Experimental Overview

Jan Steggemann (EPFL/ETHZ), Nicolas Berger (LAPP Annecy) VBF Workshop, October 29-31, 2024

VBF Production

Second-largest Higgs production mode (~7%)

Clean signature

- Forward jets (large m_{ii} , large Δy_{ii})
- No color connection between jets
 ⇒ Low QCD activity in central region
- \Rightarrow Higher S/B than gg \rightarrow H
- \Rightarrow Can access $H \rightarrow \pi$, $H \rightarrow$ bb, as well as cleaner decays.

Key measurements:

- STXS, differential XS
- HVV couplings
- HVV CP
- Beyond single Higgs: HH, $H \rightarrow inv$, ...

Challenges

- QCD modeling (parton shower)
- Rejecting $gg \rightarrow H + jets$
- Jet performance (JES, pileup, ...)

Inclusive VBF Overview

	CMS	ATLAS
Н→үү	μ = 1.04 ±0.30(stat) ±0.06(theo) ±0.10(exp) <u>HIG-19-015</u>	$\sigma/\sigma_{_{SM}} = 1.20 \pm 0.18(\text{stat}) \pm 0.19(\text{syst})$ <u>HIGG-2020-16</u>
H→4l	μ = 0.48 ±0.41(stat) ±0.12(syst) <u>HIG-19-001</u>	$\sigma/\sigma_{_{SM}} = 1.21 \pm 0.44 \text{(stat)} \pm 0.06 \text{(theo)} \pm 0.10 \text{(exp)}$ HIGG-2018-28
H→WW*	μ = 0.71 ±0.26 <u>HIG-20-013</u>	σ/σ _{SM} = 0.93 ±0.13(stat) ±0.16(syst) <u>HIGG-2021-20</u>
H→bb	μ = 1.01 ±0.50 <u>HIG-22-009</u>	μ = 0.99 ±0.35 <u>HIGG-2019-04</u>
H→π	μ = 0.86 ±0.13(stat) ±0.05(theo) ±0.08(exp) HIG-19-010	σ/σ _{SM} = 0.93 ±0.12(stat) ±0.11(syst) <u>HIGG-2022-07</u>

General features

Reconstruction of the VBF system

- R=0.4 anti-kt jets
- ATLAS: use JVT, fJVT to reject pileup; CMS: PUPPI jets or pileup jet ID (for $p_{\tau} < 50$ GeV)
- Typically focus on $m_{ii} > ~350$ GeV, $|\Delta \eta_{ii}| > ~3$ region for the inclusive selection
- BDTs/NNs to further separate VBF from gg→H and non-Higgs backgrounds → Inputs: mainly jet kinematics
- Background estimation, signal reconstruction dependent on decay mode

MC Baseline

- Powheg Box v2 \Rightarrow Generation at NLO QCD, normalized to approx. NNLO QCD + NLO EW.
- Pythia 8 for UE/PS/hadronization
 - \rightarrow CMS: systematics from varying Pythia scales

 \rightarrow **ATLAS**: Pythia scale variations + alternate samples with Herwig7 \Rightarrow Two-point systematics on UE/PS/Had

Cross-section measurements

ATLAS & CMS H→TT

MVAs to reject backgrounds and separate Higgs production modes Data-driven modeling of large Z→ττ contribution

CMS (<u>HIG-19-010</u>): NN-based and cut-based analyses, VBF channel benefits most from NN (+30-40% sensitivity)

ATLAS (<u>arXiv:2407.16320</u>): "Second-wave" analysis out this Summer, with finer classification of VBF (\rightarrow STXS).

ATLAS & CMS H→TT

Similar inclusive uncertainties, but quite different uncertainty breakdown

Uncertainties

<u>CMS H→WW</u>

<u>ATLAS Η→ττ</u>

Production mode	ggF	ttH	VBF	VH
Best-fit value	0.94	0.77	0.93	0.91
Total uncertainty	±0.30	±0.97	±0.16	±0.62
Statistical uncertainty	±0.15	±0.82	±0.12	±0.52
Total systematic uncertainty	±0.26	±0.51	±0.11	±0.34
Samples size	±0.09	±0.32	± 0.03	±0.25
Theoretical uncertainty in signal	±0.19	±0.14	±0.10	±0.13
Jet and $E_{\rm T}^{\rm miss}$	±0.12	±0.14	±0.03	±0.11
Hadronic τ -lepton decays	± 0.05	±0.09	±0.01	± 0.04
Misidentified τ -lepton background	± 0.05	±0.05	±0.02	±0.11
Luminosity	± 0.01	± 0.01	± 0.01	± 0.02
Theoretical uncertainty in top-quark processes	± 0.01	±0.30	-	± 0.02
Theoretical uncertainty in Z + jets processes	± 0.03	±0.01	-	± 0.02
Flavour tagging	± 0.02	±0.05	±0.01	± 0.01
Electrons and muons	± 0.02	± 0.01	±0.01	± 0.02

Mainly UE/PS (Pythia8 vs. Herwig7), both for VBF, and ggF in VBF phase space

- + QCD μ_R/μ_F
- + $gg \rightarrow H$ jet-bin migrations
- + VBF ME (Powheg vs. MG)

Uncertainty source	$\Delta \mu / \mu$	$\Delta \mu_{\rm ggH} / \mu_{\rm ggH}$	$\Delta \mu_{\rm VBF}/\mu_{\rm VBF}$	$\Delta \mu_{\rm WH}/\mu_{\rm WH}$	$\Delta \mu_{\rm ZH}/\mu_{\rm ZH}$
Theory (signal)	4%	5%	13%	2%	<1%
Theory (background)	3%	3%	2%	4%	5%
Lepton misidentification	2%	2%	9%	15%	4%
Integrated luminosity	2%	2%	2%	2%	3%
b tagging	2%	2%	3%	$<\!\!1\%$	2%
Lepton efficiency	3%	4%	2%	1%	4%
Jet energy scale	1%	<1%	2%	$<\!1\%$	3%
Jet energy resolution	$<\!\!1\%$	1%	$<\!\!1\%$	$<\!1\%$	3%
$p_{\rm T}^{\rm miss}$ scale	$<\!1\%$	1%	<1%	2%	2%
PDF	1%	2%	$<\!1\%$	$<\!1\%$	2%
Parton shower	$<\!\!1\%$	2%	$<\!1\%$	1%	1%
Backg. norm.	3%	4%	6%	4%	6%
Stat. uncertainty	5%	6%	28%	21%	31%
Syst. uncertainty	9%	10%	23%	19%	11%
Total uncertainty	10%	11%	36%	29%	33%

Main differences w.r.t. ATLAS:

- PS uncertainties from varying Pythia PS weights (also dominant)
- Some of the analyses don't use the recommended dipole shower yet, to be improved for future measurements

Raffaele's talk has a nice discussion of the CMS uncertainty model

Cross-section measurements: STXS

EW qqH

 $= VBF + V(\rightarrow qq)H$

Stage 1.2

 $qq \rightarrow Hqq STXS$

Observed: CB-analysis

Observed: NN-analysis

Uncertainty on SM prediction

±1σ

-3-2-101234 1

Batio to SM

10 10² 10³

104 105 10

σB (fb)

ATLAS H \rightarrow tt: finer binning in 2nd wave analysis, probes $m_{ii} > 1500$, $p_{\tau}^{H} > 200$ GeV

11

$H \rightarrow WW^*$

 $m_{
m jj}[700,\infty]$

Cross-section measurements: Beyond STXS

VBF H→bb

Similar ATLAS/CMS strategy:

- Fit m_{bb} distribution in MVA categories (smooth QCD background)
- Use b-jet triggers (3-4 jets + 1-2 b-jets)
 - Not available in CMS in 2017
- Overall ε~1% but large event yields

CMS: μ = 1.01 ± 0.39 (stat) +0.39 -0.24 (syst)

Source of systematic uncertainty	Impact on signal strength [%]	Pythia dipole
VBF parton shower	13.0	snower vs.
Jet energy scale	7.7	Herwig
Trigger efficiency	6.7	
Parton shower (final-state radiation)	5.6	Pythia shower
		scales

ATLAS: μ=0.95 ± 0.32 (stat) +0.20 -0.17 (syst)

VBF H→bb

Similar ATLAS/CMS strategy:

- Fit m_{bb} distribution in MVA categories (smooth QCD background)
- Use b-jet triggers (3-4 jets + 1-2 b-jets)
 - Not available in CMS in 2017
- Overall ε~1% but large event yields

CMS: μ = 1.01 ± 0.39 (stat) +0.39 -0.24 (syst)

Source of systematic uncertainty	Impact on signal strength [%]	Pythia dipole
VBF parton shower	13.0	shower vs.
Jet energy scale	7.7	Herwig
Trigger efficiency	6.7	
Parton shower (final-state radiation)	5.6	Pythia shower
		scales

ATLAS: μ=0.95 ± 0.32 (stat) +0.20 -0.17 (syst)

ATLAS VBF+ γ H \rightarrow bb

HIGG-2020-14

GeV

Entries/10

 $\sigma(\mu_H)$ up

+0.80

+0.22

+0.52

+0.14

+0.21+0.08

+0.03

+0.20

+0.11

+0.04+1.04

+0.99

+0.32

- Require addition γ ($p_{\tau}^{H} > 30$ GeV) in final state
- Mainly sensitive to κ_w (κ_7 contribution suppressed by ISR/FSR interf.)
- Similar data-driven approach as VBF $H \rightarrow bb$
- Use Herwig7 PS due to issues with Pythia8

Inclusive $\mu = 1.3 \pm 1.0$

from theory

uncertainties

	Source of absolute uncertainty	$\sigma(\mu_H)$ down
Ongoing discussions	Statistical	
ongoing discussions	Data statistical	-0.78
on implementation	Bkg. fit shapes	-0.19
on implementation	Bkg. fit normalizations	-0.51
of STXS binning	Z boson normalizations	-0.15
	Systematic	
	Spurious signal	-0.24
	Theoretical	-0.01
insited impress	Photon	-0.01
	Jet	-0.06
rom theory	b-tagging	-0.02
rom theory	Auxiliary	-0.01
incertainties	Total	-0.99
	Total statistical	-0.96
	Total systematic	-0.25

VBFWH→ bb (ATLAS+CMS)

Search for WH \rightarrow bb with VBF-produced W: very small SM rate due to interference between $\kappa_W \& \kappa_Z$ diagrams \Rightarrow Flipping the relative sign of $\kappa_W \& \kappa_Z \Rightarrow$ large enhancement + different kinematics !

VBF production at high p_{τ}

VBF/ggH ratio rises vs Higgs p_{T} : Inclusively: VBF/total ~ 7% $p_{T}^{H} > 100 \text{ GeV}: \text{VBF/total} ~ 20\%$

VBF jets provide additional handle against background $i_{\perp}^{\frac{g}{2}}$ important at high p_{τ}):

- Expect similar sensitivity as ggH
- Also probes different BSM models

VBF H \rightarrow bb at high p_{T}

Leading systematic uncertainty: VBF parton shower (13% impact on signal strength)

HIG-21-020, Jennet Dickinson's talk at last year's LHC H WG meeting

Some excess at high p_T , driven by VBF channel ($\mu = 4.9 \pm 1.8$)

CP Measurements

HVV CP measurement

VBF jet kinematics sensitive to HVV interaction structure, in particular CP-even vs. CP-odd

 \rightarrow Probes possible CP-odd admixture in H(125) and CP violation in the Higgs sector

Observables:

- "Hand-crafted" CP-sensitive variables, e.g. (signed) $\Delta \phi_{\mu}$.
- **Optimal Observables**, using the full ME information to separate CP-even from CP-odd

Results presented as:

- SMEFT Warsaw basis (\tilde{c}_{HW} , \tilde{c}_{HB} , \tilde{c}_{HWB}) \rightarrow ATLAS, CMS SMEFT Higgs basis (\tilde{c}_{zz} , $\tilde{c}_{Z\gamma}$, $\tilde{c}_{\gamma\gamma}$) \rightarrow CMS
- Amplitude coefficients $(f_{a2}, f_{a3}, f_{A1}) \rightarrow CMS$

$$OO_1 = \frac{2\Re \left(M_{\rm SM}^* M_{\rm BSM} \right)}{\left| M_{\rm SM} \right|^2}$$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$$

$H \rightarrow WW^* CP$

CMS (<u>HIG-22-008</u>): Apply ME method to the qq \rightarrow qq(H \rightarrow WW*) process (also VH, ggH) \rightarrow Results in Warsaw, Higgs and f_{ai} bases.

ATLAS (<u>HIGG-2020-25</u>): measure diffXS of the $\Delta \phi jj$ variable, SMEFT interpretation in the unfolded distribution

- Better sensitivity for CMS thanks to ME approach and use of H→WW* decay and other production modes
- EFT validity seems good from lin/quad comparison
- Uncertainties mainly statistical (PS/modeling < 10%σ_{tot})

Η→ττ CP

CMS (<u>2205.05120</u>):

- Use matrix-element-based discriminators to distinguish between different production mechanisms, background, and anomalous couplings/CP admixtures
- Set constraints on Higgs-V anomalous couplings with 2 different approaches
- Combine with previous results in $H \rightarrow ZZ$ decays

Н→тт СР

ATLAS (<u>2407.16320</u>):

- Measure $H \rightarrow \tau \tau$ diffXS, in particular $\Delta \phi_{ii}$.
- Use $\Delta \phi_{ij}$ vs p_T^{H} distribution (2 x 2 bins) to set constraints on Warsaw basis SMEFT parameters
- Best current constraint on \tilde{C}_{HW} : -0.31 < \tilde{C}_{HW} < 0.88
- Mainly stat-dominated, leading uncertainties are exp.
- Could get even better with OO ?...

H→γγ (<u>HIGG-2020-08</u>):

- Categorization in BDTs for VBF/ggF and VBF/bkg
- Extract signal from m_{yy} fit in each OO bin.

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \rightarrow \tau \tau$	[-0.038, 0.036]	-	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

Beyond single Higgs

VBF HH production

q

ā

κ_{2V} = 0 would lead to strong enhancement of VBF HH at high m_{HH}.→ VBF HH→4b with highly boosted H→bb decays excellent probe

 $\overline{\mathbf{a}}$

CMS (<u>B2G-22-003</u>): 0.67 < κ_{2V} < 1.38 @ 95% CL ⇒ exclude κ_{2V} = 0 at > 5 σ

Summary

- VBF is a critical tool for the measurement of Higgs boson properties
- Main current directions:
 - Probe H(H)VV couplings strong constraints on κ_{2V} !
 - Probe for new physics in corners of phase space (high p_{T}^{H} , high m_{ii} ...)
 - Test Higgs boson CP
- Challenges and limitations (More in <u>Alessandro's talk</u> after this one!)
 - Parton shower! (known since a while now...)
 - ✓ ggF modeling and separation from VBF (see <u>Stephen's talk</u> tomorrow)
 → Sensitivity increasing with use of ML
 - ✓ Other theory issues (Missing HO, $gg \rightarrow H$ Njets distribution, ME, ...)
 - Experimental: jet energy scale, pileup rejection, ...
 - Can we target less VBF-like VBF ? (central jets, 0/1 jets, etc...)
- Much more to come in Run 3 and beyond!