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Dilatonic black holes in higher curvature string gravity
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We give analytical arguments and demonstrate numerically the existence of black hole solutions of the 4D
effective superstring action in the presence of Gauss-Bonnet quadratic curvature terms. The solutions posse
nontrivial dilaton hair. The hair, however, is of ‘‘secondary type,’’ in the sense that the dilaton charge is
expressed in terms of the black hole mass. Our solutions are not covered by the assumptions of existing proo
of the ‘‘no-hair’’ theorem. We also find some alternative solutions with singular metric behavior, but finite
energy. The absence of naked singularities in this system is pointed out.@S0556-2821~96!01920-0#
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I. INTRODUCTION

It has become evident in recent years that the propertie
black holes are modified when the theory of matter fields h
sufficient structure. In the presence of the low-energy d
grees of freedom characteristic of string theory@1#, i.e., dila-
tons, axions, and Abelian or Yang-Mills fields, it is possib
to have nontrivial static configurations for these fields ou
side the horizon, i.e., to have black holes with hair@2,3#. It is
not clear, however, whether these cases, in which the ‘‘n
hair theorem’’@4# does not apply@5#, represent stable solu-
tions. Explicit black hole solutions have been found also
string-effective theories involving higher-order curvatur
corrections to the Einstein gravity. They exhibit seconda
hair of the dilaton, axion, and modulus fields. The solutio
were approximate, in the sense that only a perturbat
analysis toO(a8) @6# andO(a82) @7# has been performed.
This analysis motivates the search for exact~to all orders in
a8) solutions within the framework of curvature-square
corrections to Einstein’s theory. Although the effect of th
higher-order curvature terms is not small for energy scales
order a8, from a local field theory point of view it makes
sense to look for this kind of solutions, with the hope o
drawing some useful conclusions that might be of relevan
to the low-energy limit of string theories.

In the present article we shall demonstrate the existen
of black hole solutions of the Einstein-dilaton system in th
presence of the higher-derivative, curvature squared ter
These solutions will be endowed with a nontrivial dilato
field outside the horizon, thus possessing dilaton hair. T
treatment of the quadratic terms will be nonperturbative a
the solutions are present for any value ofa8/g2. What we
shall argue in this paper is that the presence of these te
provides the necessary ‘‘repulsion’’ in the effective theo
that balances the gravitational attraction, thereby leading
black holes dressed with nontrivial classical dilaton hair. A
analogous phenomenon occurs already in the case
Einstein-Yang-Mills systems@3#. There the presence of the

*On leave of absence from Physics Department, University
Ioannina, Ioannina, Greece.
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non-Abelian gauge field repulsion balances the gravitation
attraction leading to black hole solutions with nontrivia
gauge and scalar~in Higgs systems! hair.

It is useful to discuss briefly the situation in effective
theories obtained from the string. We shall concentrate
the bosonic part of the gravitational multiplet which consis
of the dilaton, graviton, and antisymmetric tensor fields.
this work we shall ignore the antisymmetric tensor fo
simplicity.1 As is well known in low-energy effective field
theory, there are ambiguities in the coefficients of suc
terms, due to the possibility oflocal field redefinitions which
leave theS-matrix amplitudes of the effective field theory
invariant, according to theequivalencetheorem. ToO(a8)
the freedom of such redefinitions is restricted to two gene
structures, which cannot be removed by further redefinitio
@8#. One is a curvature-squared combination, and the othe
a four-derivative dilaton term. Thus, a generic form of th
string-inspiredO(a8) corrections to Einstein’s gravitation
have the form

L52
1

2
R2

1

4
~]mf!21

a8

8g2
ef@c1R21c2~]rf!4#, ~1!

wherea8 is the Regge slope,g2 is some gauge coupling
constant~in the case of the heterotic string that we conce
trate for physical reasons!, andR2 is a generic curvature-
dependent quadratic structure, which can always be fixed
correspond to the Gauss-Bonnet~GB! invariant

RGB
2 5RmnrsR

mnrs24RmnR
mn1R2. ~2!

The coefficientsc1, c2 are fixed by comparison with string-
scattering amplitude computations, ors-model b-function
analysis. It is known that in the three types of string theorie
bosonic, closed-type II superstring, and heterotic strings, t

of

1In four dimensions, the antisymmetric tensor field leads to th
axion hair, already discussed in Ref.@6#. Modulo unexpected sur-
prises, we do not envisage problems associated with its presenc
regards the results discussed in this work, and, hence, we ignor
for simplicity.
5049 © 1996 The American Physical Society
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5050 54P. KANTI et al.
ratio of thec1 coefficients is 2:0:1, respectively@8#. The case
of superstring II effective theory, then, is characterized
the absence of curvature-squared terms. In such theories
fourth-order dilaton terms can still be, and in fact they ar
present. In such a case, it is straightforward to see from
modern proof of the no-scalar-hair theorem of Ref.@4# that
such theories cannot sustain to orderO(a8), any nontrivial
dilaton hair. On the other hand, the presence of curvatu
squared terms can drastically change the situation, as
shall discuss in this article. There is a simple reason to exp
that in this case the no-scalar-hair theorem can be bypas
In the presence of curvature-squared terms, the modified E
stein’s equation leads to an effective stress tensor that
volves the gravitational field. This implies that the assum
tion of positive definiteness of the time component of th
tensor, which in the Einstein case is the local energy dens
of the field, may, and as we shall show it does indeed, bre
down. The second, but equally important, reason is that a
result of the higher-curvature terms, there is an induc
modification of the relationTt

t5Tu
u between the time and

angular components of the stress tensor, which was valid
the case of spherically symmetric Einstein theories of R
@4#.

The structure of the article is the following: In Sec. II w
give analytic arguments for the existence of scalar~dilaton!
hair of the black hole solution, which bypasses the con
tions for the no-hair theorem. In Sec. III we present an ana
sis of the black hole solutions. In Sec. IV we discuss alte
native solutions, some of which are interesting due to t
finite energy-momentum tensor they possess. Finally, c
clusions and outlook are presented in Sec. V.

II. EXISTENCE OF HAIR IN GRAVITY WITH A GAUSS-
BONNET TERM: ANALYTIC ARGUMENTS

Following the above discussion we shall ignore, for sim
plicity, the fourth-derivative dilaton terms in Eq.~1!, setting
from now onc250. However, we must always bear in min
that such terms are nonzero in realistic effective string cas
once the GB combination is fixed for the gravitationa
O(a8) parts. Then, the Lagrangian for dilaton gravity with
Gauss-Bonnet term reads

L52
1

2
R2

1

4
~]mf!21

a8

8g2
efRGB

2 , ~3!

whereRGB
2 is the Gauss-Bonnet~GB! term ~2!.

As we mentioned in the Introduction, although we vie
Eq. ~3! as a heterotic-string effective action, for simplicity, i
this paper we shall ignore the modulus and axion fields,
suming reality of the dilaton (S5ef in the notation of Ref.
@6#!. We commence our analysis by noting that the dilat
field and Einstein’s equations derived from Eq.~3! are

1

A2g
]m@A2g]mf#52

a8

4g2
efRGB

2 , ~4!

Rmn2
1

2
gmnR52

1

2
]mf]nf1

1

4
gmn~]rf!22a8Kmn ,

~5!
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where

Kmn5~gmrgnl1gmlgnr!hklabDg@R̃rg
ab]k f #, ~6!

and

hmnrs5emnrs~2g!21/2,

e0i jk52e i jk ,

~7!

R̃mn
kl5hmnrsRrskl ,

f5
ef

8g2
.

From the right-hand side~RHS! of the modified Einstein’s
equation ~5!, one can construct a conserved ‘‘energy
momentum tensor,’’DmT

mn50,

Tmn5
1

2
]mf]nf2

1

4
gmn~]rf!21a8Kmn . ~8!

It should be stressed that the time component of2Tmn ,
which in Einstein’s gravity would correspond to the loca
energy densityE, maynot be positive. Indeed, as we shall see
later on, for spherically symmetric space-times, there are
gions where this quantity is negative. The reason is that, a
result of the higher-derivative GB terms, there are contrib
tions of the gravitational field itself toTmn . From a string
theory point of view, this is reflected in the fact that th
dilaton is part of the string gravitational multiplet. Thus, thi
is thefirst important indication on the possibility of evading
the no-scalar-hair theorem of Ref.@4# in this case. However,
this by itself is not sufficient for a rigorous proof of an eva
sion of the no-hair conjecture. We shall come to this poi
later on.

At the moment, let us consider a spherically symmetr
space-time having the metric

ds252eGdt21eLdr21r 2~du21sin2udw2!, ~9!

whereG, L depend onr solely. Using the above ansatz, th
dilaton equation as well as the (tt), (rr ), and (uu) compo-
nent of the Einstein’s equations take the form

f91f8S G82L8

2
1
2

r D5
a8ef

g2r 2 S G8L8e2L1~12e2L!

3FG91
G8

2
~G82L8!G D , ~10!

L8S 11
a8ef

2g2r
f8~123e2L! D5

rf82

4
1
12eL

r
1

a8ef

g2r
~f9

1f82!~12e2L!, ~11!

G8S 11
a8ef

2g2r
f8~123e2L! D5

rf82

4
1
eL21

r
, ~12!
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G91
G8

2
~G82L8!1

G82L8

r
52

f82

2
1

a8ef2L

g2r

3S f8G91~f91f82!G8

1
f8G8

2
~G823L8! D .

~13!

Before we proceed to study the above system it is usefu
note that if we turn off the Gauss-Bonnet term, Eq.~10! can
be integrated to givef8;(1/r 2)e(L2G)/2. A black hole solu-
tion should have at the horizonr h the behaviore2G,
eL→`. Therefore, the radial derivative of the dilaton woul
diverge on the horizon resulting into a divergent energ
momentum tensor

Tt
t52Tr

r5Tu
u52

e2L

4
f82→`. ~14!

Rejecting this solution, we are left with the standa
Schwarzschild solution and a trivial (f5const) dilaton, in
agreement with the no-hair theorem. This behavior will b
drastically modified by the Gauss-Bonnet term.

The r component of the energy-momentum conservati
equations reads

~eG/2r 2Tr
r !85

1

2
eG/2r 2FG8Tt

t1
4

r
Tu

uG , ~15!

where the prime denotes differentiation with respect tor .
The spherical symmetry of the space-time impliesTu

u5Tw
w .

Integrating over the radial coordinater from the horizonr h
to genericr yields

Tr
r~r !5

e2G/2

2r 2 Er h
r

eG/2r 2FG8Tt
t1

4

r
Tu

uGdr. ~16!

The boundary terms on the horizon vanish, since scalar
variants such asTabT

ab are finite there. For the first deriva
tive of Tr

r , we have

~Tr
r !8~r !5

e2G/2

r 2
~eG/2r 2!8~Tt

t2Tr
r !1

2

r
~Tu

u2Tr
r !. ~17!

Taking into account Eqs.~8! and ~9!, one easily obtains

Tt
t52e2L

f82

4
2

a8

g2r 2
ef2L~f91f82!~12e2L!

1
a8

2g2r 2
ef2Lf8L8~123e2L!,

Tr
r5e2L

f82

4
2

a8

2g2r 2
ef2Lf8G8~123e2L!, ~18!

Tu
u52e2L

f82

4
1

a8

2g2r
ef22LFG9f81G8~f91f82!

1
G8f8

2
~G823L8!G .
l to

d
y-
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e
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-

In the relations~18! there lies thesecondreason for a possi-
bility of an evasion of the no-hair conjecture. Due to the
presence of the higher-curvature contributions, the relatio
Tt
t5Tu

u assumed in Ref.@4# is no longer valid. The alert
reader must have noticed, then, the similarity of the role
played by the Gauss-BonnetO(a8) terms in the Lagrangian
~3! with the case of the non-Abelian gauge black holes stud
ied in Ref.@5#. There the presence of the non-Abelian gauge
field repulsive forces also lead to nontrivial contributions to
Tu

uÞTt
t leading to a sort of ‘‘balancing’’ between this repul-

sion and the gravitational attraction. We stress, once agai
however, that in our caseboth the nonpositivity of the
‘‘energy-density’’ Tt

t and the modified relationTt
tÞTu

u play
equally important roles in leading to a possibility of having
nontrivial classical scalar~dilaton! hair in GB black holes’
systems. Below, we shall demonstrate rigorously this, b
showing that there isno contradictionbetween the results
following from the conservation equation of the ‘‘energy-
momentum tensor’’Tmn and the field equations, in the pres-
ence of nontrivial dilaton hair.

Far away from the origin, the unknown functionsf(r ),
eL(r ), andeG(r ) can be expanded in a power series in 1/r .
These expansions, substituted back into the equations, a
finally expressed in terms of three parameters only, chosen
be f` , the asymptotic value of the dilaton, the Arnowitt-
Deser-Misner~ADM ! massM , and the dilaton chargeD
defined as@10#

D52
1

4pE d2SmDmf, ~19!

where the integral is over a two sphere at spatial infinity. Th
asymptotic solutions are

eL~r !511
2M

r
1
16M22D2

4r 2
1O~1/r 3!, ~20!

eG~r !512
2M

r
1O~1/r 3!, ~21!

f~r !5f`1
D

r
1
MD

r 2
1O~1/r 3!. ~22!

To check the possibility of the evasion of the no-hair conjec
ture we first consider the asymptotic behavior ofTr

r as
r→`. SinceG8 and L85O(1/r 2) as r→`, we have the
asymptotic behavior

Tr
r;

1

4
~f8!21OS 1r 6D ,

Tu
u;2

1

4
~f8!21OS 1r 6D . ~23!

In this limit, eG/2→1, and so the leading behavior of (Tr
r)8 is

~Tr
r !8;

2

r
~Tu

u2Tr
r !;2

1

r
~f8!2,0 as r→`. ~24!

Thus,Tr
r is positive and decreasing asr→`.
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We now turn to the behavior of the unknown functions a
the event horizon. Whenr;r h , we make the ansatz

e2L~r !5l1~r2r h!1l2~r2r h!
21•••,

eG~r !5g1~r2r h!1g2~r2r h!
21•••, ~25!

f~r !5fh1fh8~r2r h!1fh9~r2r h!
21•••,

with the subscripth denoting the value of the respective
quantities at the horizon. We shall demonstrate in the Appe
dix that this is the most general asymptotic solution wit
G8→`f, f8, f9 finite. As we can see,f(r h);const while
G8 andL8 diverge as (r2r h)

21 and2(r2r h)
21, respec-

tively. Then, the behavior of the components of the energ
momentum tensor near the horizon is

Tr
r52

a8

2g2r 2
ef2Lf8G81O~r2r h!,

Tt
t5

a8

2g2r 2
ef2Lf8L81O~r2r h!, ~26!

Tu
u5

a8

2g2r
ef22LFG9f81

G8f8

2
~G823L8!G1O~r2r h!.

Taking into account the above expressions, the leading b
havior ofTr

r near the horizon is

Tr
r~r !;2

e2G/2

r 2 E
r h

r a8

4g2
eG/2~G8!2e2Leff8dr1O~r2r h!.

~27!

Therefore, one observes that forr sufficiently close to the
event horizon,Tr

r hasoppositesign tof8.
For (Tr

r)8 near the horizon, we have

~Tr
r !8~r !5

a8

2g2
ef

r 2
e2LH 2G8~f91f82!1f8FG8

2
~G81L8!

12e2LG92
2

r
L8G J 2

1

4
G8e2Lf821O~r2r h!,

~28!

whereG81L8;1 for r;r h . Adding the (tt) and (rr ) com-
ponents of the Einstein’s equations, we obtain at the eve
horizon

G81L85
1

F F12 r hfh8
2
1

a8

g2
efh

r h
~fh81fh8

2
!G1O~r2r h!,

~29!

where

F511
a8

2g2
efh

r h
fh8 . ~30!

From the (uu) component, we obtain
t

n-
h

y-

e-

nt

e22LG952
1

2
e22L~G8!21

1

2
e22LG8L81O~r2r h!

52
1

r h
2F2 1O~r2r h!. ~31!

Substituting all the above formulas into Eq.~28! yields, near
r h

~Tr
r !8~r !;2

1

4

fh8
2

r h
2F2

a8

2g2
efh

r h
3F2 ~fh91fh8

2
!

2
a8

4g4
e2fh

r h
5F2fh8

2
1O~r2r h!. ~32!

Next, we turn to the dilaton equation~10!. At r;r h , it
takes the form

fh8

r hF
52

3

F2
a8

g2
efh

r h
4 1O~r2r h!. ~33!

Substituting forF @Eq. ~30!#, the following equation forfh8
is derived:

a8

2g2
efh

r h
fh8

2
1fh81

3

r h
3

a8

g2
efh50 ~34!

which has as solutions

fh85
g2

a8
r he

2fhS 216A12
6~a8!2

g4
e2fh

r h
4 D . ~35!

As we will see below the relation~35! guarantees the
finitenessof fh9 , and hence of the ‘‘local density’’Tt

t @Eq.
~18!#. Both these solutions forfh8 are negative, and hence,
sinceTr

r(r h) has the opposite sign tofh8, Tr
r will be positive

sufficiently close to the horizon. SinceTr
r>0 also at infinity,

we observe that there isno contradictionwith Einstein’s
equations, thereby allowing for the existence of black hole
with scalar hair. We observe that near the horizon the qua
tity E (2Tt

t), which in Einstein’s gravitation would be the
local energy density of the fieldf, is negative. As we men-
tioned earlier, this constitutes one of the reasons one sho
expect an evasion of the no-scalar-hair conjecture in th
black hole space-time. Crucial also for this result was th
presence of additional terms in Eq.~18!, leading to Tt

t

ÞTu
u . Both of these features, whose absence in the case

Einstein-scalar gravity was crucial for the modern proof o
the no-hair theorem, owe their existence in the presence
the higher-orderO(a8) corrections in Eq.~3!.

The physical importance of the restriction~35! lies in the
fact that according to this relation, black hole solutions of
given horizon radius canonly existif the coupling constant
of the Gauss-Bonnet term in Eq.~3! is smaller than a critical
value, set by the magnitude of the horizon scale. In fact fro
Eq. ~35!, reality offh8 is guaranteed if and only if

efh,
g2

A6a8
r h
2 . ~36!
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TABLE I. Corresponding values forfh andf` .

fh f` r h 2M D

20.900 21.59656 2.22172 2.40514 0.686968
21.00 21.62901 2.25806 2.41212 0.655905
21.50 21.88561 2.56717 2.63528 0.500778
22.00 22.23788 3.06161 3.09293 0.382030
23.00 23.08963 4.68710 4.69399 0.226401
25.00 25.01232 12.2578 12.2581 0.082250
210.0 210.0001 148.421 148.422 0.005937
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In this picture,b[ 1
4e

fh can then be viewed as the~appropri-
ately normalized with respect to the Einstein term! coupling
constant of the GB term in the effective Lagrangian~3!. For
a black hole of unit horizon radiusr h51, the critical value of
b, above which black hole solutions cannot exist, is th
bc5g2/4A6a8. One is tempted to compare the situation wi
the case of SU~2! sphaleron solutions in the presence o
Gauss-Bonnet terms@9#. Numerical analysis of sphaleron so
lutions in such systems reveals the existence of a criti
value for the GB coefficient above which solutions do n
exist. In the sphaleron case this number depends on the n
ber of nodes of the Yang-Mills gauge field. In our case,
one fixes the position of the horizon, then it seems that
order to construct black hole solutions with this horizon si
the GB coefficient has to satisfy Eq.~36!. Thus, a way of
interpreting Eq.~35! is to view it as providing a necessary
condition for theabsence of naked singularitiesin space-
time. To understand better this latter point, we should co
sider the scalar curvature in the limitr→r h . It is

R5
2

r 2
~12l1r !21O~r2r h!. ~37!

The constantl1 defined in Eq.~25! can be easily deduced
from Eq. ~12! in the limit r→r h to be
l152/(efhfh812r h). Substitutingl1, we obtain

R5
2

r h
2 S 17A12

6~a8!2

g4
e2fh

r h
4

16A12
6~a8!2

g4
e2fh

r h
4
D 2

. ~38!

This expression shows that the curvature is singular
r h→0, i.e., when the horizon shrinks. The pointr h50 can
be reached only whenfh52`. Thus, the inequality~36!, in
a sense, forbidsr h to become zero and reveal the singularit

Above, we have argued on the possibility of having bla
holes in the system~3! that admit nontrivial dilaton hair out-
side their horizon. The key is the bypassing of the no-h
theorem@4#, as a result of the curvature-squared terms.
what follows we shall write down explicit solutions of the
equations of motion originating from Eq.~3! and provide
evidence for the existence of black hole solutions to all o
ders ina8. Unfortunately, a complete analytic treatment o
these equations is not feasible, and one has to use nume
methods. This complicates certain things, in particular,
n

f

al
t
m-
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.
k
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does not allow for a clear view of what happens inside th
horizon, thereby not giving any information on the curvatur
singularity structure.

III. NUMERICAL ANALYSIS

We now proceed to the numerical integration. Startin
from the solution~A8!–~A10!, at r5r h1e, e.1028, we
integrate the system~A3!, ~A4! towards r→` using the
fourth-order Runge-Kutta method with an automatic ste
procedure and accuracy 1028. The integration stops when
the flat space-time asymptotic limit~20!–~22! is reached.
Note that only the choices511 in Eq. ~A8! leads to solu-
tions which have the desired behavior~22! for the dilaton
field at infinity. SinceL(r ) is not an independent variable,
andfh8 is related tofh andr h through Eq.~A8!, it seems that
the only independent parameters of the problem arefh ,
r h , andg1. Note that the equations of motion do not yield
any constraint forg1. This is due to the fact that the equa-
tions of motion ~10!–~13! do not involve G(r ) but only
G8(r ). Thus, onlyG8(r ) can be determined by them and in
order to obtainG(r ) a final integration has to be performed.
This integration involves an integration constantg1 which
will be fixed by demanding the asymptotically flat limit~21!.
Thus, the only independent parameters are justfh and r h .

Note, however, that the equations of motion remain in
variant under a shiftf→f1f0 as long as it is accompanied
by a radial rescalingr→ref0/2. Due to the above invariance
it is sufficient to vary only one ofr h andfh . For calcula-
tional convenience we setr h51. It turns out that for every
value of the shooting parameterfh , satisfying the inequality
~36!, there is a black hole solution regular at infinity. This is
another new feature which follows from the presence of th
Gauss-Bonnet term. It is interesting to note that beyond
value of the input parameterfh , the black hole reaches
quickly its Schwarzschild value 2M5r h . Note that the dila-
ton charge does not vanish. The approach to the Schwar
child limit is a reflection of the fact that as we move tofh

values smaller than the critical value ln(1/A6)
520.89588 . . . , thevariation of the dilaton fieldf(r ) with
r becomes eventually weaker and the dilaton ultimately b
haves as a constant. For an almost constant dilaton t
Gauss-Bonnet term is irrelevant and the mass takes up
Schwarzschild value. At the end of our numerical calculatio
and in order to fix a unique scale, we impose on the dilato
field the asymptotic conditionf`50. This requires a shift
f→f2f` as well as a rescalingr→re2f`/2. Since the ra-
dial coordinate has been rescaled, the other two asympto
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parameters,M andD, are also rescaled according to the rul
M→Me2f`/2 andD→De2f`/2. In Table I we display cor-
responding values forfh and f` as well as the rescaled
values ofr h , 2M , andD. Plots involving the dilaton field
f(r ), for three different allowed values of the solution pa
rameter fh , are given in Fig. 1. The metric functions
eL(r ), eG(r ), as well as the three componentsTt

t Tr
r , andTu

u

of the energy-momentum tensor forr h51, are presented in
Figs. 2 and 3, respectively.

As we said before, the solution near the horizon is ch
acterized by the parameterfh . However, the parameters tha
characterize the solution near infinity~20!–~22! areM and
D. From this, we can infer that a relation must hold betwe
the above parameters in order to be able to classify our
lution as a one-parameter family of black hole solutions. A
ter some manipulation, the set of equations~10!–~13! can be
rearranged to yield the identity

d

dr S r 2e~G2L!/2~G82f8!2
a8ef

g2
e~G2L!/2@~12e2L!

3~f82G8!1e2Lrf8G8# D50. ~39!

Integrating this relation over the interval (r h ,r ), we obtain
the expression

FIG. 2. Metric componentsgtt andgrr for r h51 black hole.

FIG. 1. Dilaton field for black hole solutions. Each curve corre
sponds to a different solution characterized by a different init
value offh .
e:

-

ar-
t

en
so-
f-

2M2D5Ag1l1S r h21 a8efh

g2 D . ~40!

This equation is simply a connection between the set of p
rameters describing the solution near the horizon and the
M andD. The RHS of this relation clearly indicates that th
existing dependence of the dilaton charge on the mass d
not take the simple form of an equality encountered
Einstein-Yang-Mills-dilaton~EYMD! regular solutions of
Ref. @9#. In order to find the relation betweenM andD we
follow Refs. @6,7# and take into account theO(a82) expres-
sion of the dilaton charge in the limitr→`:

f~r !5f`1
D

r
1•••

5f`1S ef`

2M

a8

g2
1

73e2f`

60~2M !3
a82

g4
D 1
r

1•••. ~41!

This relation can be checked numerically. The result
shown in Fig. 4. Any deviations from this relation are due t
higher-order terms which turn out to be small. The abov
relation ~41! implies that the dilaton hair of the black hole
solution, discussed in this section, is a kind of ‘‘seconda
hair,’’ in the terminology of Ref.@11#. This hair is generated

FIG. 3. Components of the energy-momentum tensor f
r h51 black hole.

FIG. 4. Dependence of the dilaton chargeD on M andf` for
the r h51 black hole. The functionf (M ,f`) stands for the coeffi-
cient of 1/r in Eq. ~41!.
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because the basic fields~gravitons! of the theory associated
with the primary hair~mass! act as sources for the nontrivia
dilaton configurations outside the horizon of the black ho

IV. ADDITIONAL SOLUTIONS

A second class of solutions can be obtained if we allo
f8(r ) to be infinite at some finite valuer s of the coordinate
r . This choice, as we shall argue below, is not incompatib
with the finiteness of the energy-momentum tensor. This
due to the fact that the Gauss-Bonnet term does not hav
definite signature. These solutions have the same asymp
characterization in terms off` , M , andD as the black hole.
Near r.r s , one obtains

e2L~r !5l1~r2r s!1•••,

G8~r !5
g1

Ar2r s
1•••, ~42!

f~r !5fs1fs8Ar2r s1•••.

To lowest order, the equations of motion yield the co
straints

a8

4g2
efsfs8g15

1

l1
1

fs8
2r s

2

16
, ~43!

and

ag1
21bg11c50, ~44!

with

a516e2fs~2efsfs8
218r s1fs8

2r s
2!,

b54efs~e2fsfs8
324efsfs8

3r s
2216fs8r s

322fs8
3r s

4!,
~45!

c528e2fsfs8
2r s2e2fsfs8

4r s
212efsfs8

4r s
418fs8

2r s
51fs8

6 .

These apparently singular solutions comprise a tw
parameter family. The behavior of the dilaton field and th
metric components is shown in Figs. 5 and 6, respective

FIG. 5. Dilaton field for the singular solution (42). Each curv
corresponds to a different solution characterized by a differe
value of r s (r s50.92, 0.75, 0.62!.
l
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As we can see, these solutions cannot be classified as bl
hole solutions since the metric componentgtt does not ex-
hibit any singular behavior:eG→const whenr→r s . Only
grr takes on an infinite value whenr s is approached.

In order to determine whether the space-time geometry
really singular atr s , the scalar curvatureR as well as the
‘‘curvature invariant’’ I5RmnrsRmnrs were calculated. It
turns out that none of the above quantities exhibits any si
gular behavior atr s which implies that the pathology of the
metric is due to a pathology of the coordinate system and n
due to the space-time geometry itself. Moreover, this gua
antees the finiteness of the action~it can be easily checked
that the Gauss-Bonnet combination is also finite which
consistent with the field redefinition ambiguity argument
given in the introduction!. It is a simple exercise to verify
that the components of the energy-momentum tensor are a
finite. They are shown in Fig. 7. Unfortunately, at presen
we are not in a position to discuss the nature of the solutio
for r<r s , and hence the only safe conclusion to be mad
from the above analysis concerns the absence of anaked
singularity.

It is interesting to mention the existence of another clas
of solutions, which are regular in the metric, do not posse
any horizon, but the dilaton becomes infinite atr.0. Near
the origin these solutions are

e
nt

FIG. 6. Metric components for ther s50.68 singular solution
(42).

FIG. 7. Components of the energy-momentum tensor for th
r s50.92 singular solution~42!.
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eL~r !511l1e
24g1 /r ,

G8~r !5g1e
2f1 /r , ~46!

f~r !5
f1

r
1•••.

This is also a two-parameter family of solutions. The f
asymptotic behavior is still given by Eqs.~20!–~22!, and it is
again characterized by the parametersf` , M , andD. These
solutions appear to have no curvature singulariti
@R(r.0).0#, but the components of the energy-momentu
tensor are infinite atr.0.

Note that our black hole solution appears to be a bound
surface in the phase space between solutions~42! and ~46!.
This means that, iff0, f08 , G0, andG08 are the values of the
fields for the black hole solution atr5r 0@1, then integra-
tion of the system~A3! and ~A4!, starting from r 0 with
f8(r 0).f08 , leads to the solution~42!, while the case
f8(r 0),f08 leads to the solution~46!.

V. CONCLUSIONS AND OUTLOOK

In this paper we have dealt with solutions of the couple
dilaton-graviton system in four dimensions, in the presen
of higher-curvature terms in the Gauss-Bonnet combinati
We have demonstrated the existence of black hole soluti
for this system, characterized by nontrivial scalar~dilaton!
hair. This hair is of ‘‘secondary’’-type, in the sense that it
not accompanied by the presence of any new quantity t
characterizes the black hole. Indeed, it was shown above
the dilaton charge is not an independent quantity, but it c
be expressed in terms of the mass of the black hole. It sho
be stressed, however, that irrespective of the precise typ
hair, the set of solutions examined in this work bypasses
conditions of the no-hair theorem@4#. Thus, our solutions
may be viewed as demonstrating that there is plenty of ro
in the gravitational structure of superstring theory to allo
for physically sensible situations that are not covered by t
theorem as stated. Although our results were derived in
framework of theO(a8) effective superstring action, they
are nonperturbative in nature and they will persist at least
situations of moderate curvatures.

In addition to the black hole solutions, we were able
find two other families of solutions, one of which had th
interesting feature of having finite energy density. A
present, the physical significance of the solutions is not fu
clear to us. We hope to be able to study these structure
the near future.

There are many features of the solutions which we did n
address in this work, one of which is their stability unde
either linear time-dependent perturbations of the gravito
dilaton multiplet, or under generic perturbations~beyond lin-
earity!. Such an analysis has been performed for t
Einstein-Yang-Mills-Higgs system@5#, and one could think
of extending it to incorporate higher-curvature gravity the
ries. A stability analysis, when completed, will prove esse
tial in understanding better the physical significance of t
black hole solutions found in this work. This is of particula
ar
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interest due to the connection of the solutions with supe
string theory. We hope to return to these issues in a futu
publication.
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APPENDIX

We shall consider now our system of equations and w
shall investigate the existence of solutions under the gene
assumptionsG8→` andf, f8 finite whenr→r h . We are
not going to make use of any ansatz as the one employed
the previous section since we intend to derive the most ge
eral existing solution under the above assumptions. For c
culational convenience we seta8/g2→1, shifting
f→f2 ln(a8/g2). We start by observing that the (rr ) com-
ponent can be solved analytically to yield an expression f
eL:

eL5
2b1dAb224g

2
, d561, ~A1!

where

b5
f82r 2

4
212G8S r1

eff8

2 D ,
g5

3

2
G8f8ef. ~A2!

We then eliminateL8 using (d/dr)(rr ). Choosing two of
the remaining Eqs.~10!, ~11!, and~13! ~only two of them are
linearly independent!, we obtain the system of equations

f952
d1
d
, ~A3!

G952
d2
d
, ~A4!

whered, d1, andd2 are given by
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d54e2L1fr ~2418eL24e2L24G8r14G8eLr15f82r 22f82eLr 2!14f8eL12f~6212eL16e2L16G8r28G8eLr

12G8e2Lr23f82r 21f82eLr 2!212G8f82e3f~12eL!228f8e3Lr 4,

d152G8f83e3f~9G826f826G8eL112f8eL1G8e2L26f8e2L!1f82eL12f~24f828G8eL248f8eL18G8e2L

124f8e2L242G82r230f82r120G82eLr232G8f8eLr116f82eLr22G82e2Lr22f82e2Lr13G8f82r 2

23G8f82eLr 2124G8f8r18G8f8e2Lr !1f8e2L1f~224148eL224e2L24G8r216f8r18G8eLr132f8eLr

24G8e2Lr216f8e2Lr132G82r 2216G8f8r 2138f82r 2116G8f8eLr 226f82eLr 223G8f82r 31G8f82eLr 3

28G82eLr 2!12e3Lr ~8216eL18e2L14G8r24G8eLr24G82r 226f82r 21G8f82r 322f82eLr 2!,

d25G8f8eL12fr ~18G8216f8224G82eL18f82eL12G82e2L12f82e2L15G8f82eLr28f83eLr29G8f82r !

22G83f82e3f~31e2L!1f8e3Lr 2~828eL24G8r24G8eLr24G82r 222f82r 21G8f82r 3!1e2L1f~8G8216G8eL

18G8e2L24G82r18f82r18G82eLr24G82e2Lr28f82e2Lr212G83r 2210G8f82r 228f83r 214G83eLr 2

12G8f82eLr 218f83eLr 2113G82f82r 314G8f83r 316f84r 314G8f83eLr 322f84eLr 323G8f84r 4

23G82f82eLr 3!.
at

he
ion
Assumingfh and fh8 to be finite andG8→` when
r→r h , we expand the RHS of Eq.~A1! near the horizon

eL5
1

2
~eff812r !G82

8eff828r1eff83r 212f82r 3

4~eff812r !

1OS 1G8D ~A5!

for (eff812r )Þ0 andd51.2 Substituting Eq.~A5! in Eqs.
~A3! and ~A4!, we obtain

f952
1

2

~eff812r !~6ef1eff82r 212f8r 3!

26e2f1eff8r 312r 4
G811,

~A6!

G952
26e2f1e2ff8r 214eff8r 314r 4

26e2f1eff8r 312r 4
G821O~G8!.

~A7!

We now observe that in order to keepfh9 finite we have to
impose the boundary condition 6ef1eff82r 212f8r 350
which relatesfh8 with fh :

2This has to be understood by the following facts:~i! the choice
d521 leads toeL51 near the horizon, which is not a black hol
solution, and ~ii ! if ( eff812r ).0, then one obtainseL

5A3r (G8)1/21••• and f95A3re2f(G8)1/21••• which implies
thatfh9 is finite at the horizon only iffh→`. This is inconsistent
with our initial assumption for finitefh andfh8 .
fh85r he
2fhS 211sA126

e2fh

r h
4 D , s561,

fh, lnS r h2A6D , ~A8!

and implies

f951,

G952G8211⇒G85
1

r2r h
11. ~A9!

Note that this ‘‘black-hole’’-type solution is unique and has
resulted directly from the requirementf, f8, f9 finite for
G8→`. Equivalently,

eG~r !5g1~r2r h!1O~r2r h!
2,

e2L~r !5l1~r2r h!1O~r2r h!
2, ~A10!

which is exactly the ansatz~25! used in Sec. II.g1 is an
arbitrary constant, andl152/(efhfh812r h). Notice that Eq.
~A8! is exactly the Eq.~35!, obtained previously, from the
dilaton equation of motion near the horizon. This shows th
if Eq. ~A8! is satisfied, then not only the finiteness offh9 is
guaranteed but also the expected singular behavior of t
metric is assured. The above analysis leads to the conclus
that the asymptotic solution~A8!–~A10!, is the only accept-
able black hole solution with finitefh , fh8 andfh9 .
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