E are heavy vector-like particles to be integrated out at
low energies. For simplicity of calculation, we choose the two fermions to have similar masses
mN ≃ mE ≃M , and the mass difference plays a negligible role. In this way, we need to only
deal with an EFT having a single heavy mass scale M . (ii) In the “heavy-light” case only one
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µ

ν ρ

q p

k

Figure 1: Two classes of one-loop fermionic contributions to the nTGCs, including the pure heavy
fermion loops as shown in the first row, or including the mixed heavy-light fermion loops as shown
in the second row. In each class there are four types of fermionic loop diagrams that contribute to
the nTGCs. The dashed lines denote Higgs fields, the thin solid lines denote E propagators, the thick
solid lines denote N propagators, and the wiggly lines denote gauge bosons. The sum over directions
of fermion flow is implied for each diagram.

of N or E is the heavy vector-like fermion to be integrated out at a heavy mass scale M ,
whereas the other one is a light chiral fermion in the SM. In this scenario, we set cA=±cV to
project out the chiral component. Both cases can be realized by well motivated new physics
models. For instance, the Higgsino-Bino system in the Minimal Supersymmetric SM (MSSM)
corresponds to the “all-heavy” case, whereas the models with a heavy right-handed neutrino
correspond to the “heavy-light” case. We leave the details of the model discussions to Section 5,
after elaborating the methodology for the EFT matching in Section 4.

There are four types of topology for loop diagrams that contributes to nTGCs, as illustrated
in Fig. 1. We denote Higgs fields by dashed lines, the E field by a thin solid line, the N field
by a thick solid line, and the gauge bosons by wiggly lines. The sum over directions of fermion
flow is implied in each diagram. The results for different models are obtained by including the
associated tensor structures and couplings in the model. The relevant diagrams for each type
of vertex in the gauge eigenbasis are listed in Fig. 2. The coefficient of each nTGC operator
is then determined by matching the result from the UV theory with these loop diagrams and
vertices.

We showed in Section 2 that Higgsless (pure gauge) nTGC operators cannot be obtained
from the fermionic one-loop diagrams in a renormalizable model. However, they can be gen-
erated at the two-loop level, e.g., by contracting the two Higgs fields attached to the fermion
loop in the diagrams of Fig. 1, and these two-loop contributions are allowed by the known
symmetries of the UV model. A sample diagram of such two-loop contribution is shown in
Fig. 3. Although a full discussion of the two-loop nTGC vertex lies beyond the scope of this
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B B

B

W W

B B

W

B

B B

W

W

W

Figure 2: List of the relevant one-loop contributions to the four types of nTGC vertices, including
the vertices of BWW (1st row), WBB (2nd row), BBB (3rd and 4th rows), and WWW (5th row).
The loop structures are those shown in Fig. 1, where for each diagram a sum over directions of the
fermion loop flows is implied.

paper, we note that it may be obtained by contracting the two Higgs fields of the one-loop
effective operators (2.1) and (2.2).

4 Matching to UV Completion and Induced nTGCs

Since we are interested in momenta much smaller than the heavy fermion mass M , the loop
integral can be approximated with the method of regions, which is really convenient for the
matching calculation of EFT coefficients [17]-[22][14].3 In the following, we briefly review the
application of this method to the two scenarios that we will consider.

In the following, we denote the loop diagrams to be evaluated by Γi. If Γi contains only large
mass propagators as in the “all-heavy” case, it is sufficient to expand directly the integrand,

3A short introduction of this method in the context of EFT was given in Ref. [40].
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Figure 3: A sample two-loop diagram containing internal fields of heavy fermions and Higgs doublet
that contribute to the nTGCs. Here a sum over directions of the fermion loop flows is implied.

treating external momenta as small variables. Since the loop momentum ℓ mainly contributes
when ℓ∼M in this case, the expansion is finite at all orders in the external momenta. However,
when the integrand of Γi contains both massive and massless propagators as in the “heavy-
light” case, the loop integrals receive contributions from both the hard region with ℓ∼M and
the soft region with ℓ≪M . In general, the method of regions splits the integral Γi into a soft
part and a hard part:

Γi = Γi

∣∣∣∣
hard

+ Γi

∣∣∣∣
soft

. (4.1)

The hard piece is obtained by expanding the integrand in Γi by taking the external momenta
(k, p, q) as small variables (assuming all other masses are negligibly small), and by treating
the loop momentum ℓ and the mass M as large quantities. Thus, a propagator in the hard
piece may be expanded as

i
(ℓ+ p′)2−M2

∣∣∣∣
hard

=
i

ℓ2−M2
− i(2ℓ · p′)

(ℓ2−M2)2
+ · · · , (4.2a)

i
(ℓ+ p′)2

∣∣∣∣
hard

=
i

ℓ2
− i(2ℓ · p′)

(ℓ2)2
+ · · · , (4.2b)

where p′ is a linear combination of external momenta that enters the propagator. The soft part
is obtained by treating the loop momentum as a small expansion variable like the external
momenta, so a massive propagator expands as follows for the soft part:

i
(ℓ+ p′)2−M2

∣∣∣∣
soft

= − i
M2

− i(ℓ+ p′)2

M4
+ · · · . (4.3)

In other words, the massive propagator shrinks to a point in the soft region, just as in the EFT
obtained by tree-level matching. On the other hand, the massless propagators stay unchanged
in the soft piece.

The hard part and the soft part mostly capture the contributions from ℓ∼M and ℓ∼p, k, q,
respectively. But, they also modify the behaviors of the integrand in the IR and in the UV.
Compared to the original integral, the hard piece raises the power of ℓ in the denominator
of the integrand and may render the integral divergent as ℓ → 0. Similarly, the soft piece
may contain a divergence as ℓ→∞. The key point of the method of regions and the EFT
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calculation with dimensional regularization is that these modifications cancel each other, so
that the two artificial divergences introduced by the expansion cancel precisely between the
soft and hard pieces [14]. Hence, the total result of evaluating the loop diagram is finite, as
expected from power counting.

This method is really useful for the EFT matching. The soft part of the loop diagram is
equivalent to a loop diagram that closes lines of light fields in the tree-level EFT obtained by
shrinking heavy propagators to points in the full theory. The hard part then only contributes to
the one-loop effective operator that compensates the difference between the evaluation in the
tree-level EFT (soft part) and the full one-loop evaluation. For a brief review of this process,
we denote the full UV theory as LU = LU

0 +LU
ct and the effective theory after integrating out

the heavy fields as LEFT = L̄(0)+ L̄(1), where L̄(i)= L̄(i)
0 + L̄(i)

ct is the EFT terms from ith-loop
matching, including the bare terms and the corresponding counter terms. Then, the one-loop
matching condition for a process P of light fields is

Γ
(1)
P (LU) = Γ

(1)
P (L̄(0)) + Γ

(0)
P (L̄(1)), (4.4)

where Γ
(i)
P (L) is the sum of 1-light-particle irreducible diagrams of the (off-shell) process P at

the ith-loop order from the interaction terms of L. The tree-level matching procedure deter-
mines the tree-level EFT Lagrangian L̄(0) and ensures Γ(1)

P (LU)
∣∣
soft=Γ

(1)
P (L̄(0)). The remaining

hard part matches

Γ
(1)
P (LU)

∣∣∣∣
hard

= Γ
(0)
P (L̄(1)) . (4.5)

This determines the one-loop terms of the EFT Lagrangian.
In the case of the nTGC loop diagram of Fig. 1 in a heavy fermion model LU , the one-loop

EFT operators L̄(1) are just those of Eqs.(2.1)-(2.2) and their corresponding counter terms,
with Wilson coefficients to be determined by the matching procedure. Although Γ

(1)
nTGC(LU)

is finite, the intermediate variables Γ(1)
nTGC(LU)

∣∣
soft and Γ

(1)
nTGC(LU)

∣∣
hard contain artificial diver-

gences because of the propagator expansions. In the matching procedure, the divergence in
Γ
(1)
nTGC(LU)

∣∣
soft corresponds to the divergence in the EFT diagram Γ

(1)
nTGC(L̄(0)), and the diver-

gence in Γ
(1)
P (LU)

∣∣
hard corresponds to the counter term vertex Γ

(0)
nTGC(L̄

(1)
ct ). The divergences

cancel in both the EFT evaluation and the full theory evaluation.
The artificial divergences introduced by the method of regions in the intermediate steps

require caution in the treatment of γ5 , since it does not have a natural definition in dimensional
regularization with D ̸= 4. This is not an issue for the “all-heavy” case, but needs care for the
“heavy-light” case, since the latter contains intermediate divergences that cancel between the
hard and soft parts. Several schemes for treating γ5 have been developed. One needs to sacrifice
either the anti-commutativity of γ5 with all the other γ matrices as in the Breitenlohner-
Maison-’t Hooft-Veltman (BMHV) scheme [27]-[31], or give up the cyclic property of the
trace of a string of γ-matrices with an odd number of γ5 matrices by treating the trace as
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a projection operation, as in naive dimensional regularization (NDR) [24]-[26].4 The BMHV
scheme was shown to be self-consistent to all perturbative orders [28]-[30]. However, the non-
commutativity between γ5 and some of the γµ gives rise to intermediate gauge symmetry-
violating terms and needs counter terms in the renormalization procedure to restore gauge
independence of the physical result. In the context of EFT, the intermediate gauge symmetry
violation in the BMHV scheme is manifested in irrelevant anomalies that are removable by
finite counter terms [32]-[34].

In an attempt to maintain gauge invariance in the intermediate step and for the convenience
of calculation, we adopt the NDR scheme that defines an anticommuting γ5 as follows:

{γ5, γµ} = 0, (4.6)

for all µ⩽D . This scheme was shown to maintain gauge invariance automatically without the
need of further counter terms at least in one-loop order [26]. To be clear, we explain concisely
the practical procedure of NDR [26] as applied to our calculation. One cannot simply continue
the relation tr(γµ1

· · · γµ4
γ5) = i4ϵµ1···µ4

to D ̸= 4 in DREG, since the rank-4 anti-symmetric
tensor is defined in 4-dimensional spacetime only. The NDR scheme treats the tensor ϵµ1···µ4

in
D ̸=4 as a regular rank-4 tensor rather than an anti-symmetric tensor. The trace containing
an odd number of γ5 for D ̸= 4, tr(γµ1

· · · γµ2n
γ5), is regarded as a projection operation that

happens to give the same result as D=4, and is not a trace of matrices anymore. Hence, it
loses its cyclic property, and requires a consistent choice of “reading point” to write down the
order of the γ matrices in the chain. Hereafter, the “reading point” refers to the last matrix
that appears in the trace whenever there is odd number of γ5. In this work, we choose one of
the Higgs vertices as the reading point in all the loop calculations. The four types of diagrams
in Fig. 1 then become:

Γ(a) =

∫
d4ℓ

(2π)4
tr
[
GN(ℓ)γ

ρGN(ℓ−p)γνGN(ℓ+k)V +
H GE(ℓ+k)γµGE(ℓ)V

−
H

]
+(reverse fermion flow),

Γ(b) =

∫
d4ℓ

(2π)4
tr
[
GN(ℓ)γ

µGN(ℓ−k)γρGN(ℓ+q)γνGN(ℓ)V
+
H GE(ℓ)V

−
H

]
+(reverse fermion flow),

Γ(c) =

∫
d4ℓ

(2π)4
tr
[
GN(ℓ+k)γµGN(ℓ)V

+
H GE(ℓ)γ

ρGE(ℓ−p)γνGE(ℓ+k)V −
H

]
+(reverse fermion flow),

Γ(d) =

∫
d4ℓ

(2π)4
tr
[
GN(ℓ)V

+
H GE(ℓ)γ

µGE(ℓ− k)γρGE(ℓ+ q)γνGE(ℓ)V
−
H

]
+ (reverse fermion flow),

(4.7)

where V ±
H = (cV ±cAγ5) are the vertices that connect to the Higgs fields and GN , E(p) are

the propagators of the heavy fermion fields N and E with momentum p, respectively. In
this expression, V −

H is the reading point of the trace and this choice will persist through all
fermionic loop evaluations, including the ones abbreviated by “reverse fermion flow”. Once

4See Ref. [23] for an overview on the γ5 issue in dimensional regularization.
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the traces are written by following the same reading points (V −
H ), the projection operation is

performed by first moving γ5 to the end of the trace using its anti-commutative property and
then making the replacement:

γ5 → − i
24

ϵµνρσγ
µγνγργσ . (4.8)

Unlike in 4 dimensions, in NDR this procedure should not be regarded as a definition of γ5 ,
but rather as a handy way to compute the result of the projection denoted as tr(· · · γ5) after
following a strict reading point prescription and anti-commuting γ5 to the end of the trace [26].
The tensor ϵµνρσ becomes fully antisymmetric only when taking the limit D→4 .

The non-cyclicity of tr(· · · γ5) is proportional to ϵ=(4−D)/2 and vanishes under D→ 4.
Thus, it manifests itself in the limit D→ 4 only by cancelling the 1/ϵ pole in the divergent
term. But, all the diagrams in both the “all-heavy” and “heavy-light” cases are finite, so the non-
cyclicity will not play a role in the final physical nTGC vertex function, as long as the reading
point is kept consistent between the soft and hard parts of the same diagram so that their
intermediate divergences cancel precisely. The situation becomes more subtle when matching
the diagrams to an EFT in the “heavy-light case”, where the one-loop effective operators and
their counter terms match to the divergent hard part of the diagram as described in Eq.(4.5).
For some choices of reading points, the non-cyclicity of the trace combines with the divergence
and appears as a finite term in the result. This term may break the manifest gauge invariance
of the hard and soft parts separately (but not their sum), so that the finite terms of the
hard part do not match to a set of gauge-invariant operators. This would be the case if we
had chosen the gauge vertices as the reading points, in which case the matching procedure
might require an additional set of finite gauge-violating counter terms. This would impair
the convenience of choosing NDR over BMHV. Fortunately, as we show below, choosing the
Higgs vertices as reading points is free of these technical issues. In these cases the hard part
can be matched directly to a set of gauge-invariant operators and the soft part alone satisfies
the Ward-Takahashi identity. This particular choice of reading point combined with the NDR
treatment of γ5 is a renormalization scheme that preserves manifest gauge invariance in all
the intermediate steps of the EFT matching problem.

In the following, we consider the Ward-Takahashi identity for U(1)B and U(1)T3
related to

the loop diagrams of Fig. 1 to illustrate the necessity of choosing Higgs vertices as the reading
points. For a loop diagram that generates the V µ-V ν

1 -V ρ
2 vertex, gauge invariance enforces the

following identity for the position space correlators:

∂

∂xµ
⟨Jµ

V (x)J
ν
f1
(y)Jρ

f2
(z)ϕ0†(u)ϕ0(v)⟩T (4.9)

=⟨Jν
f1
(y)Jρ

f2
(z)

[
Qϕ0

V δ(4)(x−u)
]
ϕ0†(u)ϕ0(v)⟩T+⟨Jν

f1
(y)Jρ

f2
(z)

[
−Qϕ0

V δ(4)(x−v)
]
ϕ0†(u)ϕ0(v)⟩T .

where ⟨· · · ⟩T is the time-ordered vacuum expectation value and ϕ0 denotes the neutral com-
ponent of the SM Higgs doublet field H . In the above, Jµ

V (V=B,W 0) denotes the conserved
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(a) (b) (c)
ϕ0 ϕ0†

Figure 4: Sample diagrams that enter the Ward-Takahashi identity (4.9). Plot (a) has 3 external
gauge bosons attached to a fermion loop. Plot (b) has 2 vector bosons attached to the fermion loop
and one to the Higgs line. Plot (c) gives the correlation function involving 2 gauge bosons that enter
the left-hand side of Eq.(4.9).

current of U(1)B and U(1)T3
, and Jν

fi
= f̄iγ

νfi is the current coupled to the external gauge
boson V ν

i , where fi denotes the fermions in the loop. The correlator on the left-hand side
of Eq.(4.9) corresponds to diagrams with three gauge bosons, including the case (a) with all
three gauge bosons attached to the fermion loop, as in Fig. 4(a); and case (b) with two gauge
bosons V ν

1 and V ρ
2 attached to the loop at vertices described by Jf1

ν and Jf2
ρ , and the third

gauge boson V µ attached to a Higgs line via the Higgs current part of Jµ
V , as in Fig. 4(b). The

correlators on the right-hand side correspond to loops with two gauge vertices (represented by
Jf1 and Jf2) on the fermion loop, as in Fig. 4(c). Fourier-transforming the identity to momen-
tum space, subtracting the Fig.4(b)-type diagrams with the gauge boson V µ attaching to ϕ0 ,
and amputating the ϕ0 propagator, we derive the following Ward-Takahashi identity for the
amputated amplitudes:

kµAµνρ
V (k; p1, p2; pϕ=0, pϕ† =0)

(4.10)
= −Qϕ0

V

[
Aνρ

0 (p1, p2; pϕ=0, pϕ† =k)−Aνρ
0 (p1, p2; pϕ=k, pϕ† =0)

]
,

where (k, p1, p2, pϕ, pϕ†) are the momenta obtained by Fourier-transforming the position vari-
ables (x, y, z, u, v) in Eq.(4.9), all defined with directions going into the loop, and pϕ and pϕ†

are momenta going into the loop via the ϕ0 and ϕ†
0 lines. The left-hand side of Eq.(4.10) in-

cludes only the diagrams of the Fig.4(a)-type with three gauge vertices attached to the fermion
loop (rather than the Higgs line), exactly like the diagrams of Fig. 1. The correlators on the
right-hand side of Eq.(4.10) are of the type of Fig. 4(c).

The hard part of a set of nTGC loop diagrams can be matched to a set of gauge-invariant
operators only when their corresponding Ward-Takahashi identity (4.10) still holds with the
involved amplitudes in the identity restricted to their hard parts:

A → Ahard . (4.11)

If this is the case, the hard-part version of Eq.(4.10) would correctly connect the coefficients of
nTGC couplings to the 2-gauge-boson vertex couplings induced by the same set of operators
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(2.1) and (2.2). But, as mentioned above, the choice of the reading point of a trace that
contains an odd number of γ5 could break the hard-part version of (4.10) if the identity
involves cancellations between cyclic permutations of matrices in the trace together with a
divergent hard-part integral. In the following, we show that choosing the Higgs vertices as
reading points ensures that the identity (4.10) holds without the need of trace cyclicity.

We can write the left-hand side of the amplitude of Eq.(4.10) with a Higgs reading point
(taken as ϕ0 for example) as follows:

kµAµ···
V (k; {p{i}}; pϕ=0, pϕ† =0)

=
∑
{pa{i}}

∫
d4q

(2π)4
tr[Mb(q

′; {pb{i}})Vϕ†kµM̄µ
a(q; k, {pa{i}})Vϕ]

+
∑
{pa{i}}

∫
d4q

(2π)4
tr
[
kµM̄µ

b (q
′; k, {pb{i}})Vϕ†Ma(q; {pa{i}})Vϕ

]
. (4.12)

Here we generalize triple gauge-boson amplitudes to amplitudes with any number of external
gauge bosons, and suppress all the gauge indices except the one to be contracted with kµ, and
Vϕ and Vϕ† are the two Yukawa vertices that connect to the external Higgs lines, while {p{i}}
represents the set of gauge boson momenta (other than kµ). We have separated the loop into
two blocks sandwiched by the two Yukawa vertices, denoted by Ma and Mb, or M̄µ

a and M̄µ
b

(with a V µ(k) inserted into a propagator therein). The sum of {pa{i}} runs over all possible
gauge boson momenta except kµ, which enters Ma or M̄µ

a . The first argument (q or q′) in M
or M̄µ represents the momentum of the first fermion propagator in the block that leaves the
Higgs vertex and appears in the block. For the first line of Eq.(4.12) we have q′=q+

∑
i p

a
i+k

and for the second line we have q′=q+
∑

i p
a
i . Since we are considering U(1) currents and the

fields are in their gauge eigenstates, the fermion species remains unchanged in each block, and
we denote them as fa and fb in block a and b respectively. Another Ward-Takahashi identity
similar to that of QED gives

kµM̄µ
a(q; k, {pa{i}}) = −Qfa

V

[
Ma(q; {pa{i}})−Ma(q+k; {pa{i}})

]
, (4.13a)

kµM̄µ
b (q

′; k, {pb{i}}) = −Qfb
V

[
Mb(q

′; {pb{i}})−Mb(q
′+k; {pb{i}})

]
. (4.13b)

Substituting these identities into Eq.(4.12) and using the relation Qfa
V +Qϕ0

V =Qfb
V , we deduce

the following identity:

kµAµ···
V (k; {p{i}}; pϕ=0, pϕ† =0)

(4.14)
= Qϕ0

V

[
A···

0 ({p{i}}; pϕ=k, pϕ† =0)−A···
0 ({p{i}}; pϕ=0, pϕ† =k)

]
.

For the case of three gauge bosons, this reduces to the identity (4.10). We see that for the
identity (4.10) to hold, it is sufficient to validate the QED-like Ward-Takahashi identities (4.13)
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for each block sandwiched between the Yukawa vertices Vϕ and V
ϕ† . When choosing Yukawa

matrices as the reading points, these blocks are not wrapped around the ends of traces, and
thus one does not need cyclicity to prove Eq.(4.10). It is also apparent why choosing another
vertex as reading point may violate the hard-part version of Eq.(4.10). The diagrammatic
proof of Eq.(4.13)5 sums over all possible insertions of V µ(k) into all propagators involved.
For instance, in the right-hand side of Eq.(4.12), if another vertex within M̄µ

a to the right of
the V µ(k) insertion was chosen as the reading point, the first trace on the right-hand side of
Eq.(4.12) would take the following form,

tr
[
M̄(2)

a VϕMbVϕ†kµM̄
(1)µ
a

]
= tr

[
MbVϕ†kµM̄µ

aVϕ

]
+ (terms ∝ ϵ), (4.15)

where the block M̄µ
a = M̄(1)µ

a M̄(2)
a is now separated into two parts located at the beginning

and end of the trace, and the extra terms proportional to ϵ arise from the non-cyclic trace
of NDR. Since the proof of the Ward-Takahashi identity (4.13) involves propagators in both
M̄(1)µ

a and M̄(2)
a , one needs to move M̄(2)

a to the end of the trace to complete the block M̄µ
a ,

which leads to extra terms proportional to ϵ that then combine with the 1/ϵ divergence of
the hard part to produce a finite contribution, violating the identity (4.10). Hence, only the
Yukawa vertices can be chosen as the reading point. The above argument for a Yukawa vertex
as reading point can be readily generalized to an arbitrary number of Yukawa vertices at the
one-loop level.

It was also suggested in the literature [26] not to choose the gauge vertices as reading
points in order to maintain recursive renormalizability of the full result of the diagrams as
well as its gauge invariance. In the above analysis, we support this rule for a very different
reason, namely, the correspondence of the hard part in the method of region to a one-loop
gauge-invariant EFT operator requires choosing the Yukawa vertex as the reading point.

This choice of reading point is also convenient when performing the matching procedure by
using the covariant derivative expansion (CDE). In this method, the one-loop effective nTGC
operators are obtained by evaluating the functional trace:

− i
2
STr

(
1

Ki

U ij
H†

1

Kj

U ji
H + · · ·

)
, (4.16)

where, following the notation of [36], we split the block-diagonal interaction matrix U into
UH and U

H† corresponding to the type of Yukawa interaction, and K−1 is the propagator
matrix. Following the previous argument for explicit loop calculation, we have moved UH to
the end of the trace, since it is the reading point.6 The γ5 matrices are then moved to the
right end of the trace by commutation relations, followed by the replacement (4.8) according
to the NDR manipulation. Using the public code STrEAM [43], we have checked that, after

5See for example a textbook derivation of this in Chapter 7 of Ref. [41].
6The application of NDR and the subtlety of the choice of reading point when using the CDE were discussed

by [42] in the context of evanescent operators.
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eliminating redundant operators, the CDE gives the same results for the one-loop effective
operator matching to the hard part. To obtain the full vertex for the “heavy-light” case, we need
further to compute the soft part by evaluating the loop contribution of the tree-level effective
operators using the same Higgs vertices as reading points and adding it to the contribution
of the one-loop effective operators. In this way, irrelevant anomalies that usually appear in
the EFT loop calculations would never appear in any intermediate step of computing the full
nTGC vertex.

5 Results for Induced nTGCs

In this section, we present the results of loop calculations derived using the method of Section 4.
These results are then combined with various nTGC vertices and matched to the one-loop
effective nTGC operators as given in Eqs.(2.1)-(2.2). In our convention, the Higgs expectation
value is given by ⟨ϕ0⟩ = v/

√
2 , where ϕ0 denotes the neutral component of the SM Higgs

doublet field H .

5.1 Heavy Fermion Loop Contributions to nTGCs

We start with the simpler case, in which the nTGC vertices are generated by one-loop contri-
butions of the heavy fermions, including an SU(2) doublet N and a fermionic singlet E with
hypercharges YN and YE =YN −1/2 that play the role of the fields N and E in Eq.(3.1), respec-
tively. We assume that these heavy fermions have nearly degenerate masses MN ≈ ME ≈ M ,
so there is only one heavy mass scale for EFT matching. The relevant Lagrangian terms take
the following form:

L ⊃ N̄ (i /D−MN )N+ Ē(i /D−ME)E+N̄H(cV +cAγ5)E+h.c. (5.1)

In the cases of (YN , YE) = (−1/2,−1), (1/2, 0), and (3/2, 1), at least one of the heavy fermions
can mix with SM leptons through Yukawa couplings to the Higgs doublet. In this subsection,
we set these heavy-light mixing couplings be negligibly small as compared to the couplings
between the heavy particles, and leave their treatment to the next subsection. The absence of
the heavy-light couplings can be ensured by imposing a Z2 symmetry. The result for vertices
and Wilson coefficients in this and next subsections are additive when a model generates both
“all heavy” and “heavy-light” loop diagrams.

For the four types of basic one-loop diagrams of triple neutral gauge bosons in Fig. 1, we
compute the off-shell expressions from Eq.(4.7), with the substitutions N →N and E →E .

18



Thus, we derive the following:

Γ1 =
icV A

240π2M4

[
(4q2+3p2+4p · q)qσϵµνρσ+(q↔p, ν↔ ρ)

]
, (5.2a)

Γ2 =
icV A

240π2M4

[
2(kρ−kµ+qµ)kαqβϵ

νραβ+(3k2+q2+4k · q)kσϵµνρσ+(q↔k, ν↔µ)
]
, (5.2b)

Γ3 = Γ1

∣∣∣
cV →c∗V ,cA→−c∗A

, Γ4 = Γ2

∣∣∣
cV →c∗V ,cA→−c∗A

, (5.2c)

with the coupling coefficient c2V A = cV c
∗
A + cAc

∗
V . Including the charges and gauge couplings

corresponding to the different sets of the external gauge bosons in Fig. 2 and using the Schouten
identity (2.6), we can match these results directly to the sets of operators in Eqs.(2.1)-(2.2),
since the loop integrals have no soft parts. The effective Lagrangian takes the following form:

L ⊃
∑
I

cIOI + h.c. , (5.3)

where the label I runs over the labels of the nTGC operators OI . We compute the one-loop
Wlison coefficients cI as follows:

c
W̃W

= − g2c2V A

240π2M4
, (5.4a)

c′
W̃W

=
g2c2V A

160π2M4
, (5.4b)

c
B̃B

= − g′2(1−5YN+10Y 2
N )c2V A

960π2M4
, (5.4c)

c′
B̃B

=
g′2(3−20YN+40Y 2

N )c2V A

1920π2M4
, (5.4d)

and
c
B̃W

= − gg′c2V A

1920π2M4
, (5.5a)

c′
B̃W

= − gg′(1−5YN )c2V A

240π2M4
, (5.5b)

c
W̃B

=
gg′(3−20YN )c2V A

1920π2M4
, (5.5c)

where the coupling coefficients c2VA= cV c
∗
A+cAc

∗
V . Using Eq.(2.10), we translate these results

into the following on-shell coefficients:

cγ∗ZZ =
m5

Z cVA
192π2vM4

sin(2θW )(2YN−1)
[
(2YN−1) cos(2θW )−2YN

]
, (5.6a)

cZ∗ZZ =
m5

Z cV A

1920π2vM4

[
5(2YN−1)2 cos(4θW )−40(2YN−1) cos(2θW )+60Y 2

N−20YN+7
]
, (5.6b)

cγ∗γZ =
m5

ZcV A

192π2vM4
sin2(2θW )(2YN−1)2, (5.6c)

cZ∗γZ =
m5

ZcV A

192π2vM4
sin(2θW )(2YN−1)

[
(2YN−1) cos(2θW )− 2YN

]
, (5.6d)

where the nTGC coupling coefficients (cV ∗γZ , cV ∗ZZ) are connected to the conventional nota-
tions [13][7][6] via (cV ∗γZ , cV ∗ZZ)=(ehV

3 , ef
V
5 ), as shown in Eq.(2.9).
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In passing, for an estimate, we consider the future e+e− colliders CEPC (250GeV) and
CLIC (3TeV) and a future pp collider (100TeV), with an integrated luminosity (20, 5, 30) ab−1

respectively. According to the collider analyses [6]-[10], they can probe the form factors (hZ
3 , h

γ
3)

down to hZ
3 < (1.4×10−4, 6.2×10−5, 3.0×10−7), and hγ

3 < (4.9×10−4, 1.0×10−4, 3.5×10−7),
respectively, and we take just one nTGC contribution at a time. For YN =− 1

2
, these bounds

correspond to M/|cV A|1/4 < (80, 240, 368)GeV with the hZ
3 constraints alone, and become

M/|cV A|1/4 < (150, 480, 770)GeV with the hγ
3 constraints alone. These sensitivities are quite

weak because such fermionic UV contributions are suppressed by both the heavy mass factor
∝ M−4 and the one-loop factor. A more careful phenomenological analysis is needed to extract
the actual sensitivity, including contributions of the interference between the Z∗-exchange and
γ∗-exchange channes. This will improve the sensitivity reaches on M/|cV A|1/4. These analyses
are useful for the phenomenology of strongly-coupled UV models of new physics. In particular,
discovery at the LHC or a future collider of an nTGC coupling in the absence of a new particle
would be an indicator of a strongly-interacting sector beyond the SM.

5.2 nTGCs from Fermion Loops with Heavy-Light Mixing

In this subsection, we extend our analysis to include one-loop contributions where the heavy
and light fermions mix through a Yukawa-type coupling to the SM Higgs doublet. We begin
by presenting general off-shell expressions for the one-loop diagrams of triple neutral gauge
bosons in Fig. 1, setting MN =M , ME=0 and V ±

H =(1± γ5)/2 in the propagators of Eq.(4.7),
identifying the fields N and E with heavy and light fields respectively:7

Γh
1 =

i
12π2M4

[(
−∆− 11

6

)
(p · q)qσϵµνρσ+

(
1

2
∆+

5

6

)
q2pσϵ

µνρσ+

(
∆+

25

12

)
qµpαqβϵ

νραβ

+
1

12
qνpαqβϵ

µραβ− 1

2
qρpαqβ ϵ

µναβ+(q↔p, ν↔ρ)

]
, (5.7a)

Γ1 =
i

12π2M4

[
1

4
(p · q)qσϵµνρσ+

(
1

2
log

M2

−k2
− 5

12

)
q2pσϵ

µνρσ

+

(
1

2
−log

M2

−k2

)
qνpαqβϵ

µραβ+

(
−11

12
+ log

M2

−k2

)
qρpαqβ ϵ

µναβ+(q↔p, ν↔ρ)

]
, (5.7b)

Γh
3 =

i
12π2M4

[
19

12
(p · q)qσϵµνρσ+

(
∆− 1

3

)
q2pσϵ

µνρσ− 7

12
qµpαqβ ϵ

νραβ

+

(
11

12
−∆

)
qνpαqβ ϵ

µραβ− 9

4
qρpαqβ ϵ

µναβ+(q↔p, ν↔ρ)

]
, (5.7c)

Γ3 =
i

12π2M4

[
19

12
(p · q)qσ ϵµνρσ−

(
2+log

M2

−q2

)
q2pσ ϵ

µνρσ− 7

12
qµpαqβ ϵ

νραβ

+

(
31

12
+log

M2

−q2

)
qνpαqβ ϵ

µραβ− 9

4
qρpαqβ ϵ

µναβ+(q↔p, ν↔ρ)

]
, (5.7d)

7The results differ only by a minus sign for the opposite assignment of V ±
H →(1∓ γ5)/2 .
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and

Γh
2 =

i
96π2M4

[
− 5

3
(k · q)qσ ϵµνρσ+

1

3
q2kσ ϵ

µνρσ+qµkαqβ ϵ
νραβ

+ qνkαqβ ϵ
µραβ− 5

3
qρkαqβ ϵ

µναβ+(q↔k, ν↔µ)

]
, (5.8a)

Γ2 = Γh
2 , (5.8b)

Γh
4 =

i
24π2M4

[(
2∆+

8

3

)
(k · q)qσ ϵµνρσ−

(
∆+

11

6

)
q2kσ ϵ

µνρσ+ qµkαqβ ϵ
νραβ

+ qνkαqβ ϵ
µραβ−

(
2∆+

8

3

)
qρkαqβ ϵ

µναβ+(q↔k, ν↔µ)

]
, (5.8c)

Γ4 =
i

12π2M4

[(
1

6
− log

M2

−p2

)
(k · q)qσ ϵµνρσ−

(
7

12
− 1

2
log

M2

−p2

)
q2kσ ϵ

µνρσ

+ qνkαqβ ϵ
µραβ −

(
1

6
+ log

M2

−p2

)
qρkαqβ ϵ

µναβ+(q↔k, ν↔µ)

]
, (5.8d)

where Γh
i (Γi) is the hard part and the full result (soft+hard) for each type of diagram in

Fig. 1, and ∆=1/ϵ−γE+log(4π)+log(µ2/M2). We see that the divergence and the logarithmic
renormalization scale dependence cancels correctly between the soft and hard parts. The re-
maining logarithmic factors take the form of log M2

−Q2 , where Q (=k, p, q) is one of the external
momenta, and describes the IR divergence of the loop diagram as Q→0.

The results for specific models with heavy-light mixing loops can be obtained by inserting
the corresponding gauge couplings into Eqs.(5.7) and (5.8). As a concrete example, we consider
an extension of the SM with a weak SU(2) fermion doublet F = (f 0, f−)T with hypercharge
YF =− 1

2
. Thus, the relevant new physics Lagrangian reads,

L ⊃ F̄ (i /D−M)F+(yF̄HeR+h.c.). (5.9)

The mixing mass term µFLL̄F+h.c. between the heavy fermion and the SM left-handed lepton
doublet L can be eliminated by a field redefinition, so Eq.(5.9) presents the Lagrangian terms
after this redefinition. With these, we derive the one-loop effective coefficients of the nTGC
operators (2.1) and (2.2) as follows:

c
W̃W

= − g2y2

192π2M4
, c′

W̃W
=

g2y2

144π2M4
, (5.10a)

c
B̃B

=
11g′2y2

768π2M4
, c′

B̃B
=

g′2y2

576π2M4

(
1+6 log

µ2

M2

)
, (5.10b)

and
c
B̃W

=
g′gy2

1152π2M4

(
35+12 log

µ2

M2

)
, (5.11a)

c′
B̃W

=
g′gy2

144π2M4

(
4+3 log

µ2

M2

)
, (5.11b)

c
W̃B

= − g′gy2

1152π2M4

(
17+12 log

µ2

M2

)
. (5.11c)
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These coefficients correspond to the hard parts of one-loop diagrams and have no physical
significance by themselves alone, since one needs to also include the soft parts of the loops
as obtained by tree-level matching. The full loop-contributions to the on-shell vertices can be
summarized in the following form:

Γµνα
V ∗γZ(q, p1, p2) =

c′V ∗γZ

m2
Z

(q2−m2
V )p1β ϵ

µναβ, (5.12a)

Γµνα
V ∗ZZ(q, p1, p2) =

1

m2
Z

[
c′V ∗ZZ(q

2)q2− c′V ∗ZZ(m
2
V )m

2
V

]
(p1− p2)β ϵ

µναβ, (5.12b)

with the effective coupling coefficients given by

c′γ∗ZZ(qγ∗) =
m5

Z y
2

288π2vM4
sin(2θW )

[
−3 cos(2θW )+1+6 log

M2

−q2γ∗

]
, (5.13a)

c′Z∗ZZ(qZ∗) = − m5
Z y

2

576π2vM4

[
3 cos(4θW )−20 cos(2θW )+13+24 sin2θW log

M2

−q2Z∗

]
, (5.13b)

c′γ∗γZ = − m5
Z y

2

96π2vM4
sin2(2θW ), (5.13c)

c′Z∗γZ =
m5

Z y
2

96π2vM4
sin(2θW )

[
− cos(2θW ) + 3

]
. (5.13d)

We note that Eq.(5.12) is an extension of Eq.(2.8) to accommodate the logarithmic momentum
dependence from the soft part. The nTGC coupling coefficients (c′V ∗γZ , c

′
V ∗ZZ) are connected

to the conventional notations via (c′V ∗γZ , c
′
V ∗ZZ)=(ehV

3 , ef
V
5 ), as shown in Eq.(2.9).

For an estimate we consider the recent collider analyses [6]-[10] on probing nTGCs at the
future e+e− colliders CEPC (250GeV) and CLIC (3TeV) and a future pp collider (100TeV),
with integrated luminosityies (20, 5, 30) ab−1 respectively. We find that the sensitivity reaches
are M/|y|1/2 < (190, 570, 880)GeV for Z∗-exchange and M/|y|1/2 < (125, 396, 647)GeV for
γ∗-exchange. Since the fermionic UV contributions to nTGCs are suppressed by both the
heavy mass factor ∝ M−4 and the one-loop factor, the estimated collider bounds above and
in Sec. 5.1 are quite weak. The bounds on the “all-heavy” and “heavy-light” cases are quite
comparable to each other.

During the finalization of this paper we compared our results with those of a recent pa-
per [44] that also studied the derivation of nTGCs from certain fermionic UV models. This
paper considered only 4 CP-even dimension-8 operators in its Eqs.(2.4)-(2.7) that contribute
to nTGC vertices with two on-shell gauge bosons, whereas our study considers a complete
set of 7 CP-conserving, Higgs-dependent dimension-8 operators (2.1)-(2.2) that generate nT-
GCs and studies their matching to the one-loop contributions of UV models. These operators
all contribute to the off-shell nTGC vertices and their consideration eliminates the possible
ambiguity that may arise from the choice of nTGC operator basis. Also, our method of match-
ing differs from that of [44]. Besides the coefficients of one-loop effective operators, we have
provided a systematic treatment of the (off-shell) full nTGC vertices as obtained from the
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one-loop fermionic UV contributions, including both their hard parts and soft parts. The soft
parts are induced by the heavy-light mixing case and were not considered in [44]. Our work
provides an independent full treatment on the fermionic UV completion of the low energy
nTGCs.

6 Conclusions

Neutral triple gauge couplings (nTGCs) open up a unique window for probing the new physics
beyond the Standard Model (SM), because they are absent both in the SM and in the SMEFT
at the level of dimension-6 operators, and first appear in the SMEFT at the level of dimension-
8 operators. In recent years there has been increasing experimental and phenomenological
interest in studying probes of neutral Triple Gauge Couplings (nTGCs) at present and future
collider experiments [4][5][6]-[11]. It is thus highly desirable to study how the underlying UV
dynamics of new physics can naturally generate such nTGCs at low energy in the SMEFT
formulation.

In this work, we have shown how nTGCs may be generated by loop diagrams involving
vector-like heavy fermions, considering both loops of heavy fermions alone and also loops
containing a mixture of the heavy fermions and the SM light fermions. We presented a com-
plete set of 7 dimension-8 SMEFT operators (2.1)-(2.2) that generate CP-conserving off-shell
nTGCs, where only 4 of them contribute to the nTGC form factors with two on-shell gauge
bosons. Then, we demonstrated that at the one-loop order such a fermionic UV completion
only induces the dimension-8 nTGC operators containing two Higgs-doublet fields.

We have described the treatment of γ5 in our fermionic one-loop analysis. Then, we ana-
lyzed in detail the separation between the soft and hard parts of the one-loop integrals that
appear in the heavy-light fermion mixing case and the associated Ward-Takahashi identity.
We further gave a prescription for the treatment of spinor traces that eliminates irrelevant
anomalies in all the intermediate steps of matching.

We have evaluated the fermion loops with off-shell external gauge bosons and matched their
hard parts to the 7 dimension-8 CP-even nTGCs operators (2.1)-(2.2). Then, we required two
external gauge bosons of the nTGC vertices to be on-shell and derived the 4 form factors
induced by the fermion loops. We have found that the contributions of the all-heavy and
heavy-light fermion loops yield results of comparable magnitude, as can be seen by comparing
Eqs.(5.4)-(5.5)) with Eqs.(5.10)-(5.11). An essential difference is the appearance of logarithmic
contributions in the heavy-light case that are absent in the all-heavy case. For the heavy-light
case, we presented a generalized nTGC form factor formulation in Eq.(5.12) and derived the
corresponding form factor coefficients in Eq.(5.13), which explicitly contain extra terms with
logarithmic momentum dependence. This explains why the conventional nTGC form factor
formulation (2.8) should be extended to the new Eq.(5.12) in the heavy-light case.
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The perturbative one-loop fermionic UV contributions to the low-energy effective nTGC
operators are suppressed by both the fourth power of the heavy fermion mass M and a loop
factor, making it quite challenging to probe such perturbative scenarios of new physics via
their UV contributions to nTGCs at the LHC and future high energy colliders. On the other
hand, the nTGCs may receive more sizeable contributions from certain strongly-interacting
non-perturbative UV models. Thus, the possible collider discovery of a nTGC without an
accompanying new particle could provide evidence for a strongly-interacting sector beyond
the SM.
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