
IMPROVEMENT OF THE LHC ORBIT FEEDBACK
TESTING FRAMEWORK

A. Calia, D. Alves, J. Wenninger, M. Hostettler, S. Jackson
CERN, Geneva, Switzerland

Abstract
During the Long Shutdown 2 (LS2 2019-2021), the orbit

feedback correction software (OFB) of the LHC was re-
designed to satisfy new requirements for Run 3 (2022-2025)
and to clean up legacy functionalities. The OFB is an essen-
tial component of LHC high intensity operation since the
orbit must be stabilized to a fraction of the beam size during
the entire LHC machine cycle and reproducibility is key
for efficient operation. Redesigning such an essential and
complex system during shutdowns requires thorough testing
of the system functionality. The existing OFB testing system
has been reviewed and improved based on the experience of
LHC Run 2. An automatic, continuous integration tool has
been put in place to validate future software developments
before putting them in production. The solution for the OFB
testing will be presented in this contribution.

INTRODUCTION
The Large Hadron Collider (LHC) is a particle accelerator

and collider that is currently operating with two counter-
rotating beams of protons or ions at a record beam energy
of 6.8 TeV. Given the high stored beam energy, machine
tolerances are very tight to avoid potential damage due to
uncontrolled particle loss. An automatic feedback system is
therefore essential for the operation of the LHC.

The full-stack system (from data acquisition to integration
with the LHC controls system) responsible for simultane-
ously controlling the beam orbit and the machine tune is the
so-called Orbit Feedback system (OFB). The beam orbit is
kept under control by minimizing the difference between the
measured orbit and a reference. The machine tune is a crucial
parameter to control particle loss and is also kept on the refer-
ence value with the OFB. Beam orbit perturbances occur due
to multiple factors, such as magnet misalignments, ground
motion, earth tides, and machine configuration changes (op-
tics). Tune transients occur during dynamic phases in an
LHC fill, such as the energy ramp and optics transitions.
Due to uncontrollable magnetic field errors, the transition
from the injection energy, 0.45 TeV, to 1 TeV of the ramp is
particularly violent for the tune of the beams. During this
phase, the tune feedback system is essential for keeping the
tune of the beam on the reference value.

Controlling the orbit and tune of the LHC requires a real-
time software architecture. The implementation is realized
in C++ using the Front-End Software Architecture (FESA)
framework [1]. The FESA framework is a software suite
developed at CERN to design and implement real-time soft-
ware and deploy it on front-end computers. The real-time
component of the OFB, a FESA class, is called the Beam

Figure 1: Schematics of the OFB software stack. At the bot-
tom, the LHC systems: BPM, Base-Band Tune, quadrupole
and dipole magnets. The BFC FESA class interacts with
these systems to control the orbit and tune. The Java Service
API orchestrates the interaction of operational applications
and the testing framework with the FESA class.

Feedback Controller (BFC). This FESA class receives beam
position data from over 500 Beam Position Monitor (BPM)
sensors per beam (measuring horizontal and vertical posi-
tions) and 6 tune measurement devices per beam [2] With
a control loop frequency of 25 Hz, the BFC calculates the
required real-time corrections to orbit and tune. Around 500
dipole corrector magnets per beam correct the orbit, RF fre-
quency adjustments compensate for radial movements, and
over 300 quadrupole corrector magnets correct the tune [3].
An overview of the various layers of the OFB is shown in
Fig. 1.

The entire OFB system includes a Java service layer, a
testing framework, and the necessary adapters needed to
integrate the system into the LHC controls system. This con-
tribution discusses the renovation of each layer performed
during LS2 (after LHC Runs 1 and 2), with particular em-
phasis on the testing framework.

RENOVATION OF THE BFC SYSTEM
DURING LS2

During LS2, the decision was taken to consolidate the
FESA code initially split into two separate processes [4].
This was made possible by a hardware upgrade from a 24-
core, 32 GB RAM, 15 MB cache machine to a 64-core, 200
GB RAM, 22MB cache machine, allowing more advanced



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-THPG30

3318

MC6.T05 Beam Feedback Systems

THPG30

THPG: Thursday Poster Session: THPG

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



code to be implemented while retaining a deterministic ex-
ecution. Furthermore, the FESA framework improved sig-
nificantly, allowing the use of many new functionalities and
simplifying the FESA class codebase.

As a result of this major effort, the maintainability of
the BFC FESA class code also improved significantly, and
because it is based on standard FESA features, porting to
future versions of the FESA framework will be easier.

Alongside code cleanup and improvements, two new fea-
tures were requested by the LHC operations team based
on the experience of LHC Run 1 and 2. The most notable
feature requests were:

• Introduce a function player to be able to change the BFC
parameters following LHC dynamic phases, instead of
relying on static values

• Review the optics calculation procedures to speed up
the preparation of the LHC cycle and improve the over-
all stability of the system

During the LHC’s dynamic phases, for example the energy
ramp from 0.45 TeV to 6.8 TeV, the machine configuration
(optics and reference orbit) changes significantly. The new
function player allows the LHC operations team to specify
functions for the reference orbit, reference tune, and mul-
tiple gain factors. With this capability, the BFC real-time
corrections can more closely follow the actual LHC machine
state and significantly improves the overall performance of
the feedback loops.

The optics of the machine are also an input of the orbit
feedback loop, as they are used to calculate the Pseudo-
Inverse of the Response Matrix (RM) needed to derive the
orbit corrections to be sent to the dipole corrector magnets.
In the new version of the BFC FESA class, the parameters
of the optics (Twiss parameters) are uploaded during ev-
ery preparation for beam for the entire cycle of the LHC.
Internally, the BFC calculates the corresponding matrices
and stores them in memory. The function player will then
be instructed to switch from one optic to the next to follow
the LHC cycle’s dynamic changes. Given the nature of the
calculations of the matrices, a Hardware Acceleration fea-
sibility study was performed to increase the performance.
It was concluded that GPUs did not improve computation
times when calculating the Pseudo-Inverse (Pinv) of the
RMs compared to a multi-core approach [5].

NEW SERVICE SOFTWARE
ARCHITECTURE FOR THE OFB

In the LHC ecosystem, Java is the programming lan-
guage that offers seamless integration with the various as-
pects of the controls system, like the settings management
system (LSA), the sequencer (used daily to control the
LHC cycle) and the CERN device communication proto-
col (JAPC/RDA3).

During LHC Run 1, it was decided to create a Java abstrac-
tion layer over the BFC FESA class to offer better integration

Figure 2: OFB Dashboard application used daily in LHC
operation with BPM readings.

with the LHC controls system, the OFB Java service API.
During LS2, given the experience of Run 1 and Run2 [6],
this service layer was completely renovated with a modern
architecture leveraging the new BFC functionalities.

The Java API is divided into two levels:

• Delegates: Java classes responsible for communication
with the BFC FESA class. Each delegate exposes the
API of the BFC via Java domain objects.

• Services (or API): Java classes combining one or more
delegates to achieve a high-level task with a simple API.
Via services, users can perform complex actions that
require multiple interactions with the BFC FESA class.

The OFB Java service API is now integrated with various
LHC applications. The main advantage of this solution is
that there is a single API to interact with the BFC FESA
class, enhancing its functionalities and easing migration to
future BFC versions.

An example of an application built with this API is the
OFB Dashboard, used in the LHC CERN Control Centre
(CCC) to control various aspects of the feedback systems.
A screenshot of the application is shown in Fig. 2.

IMPROVEMENT OF THE TESTING
FRAMEWORK

The OFB system plays a crucial role in the performance
and availability of the LHC. Therefore, proper testing prior
to deployment to production is mandatory to ensure the
correct functioning of the system.

A testing framework, written in Java, was developed dur-
ing Run 1 of the LHC [7]. The ideas behind this framework
were used as the basis for a new testing framework design.
This new framework highlighted limitations of the previous
implementation of the BFC FESA class. In the past, only
basic testing could be done and the emphasis on being able
to express tests in an eDSL (embedded Domain-Specific



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-THPG30

MC6.T05 Beam Feedback Systems

3319

THPG: Thursday Poster Session: THPG

THPG30

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



Language) increased the difficulty of evolving the testing
framework.

During the refactoring of the BFC FESA class in LS2,
the testing framework was entirely rewritten, and testing
capabilities were taken into account at every step of the
FESA class development. The new version of the testing
framework uses the Java service API to ensure that tests
cover the full stack: the BFC FESA class behavior, its API,
and the Java service layer. The testing framework is based on
the Java JUnit framework to start and record test executions.

In order to enable testing, the new version of the BFC
FESA class implements a special feature to enable simula-
tion mode. In this mode, the software is able to run stan-
dalone without the need for LHC-specific timing events. It
is therefore possible to simulate the 40ms tick of the control
loop and the LHC energy read back.

It is no surprise that writing tests at the same time as
expanding the features of a system is beneficial for the final
result [8]. Test Driven Development (TDD) is a common
practice in software development. Currently, the test suite of
the LHC OFB system includes more then 100 tests. These
are system tests following a black-box principle, treating the
BFC FESA class as an independent entity and purely using
its public API for access. Tests can be run on-demand, and a
report with the results can be generated. This feature is useful
when validating the behavior of a specific version of the BFC
FESA class, before deployment to production. Tests are also
run in a Continuous Integration (CI) fashion. In this case,
the capabilities of the Gitlab CI pipeline (the product used
at CERN for Git projects) are used. In this configuration,
the test suite runs for every new commit on the Java service
API or the BFC FESA class. Execution of code outside of
the CERN production environment is ensured by the use
of standard Open Container Initiative (OCI) containers [9].
Containers are a way to package software along with every
dependence, including the operating system.

In this context, a container for Java Service API (plus
testing code) and another with the BFC FESA class are
created. Containers in Gitlab CI pipelines are first class
citizens. Every commit on the Java Service API project or
the BFC FESA class creates a new container with the latest
version of the code. Once the containers are ready, an ad-hoc
pipeline is triggered to run the tests. Using containers for
FESA classes is not a common practice due to the difficulty
to "containerize" C++ code with direct access to Hardware
(for example timing cards or FPGAs). The BFC container
is, therefore, limited in its capabilities (it is currently not
conceivable to run the container in production).

However, the testing framework aims to validate API com-
pliance and the behavior of the main loop of the BFC FESA
class, not its real-time performance. Given the scope, the
container approach proved to be a flexible enough solution
to run tests targeting a FESA class outside the production
environment while still guaranteeing an adequate level of
testing capabilities and confidence in the results.

LESSONS LEARNED AND FUTURE
OUTLOOK

The development of the testing framework proved to be
challenging. The infrastructure around it (API and Gitlab
configuration) must be carefully configured. The BFC FESA
class needed to be adapted to have a simulation mode, and
its containerization needed to be explored and prototyped.

The investment is considered to be worthwhile, given the
quality of the refactoring. Black-box testing during develop-
ment allowed for a clean and understandable API that could
be integrated without surprises into the LHC control system.
The refactoring decisions could be steered in an iterative
manner, resulting in no loss of development time.

The produced testing suite ensures that the LHC’s OFB
system is in operational condition before starting the LHC
commissioning phase. Nevertheless, the configuration and
behavior of the beam still need to be carefully tested. Sim-
ulating every aspect of the system is impossible; the tests
can only be coded to detect known failure scenarios and
regressions.

It is important to continue evolving the testing framework
to cover scenarios as they are highlighted during LHC beam
operation. A final, decisive benefit comes from the compre-
hensive test specification of the system. These specifications
effectively document the behavior of the BFC FESA class
and how it should function to work properly in production.
They can be used as a compliance framework for every new
refactoring of the BFC FESA class.

CONCLUSIONS
During Long Shutdown 2 of the LHC, the Orbit Feed-

back system underwent significant modifications, aimed at
enhancing its performance, reliability, and maintainability.

A comprehensive testing framework was implemented to
support code refactoring efforts, which also played a cru-
cial role in expediting the development process. The testing
framework systematically assessed the functionality of the
revised codebase through automated tests, enabling devel-
opers to refine the system architecture and address potential
vulnerabilities, thereby enhancing the overall robustness of
the system.

The modifications implemented during LS2 resulted in
a notable decrease in the commissioning time at the start
of LHC Run 3. In particular, it significantly reduced the
beam-time needed to commissioning the system since most
of its functionalities were tested and validated without beam.
Only a final check of the behavior with real-time data coming
from instruments measuring the real beam was necessary.
Configuration issues and real-time behavior needed some
adjustments as these weaknesses are only highlighted with
beam. Nevertheless, the OFB system functionally behaved
as expected.

REFERENCES
[1] M. Arruat et al., “Front-end Software Architecture”, in Proc.

ICALEPCS’07, Oak Ridge, TN, USA, Oct. 2007, paper



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-THPG30

3320

MC6.T05 Beam Feedback Systems

THPG30

THPG: Thursday Poster Session: THPG

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



WOPA04, pp. 310–312.
[2] M. Gasior and R. Jones, “High Sensitivity Tune Measurement

by Direct Diode Detection”, in Proc. DIPAC’05, Lyon, France,
June 2005, paper CTWA01, pp. 312–314.

[3] O. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole
and P. Proudlock, “LHC Design Report”, CERN, Geneva,
Switzerland, Rep. CERN-2004-003-V-1, 2004.
doi:10.5170/CERN-2004-003-V-1

[4] R. J. Steinhagen, “LHC Beam Stability and Feedback Control
- Orbit and Energy”, Ph.D. thesis, RWTH Aachen U., Rep.
CERN-THESIS-2007-058, June 2007.

[5] L. Grech, D. Alves, S. Jackson, G. Valentino, and J. Wenninger,
“Feasibility of hardware acceleration in the LHC orbit feedback
controller”, in Proc. ICALEPCS’19, New York, NY, USA, Oct.
2019, pp. 584–588.
doi:10.18429/JACoW-ICALEPCS2019-MOPHA151

[6] L. K. Jensenet al., “Software Architecture for the LHC Beam-
based Feedback System at CERN”, in Proc. ICALEPCS’13,
San Francisco, CA, USA, Oct. 2013, paper THPPC119, pp.
1337–1340.

[7] S. Jackson, D. Alves, L. Di Giulio, K. Fuchsberger, B. Kolad,
and J. Pedersen, “Testing framework for the LHC beam-based
feedback system”, in Proc. ICALEPCS’15, Melbourne, Aus-
tralia, Oct. 2015, pp. 140–144.
doi:10.18429/JACoW-ICALEPCS2015-MOPGF024

[8] D. Alves, K. Fuchsberger, S. Jackson and J. Wenninger, “Test-
driven software upgrade of the LHC beam-based feedback
systems”, in Proc. 20th IEEE-NPSS Real Time Conf., Padua,
Italy, June 2016. doi:10.1109/RTC.2016.7543106

[9] Open Container Initiative,
https://opencontainers.org



15th International Particle Accelerator Conference,Nashville, TN

JACoW Publishing

ISBN: 978-3-95450-247-9

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2024-THPG30

MC6.T05 Beam Feedback Systems

3321

THPG: Thursday Poster Session: THPG

THPG30

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


