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Abstract
In this note, we give a definitive basis for the dimension-eight opera-
tors leading to quartic—but no cubic—interactions among electroweak
gauge bosons. These are often called anomalous quartic gauge cou-
plings, or aQGCs. We distinguish in particular the CP-even ones from
their CP-odd counterparts.
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1 Basis9

We consider the effective field theory of the standard model (SMEFT) at mass dimension eight,10

in particular, operators built out of at least four Higgs and electroweak gauge bosons, generating11

anomalous quartic gauge couplings (aQGCs). We will denote operators that are CP-even as Oi12

and CP-odd ones as��Oi. The basis contains operators quartic in the Higgs (S-type), bi-quadratic13

in the Higgs and gauge field strengths (M-type), and quartic in the gauge field strengths (T-14

type). Throughout, we will use square brackets to indicate contraction of fundamental SU(2)15

indices. The full CP-even aQGC basis is given by the OS
i , OM

i , and OT
i operators in Table 1.16

For completeness, the full basis of CP-odd terms is given by the ��OM
i and ��OT

i operators in17

Table 2. There are no S-type CP-odd terms.18

2 Literature comparison19

A brief comparison with the literature is useful. To our knowledge, no complete basis of aQGC20

operators with CP properties correctly identified has previously appeared. In this section, we21

*Editors
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will focus on the CP-even sector of the aQGC basis. The basis presented by Almeida, Éboli,22

Gonzalez-Garcia, and Mizukoshi in Refs. [1–3] lists operators that are both C-even and P-23

even and does not include two operators that are C-odd and P-odd, but CP-even. One is of24

(DH)2BW form and was identified in in Ref. [4]. Similarly, Ref. [3] contains only three25

(DH)2W 2 operators, though in fact there are four independent such terms in the CP-even basis.26

(Ref. [1] contained a different fourth operator, but it was found to be redundant with the three27

others in Ref. [2].) The original basis of T-type CP-even operators presented in Refs. [1, 2], all28

of which are both C-even and P-even, was incomplete. This was corrected first in Ref. [4], and29

subsequently in the updated basis of Ref. [3], which agrees.30

The counting of operators, of both CP-even and CP-odd type, agrees with the Hilbert31

series analysis of Ref. [5] by Kondo, Murayama, and Okabe. However, the identification of32

which specific operators are CP-even and -odd in that paper contains an error. While Ref. [5]33

identifies OM
9 as CP-odd and��OM

6 as CP-even, Ref. [4] counts them both as CP-odd. Both being34

P-odd, in fact ��OM
6 is C-even, and OM

9 is C-odd. The result is that OM
9 is CP-even and ��OM

6 is35

CP-odd. Similarly, Ref. [4] misidentified ��OM
3 as CP-even and OM

8 as CP-odd. Thus, while36

Ref. [4] contained all the operators, it had two errors associated with the CP transformation37

properties. The presence of a single error was noted in Ref. [5], although the wrong operator38

was identified in that paper.39

In Table 1, we further outline the correspondence of our basis with the lists of CP-even40

operators in Refs. [3], [4], and [6]; see also Ref. [7]. The basis choices and notation of Refs. [4]41

and [6] explicitly identify the field content of each operator and, via the use of dual field42

strengths, cleanly categorize operators by their polarization structure. However, where pos-43

sible, in this note we have chosen to follow the widely used conventions of Ref. [3], for the44

sake of compatibility with earlier simulations and experimental bounds. That is, we choose to45

introduce a minimal completion of Ref. [3] to a full basis of CP-even operators. In any case,46

for maximum utility and convenience, we provide a complete dictionary among all of these47

different conventions. The correspondence in the CP-odd case (not considered in Ref. [3]) is48

provided in Table 2.49

In this note, we do not discuss operators at mass dimension six, for which the full basis50

has been identified elsewhere [8]. A useful endeavor, beyond the scope of this note, would be51

to identify the larger basis of operators in the Higgs effective field theory (HEFT). We leave52

such considerations to future work.53

3 C and P54

Given the subtleties associated with CP properties, we briefly review these details here.55

Consider parity first. This is very straightforward. The Higgs is a (parity even) scalar, and56

derivatives transform as f(µ), where f(µ) = −1 + 2δµ0 equals 1 for µ = 0 and −1 otherwise,57

so that gauge bosons transform as58

P : W I
µν → f(µ)f(ν) W I

µν ,

P : W̃ I
µν → −f(µ)f(ν) W̃ I

µν ,
(1)

where the sign in the second case arises from P : ϵµνρσ → −ϵµνρσ (although note that ϵIJK59

will not flip sign, as parity is a spacetime transformation). An identical result holds for the60

hypercharge field strength. Accordingly, the parity transformation of an operator is simply61

controlled by the number of dual field strength tensors.62
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aQGC Operator Basis C P AEG [3] RR [4] M [6]

��OM
1 [DµH†DµH]BνρB̃

νρ + − N/A ÕH
2
B

2

1 Q
(3)

B
2
H

2
D

2

��OM
2 [DµH†τ IDµH]BνρW̃

I νρ + − N/A ÕH
2
BW

1 Q
(2)

WBH
2
D

2

��OM
3 i[DµH†τ IDνH](BµρW

I ρ
ν −BνρW

I ρ
µ ) − + N/A OH

2
BW

2 Q
(3)

WBH
2
D

2

��OM
4 [DµH†τ IDνH](BµρW̃

I ρ
ν +BνρW̃

I ρ
µ ) + − N/A ÕH

2
BW

3 Q
(6)

WBH
2
D

2

��OM
5 [DµH†DµH]W I

νρW̃
I νρ + − N/A ÕH

2
W

2

1 Q
(3)

W
2
H

2
D

2
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6 i ϵIJK [DµH†τ IDνH](W J

µρW̃
K ρ
ν + W̃ J

µρW
K ρ
ν ) + − N/A ÕH
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W

2

3 Q
(6)

W
2
H

2
D

2

��OT
1 BµνB

µνBρσB̃
ρσ + − N/A ÕB

4

1 Q
(3)

B
4

��OT
2 BµνB̃

µνW I
ρσW

I ρσ + − N/A ÕB
2
W

2

1 Q
(5)

W
2
B

2

��OT
3 BµνB

µνW I
ρσW̃

I ρσ + − N/A ÕB
2
W

2

2 Q
(6)

W
2
B

2

��OT
4 BµνW

I µνBρσW̃
I ρσ + − N/A ÕB

2
W

2

3 Q
(7)

W
2
B

2

��OT
5 W I

µνW
I µνW J

ρσW̃
J ρσ + − N/A ÕW

4

1 Q
(5)

W
4

��OT
6 W I

µνW
J µνW I

ρσW̃
J ρσ + − N/A ÕW

4

2 Q
(6)

W
4

Table 2: As in Table 1, but for the CP-odd aQGC operators. We write “N/A” for the conversion to
Ref. [3] as that work did not consider CP-odd operators.

Charge conjugation is more subtle. Our description of CP transformations will follow63

Ref. [5] (correcting minor sign issues noticed in Eqs. (4.1) and (4.3) of that work). Let us con-64

sider fields transforming under an SU(N) gauge group. The definition of charge conjugation65

then involves a matrix C acting on fundamental indices, which is unitary so C†C = I and66

satisfies CC∗ = ±I. For N odd, only the plus sign is allowed in the latter equality. A funda-67

mental representation can then be defined to transform as C: H → CH∗. For consistency, an68

adjoint representation (analogous to an HH† combination of fundamentals) then transforms as69

C: W → −CW TC†, where the overall phase should be just a sign for a real representation and70

should be a minus sign to preserve the Lie algebra. In the Abelian case, the above gauge-field71

transformation reduces to C: B → −B.72

A combination like H†
aW1...WnHb, which arises in M-type operators, then transforms as73

follows:74

C : H†
aW1...WnHb → (HT

a C
†)(−CW T

1 C
†)...(−CW T

n C
†)(CH∗

b )

= (−1)nH†
bWn...W1Ha.

(2)

We thus see that charge conjugation reverses the order of the fields and introduces an extra75

minus sign for odd numbers of adjoint representations. For instance, the OM
9 and ��OM

6 opera-76

tors involve two terms of the form (DµH)†[Wµρ, W̃νρ](DνH), which transform under charge77

conjugation as78

C : (DµH)†[Wµρ, W̃νρ](DνH) → (DνH)†[W̃νρ,Wµρ](DµH)

= (DµH)†[W̃µρ,Wνρ](DνH),

(3)

where the last equality only involves a relabeling of the Lorentz indices. In such a combination79

of fields, the adjoint field strength and its dual are therefore just exchanged (leaving all indices80

untouched). Since OM
9 is by construction odd under this exchange, it is therefore odd under81

charge conjugation. Given that OM
9 is also odd under parity (because of the dual field strength),82

it is actually CP-even. On the contrary, ��OM
6 is even under the exchange of the field strength83

4
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and its dual. It is therefore even under charge conjugation, while also being parity odd, so it is84

CP-odd altogether.85

There are two specific realizations of the C matrix often employed in the literature (see86

again Ref. [5]): one symmetric CS = I, and one skew CA = iσ2. The latter satisfies CAC
∗
A =87

−I and is allowed for SU(N) with N = 2 even as in the electroweak sector of the SM. With88

these specific representations, the transformation of various field components and combinations89

are the following:90

CS : H → H∗,

CS : Bµν → −Bµν ,

CS : W
I
µν → f(1− δI2)W

I
µν ,

CS : (D
µH†τ IDνH)→f(δI2)(D

νH†τ IDµH),

CA : H → (iσ2)H
∗,

CA : Bµν → −Bµν ,

CA : W
I
µν → +W I

µν ,

CA : (D
µH†τ IDνH)→−(DνH†τ IDµH),

(4)

where the final result on the last line can be derived from that of the first line. Note that this91

final expression involves an interchange µ ↔ ν in addition to the prefactor (which cancels out92

in both cases in a (DµH†τ IDνH)W I
ρσ combination).93

4 Monte Carlo implementation94

An implementation of the C-even and P-even operators of Refs. [1–3] in a UFO model enabling95

event generation in various Monte Carlo simulation tools is available at https://feynrules.96

irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling. The code provided by the authors of97

Ref. [9] at https://www.fuw.edu.pl/smeft also allows one to generate a UFO model imple-98

mentation of the aQGC operators following the conventions of Ref. [6] (see also the conversion99

between the two bases provided at https://www.fuw.edu.pl/smeft/Validation.pdf).100

We provide an implementation of all the dimension-eight aQGC operators listed in Table 1101

and Table 2 at https://github.com/gdurieux/aqgc. Adopting the same parameter naming102

as in AnomalousGaugeCoupling whenever possible, the coefficients of the implemented oper-103

ators satisfy the following relations, deriving directly from the map between operators provided104

in Table 1:105

FS0 = cS2

FS1 = cS3

FS2 = cS1

FM0 = 2 cM7

FM1 = −2 cM6− cM8

FM2 = cM2

FM3 = −cM1

FM4 = cM3

FM5 = cM5

FM7 = −2 cM8

FM8 = cM4

FM9 = cM9

FT0 = 4 cT7− 4 cT10

FT1 = −8 cT8+ 4 cT9− 4 cT10

FT2 = 16 cT10

FT3 = 16 cT8

FT4 = 8 cT4

FT5 = 2 cT3− 2 cT6

FT6 = −4 cT4+ 2 cT5− 2 cT6

FT7 = 8 cT6

FT8 = cT1− 2 cT2

FT9 = 4 cT2,

(5)

5
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where, for convenience, we introduced the following shorthand notation for the coefficients of106

the operators defined in Refs. [4, 6]:107

cS1 ≡ cH
4

1 = c
(1)

H
4

cS2 ≡ cH
4

2 = c
(2)

H
4

cS3 ≡ cH
4

3 = c
(3)

H
4

cM1 ≡ cH
2
B

2

1 = c
(1)

B
2
H

2
D

2

cM2 ≡ cH
2
B

2

2 = c
(2)

B
2
H

2
D

2

cM3 ≡ cH
2
BW

1 = c
(1)

WBH
2
D

2

cM4 ≡ c̃H
2
BW

2 = c
(5)

WBH
2
D

2

cM5 ≡ cH
2
BW

3 = c
(4)

WBH
2
D

2

cM6 ≡ cH
2
W

2

1 = c
(1)

W
2
H

2
D

2

cM7 ≡ cH
2
W

2

2 = c
(2)

W
2
H

2
D

2

cM8 ≡ cH
2
W

2

3 = c
(4)

W
2
H

2
D

2

cM9 ≡ c̃H
2
W

2

2 = c
(5)

W
2
H

2
D

2

cT1 ≡ cB
4

1 = c
(1)

B
4

cT2 ≡ cB
4

2 = c
(2)

B
4

cT3 ≡ cB
2
W

2

1 = c
(1)

W
2
B

2

cT4 ≡ cB
2
W

2

2 = c
(2)

W
2
B

2

cT5 ≡ cB
2
W

2

3 = c
(3)

W
2
B

2

cT6 ≡ cB
2
W

2

4 = c
(4)

W
2
B

2

cT7 ≡ cW
4

1 = c
(1)

W
4

cT8 ≡ cW
4

2 = c
(2)

W
4

cT9 ≡ cW
4

3 = c
(3)

W
4

cT10 ≡ cW
4

4 = c
(4)

W
4 .

(6)

5 Massless amplitudes108

Considering massless amplitudes instead of operators, one can readily form linear combina-109

tions with definite C and P transformation properties. This provides an alternative view on110

the independent aQGC gauge and kinematic structures. Table 3 lists these independent linear111

combinations. They are symmetric under the exchange of identical bosons as required by Bose112

statistics. Momenta and gauge indices are all substituted by the corresponding particle labels.113

Parity just exchanges square and angle spinors, which is equivalent to a complex conjugation114

of the kinematic structures. Charge conjugation effectively acts as a complex conjugation of115

the gauge structure, in combination with an exchange of conjugate particle labels. It therefore116

exchanges the t and u Mandelstam invariants in various amplitudes of Table 3. The only gauge117

structure that is effectively C-odd is the anticommutator [τ 1, τ 2]43, appearing in W1W2H
∗
3H4118

amplitudes, that is sent to its Hermitian conjugate according to Eq. (2).119

6 Outlook120

In the absence of unambiguous signs of new light states, SMEFT is perhaps our best tool for121

constraining and characterizing heavy new physics using measurements at currently accessible122

scales. Interestingly, the coverage of the SMEFT operator coefficient space by healthy ultra-123

violet completions is not uniform: certain signs and magnitudes of operator coefficients can124

be forbidden, irrespective of the details of new physics, using general axioms of quantum field125

theory, specifically unitarity, causality, and locality [10]. These principles, and in particular126

their consequences for the analytic properties of forward scattering amplitudes, lead to “posi-127

tivity bounds” on the SMEFT coefficients, which are particularly powerful at mass dimension128

eight, including the aQGCs (see, e.g., Ref. [4,11]). As the LHC collaborations are placing con-129

straints on aQGC coefficients, facilitating the use of positivity constraints would be desirable.130

A first step in this direction was made here, by providing a complete reference basis of aQGC131

operators.132
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particles gauge structure kinematics C P coefficient

H∗
1H

∗
2H3H4 δ31δ

4
2 + δ41δ

3
2 s2 + + i

2c
S
2

δ31δ
4
2 + δ41δ

3
2 t2 + u2 + + i

4 (c
S
1 + cS3 )

δ31δ
4
2 − δ41δ

3
2 t2 − u2 + + − i

4 (c
S
1 − cS3 )

B1B2H
∗
3H4 ([12]2 + ⟨12⟩2) s + + i

4 (c
M
1 + 4cM2 )

([12]2 − ⟨12⟩2) s + − −�c
M
1

[1(3− 4)2⟩2 + ⟨1(3− 4)2]2 + + − i
8c

M
1

W1B2H
∗
3H4 [τ1]43 ([12]2 + ⟨12⟩2) s + + i

4 (2c
M
3 + cM5 )

[τ1]43 ([12]2 − ⟨12⟩2) s + − − 1
4 (2�c

M
2 + �c

M
4 )

[τ1]43 ([12]2 + ⟨12⟩2) (t− u) − + − 1
4�c

M
3

[τ1]43 ([12]2 − ⟨12⟩2) (t− u) − − − i
4c

M
4

[τ1]43 [1(3− 4)2⟩2 + ⟨1(3− 4)2]2 + + − i
8c

M
5

[τ1]43 [1(3− 4)2⟩2 − ⟨1(3− 4)2]2 + − 1
8�c

M
4

W1W2H
∗
3H4 δ12δ43 ([12]2 + ⟨12⟩2) s + + i

4 (c
M
6 + 4cM7 )

δ12δ43 ([12]2 − ⟨12⟩2) s + − −�c
M
5

[τ1, τ2]43 ([12]2 + ⟨12⟩2) (t− u) + + i
4c

M
8

[τ1, τ2]43 ([12]2 − ⟨12⟩2) (t− u) + − − 1
2�c

M
6

δ12δ43 [1(3− 4)2⟩2 + ⟨1(3− 4)2]2 + + − i
8c

M
6

[τ1, τ2]43 [1(3− 4)2⟩2 − ⟨1(3− 4)2]2 − − i
4c

M
9

B1B2B3B4 ([12]2[34]2 + ⟨12⟩2⟨34⟩2) + perm. + + 8i(cT1 − cT2 )

([12]2[34]2 − ⟨12⟩2⟨34⟩2) + perm. + − −8�c
T
1

([12]2⟨34⟩2 + ⟨12⟩2[34]2) + perm. + + 8i(cT1 + cT2 )

B1B2W3W4 δ34 [12]2[34]2 + ⟨12⟩2⟨34⟩2 + + 4i(cT3 − cT4 )

δ34 [12]2[34]2 − ⟨12⟩2⟨34⟩2 + − −4(cT2 + cT3 )

δ34 ([13]2[24]2 + [14]2[23]2) + (⟨13⟩2⟨24⟩2 + ⟨14⟩2⟨23⟩2) + + 2i(cT5 − cT6 )

δ34 ([13]2[24]2 + [14]2[23]2)− (⟨13⟩2⟨24⟩2 + ⟨14⟩2⟨23⟩2) + − −2�c
T
4

δ34 [12]2⟨34⟩2 + ⟨12⟩2[34]2 + + 4i(cT3 + cT4 )

δ34 [12]2⟨34⟩2 − ⟨12⟩2[34]2 + − −4(�c
T
2 − �c

T
3 )

δ34 [13]2⟨24⟩2 + [14]2⟨23⟩+ ⟨13⟩2[24]2 + ⟨14⟩2[23]2 + + 2i(cT5 + cT6 )

W1W2W3W4 δ12δ34 + perm. ([12]2[34]2 + ⟨12⟩2⟨34⟩2) + perm. + + 4i(cT9 − cT10)

δ12δ34 + perm. ([12]2[34]2 − ⟨12⟩2⟨34⟩2) + perm. + − −4�c
T
6

{δ12δ34 ([12]2[34]2 + ⟨12⟩2⟨34⟩2)}+ perm. + + 4i(2cT7 − 2cT8 − cT9 + cT10)

{δ12δ34 ([12]2[34]2 − ⟨12⟩2⟨34⟩2)}+ perm. + − −4(2�c
T
5 − �c

T
6 )

δ12δ34 + perm. ([12]2⟨34⟩2 + ⟨12⟩2[34]2) + perm. + + 4i(cT9 + cT10)

{δ12δ34 ([12]2⟨34⟩2 + ⟨12⟩2[34]2)}+ perm. + + 4(2cT7 + 2cT8 − cT9 − cT10)

Table 3: Independent linear combinations of massless dimension-eight amplitudes involving four elec-
troweak bosons. The CP-even coefficients are given in terms of the shorthand notation of Eq. (6).
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