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Abstract

In this note, we give a definitive basis for the dimension-eight opera-
tors leading to quartic—but no cubic—interactions among electroweak
gauge bosons. These are often called anomalous quartic gauge cou-
plings, or aQGCs. We distinguish in particular the CP-even ones from
their CP-odd counterparts.

1 Basis

We consider the effective field theory of the standard model (SMEFT) at mass dimension eight,
in particular, operators built out of at least four Higgs and electroweak gauge bosons, generating
anomalous quartic gauge couplings (aQGCs). We denote operators that are CP-even as Oi and
CP-odd ones as ��Oi. The basis contains operators quartic in the Higgs (S-type), bi-quadratic in
the Higgs and gauge field strengths (M-type), and quartic in the gauge field strengths (T-type).
Throughout, we use square brackets to indicate contraction of fundamental SU(2) indices and
use capitalized Latin script for adjoint indices. The full CP-even aQGC basis is given by the
OS

i , OM
i , and OT

i operators in Table 1. For completeness, the full basis of CP-odd terms is
given by the��O

M
i and ��O

T
i operators in Table 2. There are no S-type CP-odd terms.
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2 Literature comparison

A brief comparison with the literature is useful. To our knowledge, no complete basis of
aQGC operators with CP properties correctly identified has previously appeared. In this sec-
tion, we focus on the CP-even sector of the aQGC basis. The basis presented by Almeida,
Éboli, Gonzalez-Garcia, and Mizukoshi in Refs. [1–3] lists operators that are both C-even and
P-even and does not include two operators that are C-odd and P-odd, but CP-even. One is
of (DH)2BW form and was identified in in Ref. [4]. Similarly, Ref. [3] contains only three
(DH)2W 2 operators, though in fact there are four independent such terms in the CP-even basis.
(Ref. [1] contained a different fourth operator, but it was found to be redundant with the three
others in Ref. [2].) The original basis of T-type CP-even operators presented in Refs. [1, 2], all
of which are both C-even and P-even, was incomplete. This was corrected first in Ref. [4], and
subsequently in the updated basis of Ref. [3], which agrees.

The counting of operators, of both CP-even and CP-odd type, agrees with the Hilbert
series analysis of Ref. [5] by Kondo, Murayama, and Okabe. However, the identification of
which specific operators are CP-even and -odd in that paper contains an error. While Ref. [5]
identifies OM

9 as CP-odd and��O
M
6 as CP-even, Ref. [4] counts them both as CP-odd. Both being

P-odd, in fact ��O
M
6 is C-even, and OM

9 is C-odd. The result is that OM
9 is CP-even and ��O

M
6 is

CP-odd. Similarly, Ref. [4] misidentified ��O
M
3 as CP-even and OM

8 as CP-odd. Thus, while
Ref. [4] contained all the operators, it had two errors associated with the CP transformation
properties. The presence of a single error was noted in Ref. [5], although the wrong operator
was identified in that paper.

In Table 1, we further outline the correspondence of our basis with the lists of CP-even
operators in Refs. [3], [4], and [6]; see also Ref. [7]. The basis choices and notation of Refs. [4]
and [6] explicitly identify the field content of each operator and, via the use of dual field
strengths, cleanly categorize operators by their polarization structure. However, where pos-
sible, in this note we have chosen to follow the widely used conventions of Ref. [3], for the
sake of compatibility with earlier simulations and experimental bounds. That is, we choose to
introduce a minimal completion of Ref. [3] to a full basis of CP-even operators. In any case,
for maximum utility and convenience, we provide a complete dictionary among all of these
different conventions. The correspondence in the CP-odd case (not considered in Ref. [3]) is
provided in Table 2.

In this note, we do not discuss operators at mass dimension six, for which the full basis
has been identified elsewhere [8]. A useful endeavor, beyond the scope of this note, would be
to identify the larger basis of operators in the Higgs effective field theory (HEFT). We leave
such considerations to future work.

3 C and P

Given the subtleties associated with CP properties, we briefly review these details here.

Consider parity first. This is very straightforward. The Higgs is a (parity even) scalar, and
derivatives transform as f(µ), where f(µ) = −1 + 2δµ0 equals 1 for µ = 0 and −1 otherwise,
so that the SU(2) gauge bosons transform as

P : W I
µν → f(µ)f(ν) W I

µν ,

P : W̃ I
µν → −f(µ)f(ν) W̃ I

µν ,
(1)

where the sign in the second case arises from P : ǫµνρσ → −ǫµνρσ (although note that ǫIJK

will not flip sign, as parity is a spacetime transformation). An identical result holds for the
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aQGC Operator Basis C P
Almeida, Éboli,

Gonzalez-Garcia [3]
Remmen & Rodd [4] Murphy [6]

OS
0 [DµH

†
DνH ][Dµ

H
†
D

ν
H ] + + OS,0 OH

4

2 Q
(2)

H
4

OS
1 [Dµ

H
†
DµH ][Dν

H
†
DνH ] + + OS,1 OH

4

3 Q
(3)

H
4

OS
2 [DµH

†
DνH ][Dν

H
†
D

µ
H ] + + OS,2 OH

4

1 Q
(1)

H
4

OM
0

1
2 [D

µ
H

†
DµH ]W I

νρW
I νρ + + OM,0

1
2O

H
2
W

2

2
1
2Q

(2)

W
2
H

2
D

2

OM
1 − 1

2 [D
µ
H

†
D

ν
H ]W I

µρW
I ρ
ν + + OM,1 − 1

2O
H

2
W

2

1 − 1
2Q

(1)

W
2
H

2
D

2

OM
2 [Dµ

H
†
DµH ]BνρB

νρ + + OM,2 OH
2
B

2

2 Q
(2)

B
2
H

2
D

2

OM
3 −[Dµ

H
†
D

ν
H ]BµρB

ρ
ν + + OM,3 −OH

2
B

2

1 −Q
(1)

B
2
H

2
D

2

OM
4 [Dµ

H
†
τ
I
DµH ]Bνρ

W
I
νρ + + OM,4 OH

2
BW

1 Q
(1)

WBH
2
D

2

OM
5 [Dµ

H
†
τ
I
D

ν
H ](B ρ

µ W
I
νρ +B

ρ
ν W

I
µρ) + + OM,5 OH

2
BW

3 Q
(4)

WBH
2
D

2

OM
7 [Dµ

H
†
τ
I
τ
J
D

ν
H ]W J

µρW
I ρ
ν + + OM,7

1
4O

H
2
W

2

1 − 1
2O

H
2
W

2

3
1
4Q

(1)

W
2
H

2
D

2 −
1
2Q

(4)

W
2
H

2
D

2

OM
8 i[Dµ

H
†
τ
I
D

ν
H ](B ρ

µ W̃
I
νρ −B

ρ
ν W̃

I
µρ) − − ——— ÕH

2
BW

2 Q
(5)

WBH
2
D

2

OM
9 ǫ

IJK [Dµ
H

†
τ
I
D

ν
H ](W J

µρW̃
K ρ
ν − W̃

J
µρW

K ρ
ν ) − − ——— ÕH

2
W

2

2 Q
(5)

W
2
H

2
D

2

OT
0

1
4W

I
µνW

I µν
W

J
ρσW

J ρσ + + OT,0
1
4O

W
4

1
1
4Q

(1)

W
4

OT
1

1
4W

I
µνW

J µν
W

I
ρσW

J ρσ + + OT,1
1
4O

W
4

3
1
4Q

(3)

W
4

OT
2

1
4W

I
µνW

Iνα
W

J
αβW

Jβµ + + OT,2
1
16O

W
4

1 + 1
16O

W
4

3 + 1
16O

W
4

4
1
16Q

(1)

W
4 +

1
16Q

(3)

W
4 +

1
16Q

(4)

W
4

OT
3

1
4W

I
µνW

Jνα
W

I
αβW

Jβµ + + OT,3
1
8O

W
4

3 + 1
16O

W
4

2
1
8Q

(3)

W
4 +

1
16Q

(2)

W
4

OT
4

1
2W

I
µνB

να
W

I
αβB

βµ + + OT,4
1
8O

B
2
W

2

2 + 1
4O

B
2
W

2

3
1
8Q

(2)

W
2
B

2 +
1
4Q

(3)

W
2
B

2

OT
5

1
2BµνB

µν
W

I
ρσW

I ρσ + + OT,5
1
2O

B
2
W

2

1
1
2Q

(1)

W
2
B

2

OT
6

1
2BµνW

I µν
BρσW

I ρσ + + OT,6
1
2O

B
2
W

2

3
1
2Q

(3)

W
2
B

2

OT
7

1
2W

I
µνW

Iνα
BαβB

βµ + + OT,7
1
8O

B
2
W

2

1 + 1
8O

B
2
W

2

3 + 1
8O

B
2
W

2

4
1
8Q

(1)

W
2
B

2 +
1
8Q

(3)

W
2
B

2 +
1
8Q

(4)

W
2
B

2

OT
8 BµνB

µν
BρσB

ρσ + + OT,8 OB
4

1 Q
(1)

B
4

OT
9 BµνB

να
BαβB

βµ + + OT,9
1
2O

B
4

1 + 1
4O

B
4

2
1
2Q

(1)

B
4 +

1
4Q

(2)

B
4

Table 1: The basis of CP-even aQGC operators and their C and P transformation properties. We further outline the map between our basis and different
conventions used in the literature. Our basis is chosen to align with Ref. [3] where possible, and we write ——— for the two CP-even operators that were
excluded from that work.
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aQGC Operator Basis C P AEG [3] RR [4] M [6]

��O
M
1 [Dµ

H
†
DµH ]BνρB̃

νρ + − N/A ÕH
2
B

2

1 Q
(3)

B
2
H

2
D

2

��O
M
2 [Dµ

H
†
τ
I
DµH ]BνρW̃

I νρ + − N/A ÕH
2
BW

1 Q
(2)

WBH
2
D

2

��O
M
3 i[Dµ

H
†
τ
I
D

ν
H ](BµρW

I ρ
ν −BνρW

I ρ
µ ) − + N/A OH

2
BW

2 Q
(3)

WBH
2
D

2

��O
M
4 [Dµ

H
†
τ
I
D

ν
H ](BµρW̃

I ρ
ν +BνρW̃

I ρ
µ ) + − N/A ÕH

2
BW

3 Q
(6)

WBH
2
D

2

��O
M
5 [Dµ

H
†
DµH ]W I

νρW̃
I νρ + − N/A ÕH

2
W

2

1 Q
(3)

W
2
H

2
D

2

��O
M
6 i ǫ

IJK [Dµ
H

†
τ
I
D

ν
H ](W J

µρW̃
K ρ
ν + W̃

J
µρW

K ρ
ν ) + − N/A ÕH

2
W

2

3 Q
(6)

W
2
H

2
D

2

��O
T
1 BµνB

µν
BρσB̃

ρσ + − N/A ÕB
4

1 Q
(3)

B
4

��O
T
2 BµνB̃

µν
W

I
ρσW

I ρσ + − N/A ÕB
2
W

2

1 Q
(5)

W
2
B

2

��O
T
3 BµνB

µν
W

I
ρσW̃

I ρσ + − N/A ÕB
2
W

2

2 Q
(6)

W
2
B

2

��O
T
4 BµνW

I µν
BρσW̃

I ρσ + − N/A ÕB
2
W

2

3 Q
(7)

W
2
B

2

��O
T
5 W

I
µνW

I µν
W

J
ρσW̃

J ρσ + − N/A ÕW
4

1 Q
(5)

W
4

��O
T
6 W

I
µνW

J µν
W

I
ρσW̃

J ρσ + − N/A ÕW
4

2 Q
(6)

W
4

Table 2: As in Table 1, but for the CP-odd aQGC operators. We write “N/A” for the conversion to
Ref. [3] as that work did not consider CP-odd operators.

hypercharge field strength. Accordingly, the parity transformation of an operator is simply
controlled by the number of dual field strength tensors.

Charge conjugation is more subtle. Our description of CP transformations follows Ref. [5]
(correcting minor sign issues noticed in Eqs. (4.1) and (4.3) of that work). Let us consider
fields transforming under an SU(N) gauge group. The definition of charge conjugation then
involves a matrix C acting on fundamental indices, which is unitary so C†C = I and satisfies
CC∗ = ±I. For N odd, only the plus sign is allowed in the latter equality. A fundamental
representation can then be defined to transform as C: H → CH∗. For consistency, an ad-
joint representation (analogous to an HH† combination of fundamentals) then transforms as
C: W → −CW TC†, where the overall phase should be just a sign for a real representation and
should be a minus sign to preserve the Lie algebra. In the Abelian case, the above gauge-field
transformation reduces to C: B → −B.

A combination like H†
aW1...WnHb, which arises in M-type operators, then transforms as

follows:
C : H†

aW1...WnHb → (HT
a C

†)(−CW T
1 C

†)...(−CW T
n C

†)(CH∗
b )

= (−1)nH†
bWn...W1Ha.

(2)

We thus see that charge conjugation reverses the order of the fields and introduces an extra
minus sign for odd numbers of adjoint representations. For instance, the OM

9 and ��O
M
6 opera-

tors involve two terms of the form (DµH)†[Wµρ, W̃νρ](DνH), which transform under charge
conjugation as

C : (DµH)†[Wµρ, W̃νρ](DνH) → (DνH)†[W̃νρ,Wµρ](DµH)

= (DµH)†[W̃µρ,Wνρ](DνH),

(3)

where the last equality only involves a relabeling of the Lorentz indices. In such a combination
of fields, the adjoint field strength and its dual are therefore just exchanged (leaving all indices
untouched). Since OM

9 is by construction odd under this exchange, it is therefore odd under

4



charge conjugation. Given that OM
9 is also odd under parity (because of the dual field strength),

it is actually CP-even. On the contrary, ��O
M
6 is even under the exchange of the field strength

and its dual. It is therefore even under charge conjugation, while also being parity odd, so it is
CP-odd altogether.

There are two specific realizations of the C matrix often employed in the literature (see
again Ref. [5]): one symmetric CS = I, and one skew CA = iσ2. The latter satisfies CAC

∗
A =

−I and is allowed for SU(N) with N = 2 even as in the electroweak sector of the SM. With
these specific representations, the transformation of various field components and combinations
are the following:

CS : H → H∗,

CS : Bµν → −Bµν ,

CS : W
I
µν → f(1− δI2)W

I
µν ,

CS : (D
µH†τ IDνH)→f(δI2)(D

νH†τ IDµH),

CA : H → (iσ2)H
∗,

CA : Bµν → −Bµν ,

CA : W
I
µν → +W I

µν ,

CA : (D
µH†τ IDνH)→−(DνH†τ IDµH),

(4)

where the final result on the last line can be derived from that of the first line. Note that this
final expression involves an interchange µ ↔ ν in addition to the prefactor (which cancels out
in both cases in a (DµH†τ IDνH)W I

ρσ combination).

4 Monte Carlo implementation

An implementation of the C-even and P-even operators of Refs. [1–3] in a UFO model enabling
event generation in various Monte Carlo simulation tools is available at
https://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling.

The code provided by the authors of Ref. [9] at https://www.fuw.edu.pl/smeft also allows
one to generate a UFO model implementation of the aQGC operators following the conventions
of Ref. [6] (see also the conversion between the two bases provided at
https://www.fuw.edu.pl/smeft/Validation.pdf).

We provide an implementation of all the dimension-eight aQGC operators listed in Table 1 and
Table 2 at https://github.com/gdurieux/aqgc. Adopting the same parameter naming as
in AnomalousGaugeCoupling whenever possible, the coefficients of the implemented opera-
tors satisfy the following relations, deriving directly from the map between operators provided
in Table 1:

FS0 = cS2

FS1 = cS3

FS2 = cS1

FM0 = 2 cM7

FM1 = −2 cM6− cM8

FM2 = cM2

FM3 = −cM1

FM4 = cM3

FM5 = cM5

FM7 = −2 cM8

FM8 = cM4

FM9 = cM9

FT0 = 4 cT7− 4 cT10

FT1 = −8 cT8 + 4 cT9− 4 cT10

FT2 = 16 cT10

FT3 = 16 cT8

FT4 = 8 cT4

FT5 = 2 cT3− 2 cT6

FT6 = −4 cT4 + 2 cT5− 2 cT6

FT7 = 8 cT6

FT8 = cT1− 2 cT2

FT9 = 4 cT2,

(5)

where, for convenience, we introduced the following shorthand notation for the coefficients of

5
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the operators defined in Refs. [4, 6]:

cS1 ≡ cH
4

1 = c
(1)

H
4

cS2 ≡ cH
4

2 = c
(2)

H
4

cS3 ≡ cH
4

3 = c
(3)

H
4

cM1 ≡ cH
2
B

2

1 = c
(1)

B
2
H

2
D

2

cM2 ≡ cH
2
B

2

2 = c
(2)

B
2
H

2
D

2

cM3 ≡ cH
2
BW

1 = c
(1)

WBH
2
D

2

cM4 ≡ c̃H
2
BW

2 = c
(5)

WBH
2
D

2

cM5 ≡ cH
2
BW

3 = c
(4)

WBH
2
D

2

cM6 ≡ cH
2
W

2

1 = c
(1)

W
2
H

2
D

2

cM7 ≡ cH
2
W

2

2 = c
(2)

W
2
H

2
D

2

cM8 ≡ cH
2
W

2

3 = c
(4)

W
2
H

2
D

2

cM9 ≡ c̃H
2
W

2

2 = c
(5)

W
2
H

2
D

2

cT1 ≡ cB
4

1 = c
(1)

B
4

cT2 ≡ cB
4

2 = c
(2)

B
4

cT3 ≡ cB
2
W

2

1 = c
(1)

W
2
B

2

cT4 ≡ cB
2
W

2

2 = c
(2)

W
2
B

2

cT5 ≡ cB
2
W

2

3 = c
(3)

W
2
B

2

cT6 ≡ cB
2
W

2

4 = c
(4)

W
2
B

2

cT7 ≡ cW
4

1 = c
(1)

W
4

cT8 ≡ cW
4

2 = c
(2)

W
4

cT9 ≡ cW
4

3 = c
(3)

W
4

cT10 ≡ cW
4

4 = c
(4)

W
4 .

(6)

5 Massless amplitudes

Considering massless amplitudes instead of operators, one can readily form linear combina-
tions with definite C and P transformation properties. This provides an alternative view on
the independent aQGC gauge and kinematic structures. Table 3 lists these independent linear
combinations. They are symmetric under the exchange of identical bosons as required by Bose
statistics. Momenta and gauge indices are all substituted by the corresponding particle labels.
Parity just exchanges square and angle spinors, which is equivalent to a complex conjugation
of the kinematic structures. Charge conjugation effectively acts as a complex conjugation of
the gauge structure, in combination with an exchange of conjugate particle labels. It therefore
exchanges the t and u Mandelstam invariants in various amplitudes of Table 3. The only gauge
structure that is effectively C-odd is the anticommutator [τ 1, τ 2]43, appearing in W1W2H

∗
3H4

amplitudes, that is sent to its Hermitian conjugate according to Eq. (2).

6 Outlook

In the absence of unambiguous signs of new light states, SMEFT is perhaps our best tool for
constraining and characterizing heavy new physics using measurements at currently accessible
scales. Interestingly, the coverage of the SMEFT operator coefficient space by healthy ultra-
violet completions is not uniform: certain signs and magnitudes of operator coefficients can
be forbidden, irrespective of the details of new physics, using general axioms of quantum field
theory, specifically unitarity, causality, and locality [10]. These principles, and in particular
their consequences for the analytic properties of forward scattering amplitudes, lead to “posi-
tivity bounds” on the SMEFT coefficients, which are particularly powerful at mass dimension
eight, including the aQGCs (see, e.g., Ref. [4,11]). As the LHC collaborations are placing con-
straints on aQGC coefficients, facilitating the use of positivity constraints would be desirable.
A first step in this direction was made here, by providing a complete reference basis of aQGC
operators.
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particles gauge structure kinematics C P coefficient

H
∗
1H

∗
2H3H4 δ

3
1δ

4
2 + δ

4
1δ

3
2 s

2 + + i
2c

S
2

δ
3
1δ

4
2 + δ

4
1δ

3
2 t

2 + u
2 + + i

4 (c
S
1 + c

S
3 )

δ
3
1δ

4
2 − δ

4
1δ

3
2 t

2 − u
2 + + − i

4 (c
S
1 − c

S
3 )

B1B2H
∗
3H4 ([12]2 + 〈12〉2) s + + i

4 (c
M
1 + 4cM2 )

([12]2 − 〈12〉2) s + − −✁c
M
1

[1(3− 4)2〉2 + 〈1(3− 4)2]2 + + − i
8c

M
1

W1B2H
∗
3H4 [τ1]43 ([12]2 + 〈12〉2) s + + i

4 (2c
M
3 + c

M
5 )

[τ1]43 ([12]2 − 〈12〉2) s + − − 1
4 (2✁c

M
2 + ✁c

M
4 )

[τ1]43 ([12]2 + 〈12〉2) (t− u) − + − 1
4✁c

M
3

[τ1]43 ([12]2 − 〈12〉2) (t− u) − − − i
4c

M
4

[τ1]43 [1(3− 4)2〉2 + 〈1(3− 4)2]2 + + − i
8c

M
5

[τ1]43 [1(3− 4)2〉2 − 〈1(3− 4)2]2 + − 1
8✁c

M
4

W1W2H
∗
3H4 δ

12
δ
4
3 ([12]2 + 〈12〉2) s + + i

4 (c
M
6 + 4cM7 )

δ
12
δ
4
3 ([12]2 − 〈12〉2) s + − −✁c

M
5

[τ1, τ2]43 ([12]2 + 〈12〉2) (t− u) + + i
4c

M
8

[τ1, τ2]43 ([12]2 − 〈12〉2) (t− u) + − − 1
2✁c

M
6

δ
12
δ
4
3 [1(3− 4)2〉2 + 〈1(3− 4)2]2 + + − i

8c
M
6

[τ1, τ2]43 [1(3− 4)2〉2 − 〈1(3− 4)2]2 − − i
4c

M
9

B1B2B3B4 ([12]2[34]2 + 〈12〉2〈34〉2) + perm. + + 8i(cT1 − c
T
2 )

([12]2[34]2 − 〈12〉2〈34〉2) + perm. + − −8✁c
T
1

([12]2〈34〉2 + 〈12〉2[34]2) + perm. + + 8i(cT1 + c
T
2 )

B1B2W3W4 δ
34 [12]2[34]2 + 〈12〉2〈34〉2 + + 4i(cT3 − c

T
4 )

δ
34 [12]2[34]2 − 〈12〉2〈34〉2 + − −4(cT2 + c

T
3 )

δ
34 ([13]2[24]2 + [14]2[23]2) + (〈13〉2〈24〉2 + 〈14〉2〈23〉2) + + 2i(cT5 − c

T
6 )

δ
34 ([13]2[24]2 + [14]2[23]2)− (〈13〉2〈24〉2 + 〈14〉2〈23〉2) + − −2✁c

T
4

δ
34 [12]2〈34〉2 + 〈12〉2[34]2 + + 4i(cT3 + c

T
4 )

δ
34 [12]2〈34〉2 − 〈12〉2[34]2 + − −4(✁c

T
2 − ✁c

T
3 )

δ
34 [13]2〈24〉2 + [14]2〈23〉+ 〈13〉2[24]2 + 〈14〉2[23]2 + + 2i(cT5 + c

T
6 )

W1W2W3W4 δ
12
δ
34 + perm. ([12]2[34]2 + 〈12〉2〈34〉2) + perm. + + 4i(cT9 − c

T
10)

δ
12
δ
34 + perm. ([12]2[34]2 − 〈12〉2〈34〉2) + perm. + − −4✁c

T
6

{δ12δ34 ([12]2[34]2 + 〈12〉2〈34〉2)}+ perm. + + 4i(2cT7 − 2cT8 − c
T
9 + c

T
10)

{δ12δ34 ([12]2[34]2 − 〈12〉2〈34〉2)}+ perm. + − −4(2✁c
T
5 − ✁c

T
6 )

δ
12
δ
34 + perm. ([12]2〈34〉2 + 〈12〉2[34]2) + perm. + + 4i(cT9 + c

T
10)

{δ12δ34 ([12]2〈34〉2 + 〈12〉2[34]2)}+ perm. + + 4(2cT7 + 2cT8 − c
T
9 − c

T
10)

Table 3: Independent linear combinations of massless dimension-eight amplitudes involving four elec-
troweak bosons. The CP-even coefficients are given in terms of the shorthand notation of Eq. (6).
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