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We give analytical arguments and demonstrate numerically the existence of black hole solutions of the 4D
effective superstring action in the presence of Gauss-Bonnet quadratic curvature terms. The solutions possess
nontrivial dilaton hair. The hair, however, is of “secondary type,” in the sense that the dilaton charge is
expressed in terms of the black hole mass. Our solutions are not covered by the assumptions of existing proofs
of the “no-hair” theorem. We also find some alternative solutions with singular metric behavior, but finite
energy. The absence of naked singularities in this system is pointeflSO%56-282(196)01920-0

PACS numbg(s): 04.70.Bw, 04.20.Jb, 04.56h, 11.25.Mj

I. INTRODUCTION non-Abelian gauge field repulsion balances the gravitational
attraction leading to black hole solutions with nontrivial
It has become evident in recent years that the properties gfauge and scaldin Higgs systemshair.

black holes are modified when the theory of matter fields has It is useful to discuss briefly the situation in effective

sufficient structure. In the presence of the low-energy detheories obtained from the string. We shall concentrate on

grees of freedom characteristic of string thefy; i.e., dila-  the bosonic part of the gravitational multiplet which consists
tons, axions, and Abelian or Yang-Mills fields, it is possible of the dilaton, graviton, and antisymmetric tensor fields. In
to have nontrivial static configurations for these fields out-this work we shall ignore the antisymmetric tensor for
side the horizon, i.e., to have black holes with §aig]. Itis  simplicity.! As is well known in low-energy effective field
not clear, however, whether these cases, in which the “notheory, there are ambiguities in the coefficients of such
hair theorem”[4] does not apply5], represent stable solu- terms, due to the possibility ¢dcal field redefinitions which
tions. Explicit black hole solutions have been found also inleave theS-matrix amplitudes of the effective field theory
string-effective theories involving higher-order curvatureinvariant, according to thequivalenceheorem. ToO(a')
corrections to the Einstein gravity. They exhibit secondarythe freedom of such redefinitions is restricted to two generic
hair of the dilaton, axion, and modulus fields. The solutionsstructures, which cannot be removed by further redefinitions
were approximate, in the sense that only a perturbativg8]. One is a curvature-squared combination, and the other is
analysis toO(«a') [6] andO(a'?) [7] has been performed. a four-derivative dilaton term. Thus, a generic form of the

This analysis motivates the search for exdotall orders in  string-inspiredO(«’) corrections to Einstein’s gravitation

a') solutions within the framework of curvature-squaredhave the form

corrections to Einstein’s theory. Although the effect of the

higher-order curvature terms is not small for energy scales of

order «’, from a local field theory point of view it makes
sense to look for this kind of solutions, with the hope of
drawing some useful conclusions that might be of relevancevhere ' is the Regge slopeg? is some gauge coupling

to the low-energy limit of string theories. constant(in the case of the heterotic string that we concen-

In the present article we shall demonstrate the existenceate for physical reasopsand R? is a generic curvature-

of black hole solutions of the Einstein-dilaton system in thedependent quadratic structure, which can always be fixed to

presence of the higher-derivative, curvature squared termsorrespond to the Gauss-Bonr&B) invariant

These solutions will be endowed with a nontrivial dilaton

field outside the horizon, thus possessing dilaton hair. The RéB=R

treatment of the quadratic terms will be nonperturbative and

the solutions are present for any value @f/g’>. What we  The coefficients,, ¢, are fixed by comparison with string-

shall argue in this paper is that the presence of these ternszattering amplitude computations, armodel 8-function

provides the necessary “repulsion” in the effective theoryanalysis. It is known that in the three types of string theories,
that balances the gravitational attraction, thereby leading tbosonic, closed-type Il superstring, and heterotic strings, the
black holes dressed with nontrivial classical dilaton hair. An

analogous phenomenon occurs already in the case of —

Einstein-Yang-Mills system§3]. There the presence of the in four dimensions, the antisymmetric tensor field leads to the
axion hair, already discussed in Rg8]. Modulo unexpected sur-
prises, we do not envisage problems associated with its presence as

“On leave of absence from Physics Department, University ofegards the results discussed in this work, and, hence, we ignore it
loannina, loannina, Greece. for simplicity.
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ratio of thec, coefficients is 2:0:1, respectivelg]. The case where

of superstring Il effective theory, then, is characterized by _

the absence of curvature-squared terms. In such theories the £ =(g,,9,,+9,09,,) 7**“’D,[R*?,50,f],  (6)
fourth-order dilaton terms can still be, and in fact they are,

present. In such a case, it is straightforward to see from thgnd

modern proof of the no-scalar-hair theorem of Hdf that

such theories cannot sustain to oré@®fa’), any nontrivial PrIPT = ehvPT(— )12

dilaton hair. On the other hand, the presence of curvature-

squared terms can drastically change the situation, as we Ok = _ ¢

shall discuss in this article. There is a simple reason to expect ik

that in this case the no-scalar-hair theorem can be bypassed. )

In the presence of curvature-squared terms, the modified Ein-

stein’s equation leads to an effective stress tensor that in-

volves the gravitational field. This implies that the assump-

tion of positive definiteness of the time component of this - ¢

tensor, which in the Einstein case is the local energy density " 8g%

of the field, may, and as we shall show it does indeed, break

down. The second, but equally important, reason is that as grom the right-hand sidéRHS) of the modified Einstein’s

result of the higher-curvature terms, there is an induce@quation (5), one can construct a conserved “energy-

modification of the reIationTEzTZ between the time and momentum tensor,D , T*"=0,

angular components of the stress tensor, which was valid in

the case of spherically symmetric Einstein theories of Ref. 1 1

[4] T,uvzia,u.d)&v(f)_zg,uv(ap(ﬁ)z_'—a’,’C,uv (8)
The structure of the article is the following: In Sec. Il we

give analytic arguments for the existence of scathliaton It should be stressed that the time componentdf,,,

halr of the black hole solution, which bypasses the Condl'vvhich in Einstein’s gravity would correspond to the local
tions for the no-hair theorem. In Sec. Il we present an analy

) . - energy density, maynot be positivelndeed, as we shall see
SIS .Of the bl'ack hole SOIUt'OnS.' In Sec_. vV we discuss alter1ater on, for spherically symmetric space-times, there are re-
native solutions, some of which are interesting due to th

finit tum 1 i Finall ions where this quantity is negative. The reason is that, as a
Inite_energy-momentum tensor th€y possess. FInally, Colfg it of the higher-derivative GB terms, there are contribu-
clusions and outlook are presented in Sec. V.

tions of the gravitational field itself t@,,. From a string
theory point of view, this is reflected in the fact that the
Il. EXISTENCE OF HAIR IN GRAVITY WITH A GAUSS- dilaton is part of the string gravitational multiplet. Thus, this
BONNET TERM: ANALYTIC ARGUMENTS is thefirst important indication on the possibility of evading

the no-scalar-hair theorem of R¢4] in this case. However,
this by itself is not sufficient for a rigorous proof of an eva-
sion of the no-hair conjecture. We shall come to this point
Later on.

" At the moment, let us consider a spherically symmetric
space-time having the metric

Dur vpo
RH Kx—ﬂ# P Rp(rK)\i

Following the above discussion we shall ignore, for sim-
plicity, the fourth-derivative dilaton terms in E¢l), setting
from now onc,=0. However, we must always bear in mind
that such terms are nonzero in realistic effective string case
once the GB combination is fixed for the gravitational
O(a') parts. Then, the Lagrangian for dilaton gravity with a

Gauss-Bonnet term reads ds?=—e"d2+eMdr?+r3(d¢*+siade?),  (9)

1 1 ! _
L=—5R——(3,¢)%+ a—2e¢RéB, (3  wherel’, A depend omr solely. Using the above ansatz, the
2 4 89 dilaton equation as well as thet), (rr), and (¢8) compo-

5 . nent of the Einstein’s equations take the form
whereRgg is the Gauss-BonnéGB) term (2).

As we mentioned in the Introduction, although we view
Eq. (3) as a heterotic-string effective action, for simplicity, in  ¢"+ ¢’
this paper we shall ignore the modulus and axion fields, as-
suming reality of the dilatong=e? in the notation of Ref.
[6]). We commence our analysis by noting that the dilaton X
field and Einstein’s equations derived from E8) are

['-A", 2)_a'e’
2 ] g%r?

(F'A’eA+(1—eA)

!

r
F”-l-?(l"’—A’)D, (10

1 a" A/ 1 a,e¢ ’ 1-3 —-A _rd),z 1_eA a,e¢ "
—&M[\/—gﬁf‘qﬁ]:——e‘bRéB, (4) +Zgzr¢( —8e )= s T ° g°r (6

/_g 492

+¢'2)(1—eh), (11

(12

1 1 1
R/.LV_ Eg,uvR:_Ea;.L(rbﬁvqs—’_ Zg,uv([?pqs)z_a K:,u.vv F’( a’e¢ ): I’d>'2 eA_l
4 r’

5 1+£2T¢'(1—3e—A) +
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T’ r'—A’ $'2 a'e? A In the relationg18) there lies thesecondreason for a possi-
"+ 7(F'—A’)+ = T e bility of an evasion of the no-hair conjecture. Due to the

presence of the higher-curvature contributions, the relation
e R Ti=TY assumed in Ref{4] is no longer valid. The alert

T+ (" +¢")I reader must have noticed, then, the similarity of the role
played by the Gauss-Bonnét{«') terms in the Lagrangian

N ¢'T’ ['—ap’ (3) with the case of the non-Abelian gauge black holes stud-

T( )| ied in Ref.[5]. There the presence of the non-Abelian gauge

field repulsive forces also lead to nontrivial contributions to
(13 TY+T! leading to a sort of “balancing” between this repul-

Before we proceed to study the above system it is useful t§ion and the gravitational attraction. We stress, once again,
note that if we turn off the Gauss-Bonnet term, Etp) can however, that in our caséoth the nonpositivity of the

be integrated to gives’ ~ (1/r2)e(* 1’2 A black hole solu- “energy-density” T; and the modified relatiof;# T play

tion should have at the horizon, the behaviore ",  equally important roles in leading to a possibility of having
e — oo, Therefore, the radial derivative of the dilaton would nontrivial classical scalafdilaton) hair in GB black holes’

diverge on the horizon resulting into a divergent energy-Systems. Below, we shall demonstrate rigorously this, by
momentum tensor showing that there isi0 contradictionbetween the results

following from the conservation equation of the “energy-
momentum tensor’T ,, and the field equations, in the pres-
ence of nontrivial dilaton hair.

Far away from the origin, the unknown functiorgr),
Rejecting this SOlUtion, we are left with the StandardeA(r)7 and er(r) can be expanded in a power series in. 1/
Schwarzschild solution and a trivialy=const) dilaton, in  These expansions, substituted back into the equations, are
agreement with the no-hair theorem. This behavior will befinally expressed in terms of three parameters only, chosen to

—A

e
Ti=-Ti=Tj=- 5 ¢'*==. 14

drastically modified by the Gauss-Bonnet term. be ¢.., the asymptotic value of the dilaton, the Arnowitt-
Ther component of the energy-momentum conservatiorpeser-Misner(ADM) massM, and the dilaton charg®
equations reads defined ag10]
1 4
r__ ’ 1
(e2r2T)) ==e " T T+ T"}, (15 =——| d?3~

where the prime denotes differentiation with respect to
The spherical symmetry of the space-time impﬂ'%s*— TS,
Integrating over the radial coordinatefrom the horizonr,,

where the integral is over a two sphere at spatial infinity. The
asymptotic solutions are

to genericr yields 2M 16M2-D?2
=14+ —+ ———+0(1/r?, (20)
e I72 r 4r
TN =—5=7 f 22 0T+ T” dr. (16
2re Jy,
ef=1- 2—M+0(1/r3) (21)
The boundary terms on the horizon vanish, since scalar in- r ’
variants such aEQBT“B are finite there. For the first deriva-
tive of T, , we have D MD
' ¢(r)=¢w+T+r—2+(’)(1/r3). (22)

71*/2

TH'(r)= F’22T‘T+ T-TH. (@
(T (n)= Tz (e )'( ) ( - (17 To check the possibility of the evasion of the no-hair conjec-

ture we first consider the asymptotic behavior Bf as

Taking into account Eqg8) and(9), one easily obtains r—w. SinceT'’ and A'=O(1/r2) asr—, we have the

N ., , asymptotic behavior
Ti=—e '~ et M@+ ¢ (1-e )
4  g’r? 1 1
o ~Z(¢')2+o r—g),
+ zgzrze¢7A¢’A'(1_3efA),
T”~—1( ")2+0 z (23)
7A ¢12 a! 7A 7A 0 4 ¢ r6 .
Ti=e T—Zgzrze"’ ¢'T'(1-3e7%), (18
In this limit, e"2— 1, and so the leading behavior af}j’ is
- ¢’2 , n ! ! 4 !
ng—eA4 29 [7¢'+T'(¢"+¢'%) P 1 12
(T ~F(T9—Tr)~—?(¢> )*<0 asr—cow. (24
I ¢’

+—(F’ 3A)].

Thus, T is positive and decreasing as-.
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We now turn to the behavior of the unknown functions at ar 1 ar ) 1 ar
the event horizon. When~r,,, we make the ansatz e =-S5 e T I)"+ 5e AT+ O(r—ry)
—A(r) _ _ _ 2
e =N(r—rp)+Ao(r—rp)+---, 1
z—P?+O(r—rh). (31)
h
e D=y (r=rp)+yy(r—rp)+- -, (29
Substituting all the above formulas into E@8) yields, near
B(1)=dn+ p(r —rp)+ dp(r—rp)+- -, h
with the subscripth denoting the value of the respective . 1 ¢{12 a' ehh
guantities at the horizon. We shall demonstrate in the Appen- (T (r)~— 2 r—hq_-— Ez _3_rh]_—2(¢h+ ¢n )
dix that this is the most general asymptotic solution with
"=, ¢, ¢" finite. As we can seap(r},) ~const while a' e?%n
I'" andA’ diverge as (—ry,)~* and —(r—ry,) "%, respec- Tagt R Bi +O(r—rp). (32
tively. Then, the behavior of the components of the energy-
momentum tensor near the horizon is Next, we turn to the dilaton equatiofl0). At r~ry,, it
takes the form
T=-— « e? AT +0(r—ry)
= 2972 ¢ (r=run), b 3 o etn
—=——=— —7 +0(r—r). (33
rnF Fo 0% ry
Ti= 292 762" A’ A" +O(r—ry), (26)  substituting forF [Eq. (30)], the following equation fowp/,
is derived:
=, "¢’ +—¢’(r' 3A")|[+0O(r—ry) a et 3 ot
0 2g%r n’: 29 T b + bt gze n=0 (39

Taking into account the above expressions, the leading bgyhich has as solutions
havior of T near the horizon is

g2 - 6(&’)2 eZ¢h
e 2o dh=—7rne M —1x\[1-—ZF——7|. (39
TH(r)~——| sz AI")%e "e?¢'dr+0(r—ry). « g T

r W49
(27 As we will see below the relation(35 guarantees the
finitenessof ¢, and hence of the “local densityT; [Eq.
Therefore, one observes that forsufficiently close to the (18)]. Both these solutions fo;, are negative, and hence,
event horizon[T; hasoppositesign to ¢'. sinceT!(ry,) has the opposite sign t#/,, T" will be positive
For (Ty)' near the horizon, we have sufficiently close to the horizon. Sindé=0 also at infinity,
we observe that there iso contradictionwith Einstein’s
equations, thereby allowing for the existence of black holes
with scalar hair. We observe that near the horizon the quan-
tity £ (—T}), which in Einstein’s gravitation would be the
2 1
+2e AT — _A,H —SDe Mg 24+ 0(r—ry), I(_)cal energy den_sr[y of t_he fielg, is negative As we men-
4 tioned earlier, this constitutes one of the reasons one should
(28) expect an evasion of the no-scalar-hair conjecture in this
black hole space-time. Crucial also for this result was the
wherel'" + A’ ~1 forr~ry,. Adding the ¢t) and (r) com- presence of additional terms in EL8), leading to T}
ponents of the Einstein’s equations, we obtain at the ever Ty Both of these features, whose absence in the case of

!

" e? r
S (T +A")

a
(T)'(1)= 542 r—ze—A[ SNCER LR

horizon Einstein-scalar gravity was crucial for the modern proof of
the no-hair theorem, owe their existence in the presence of
1 o e¢h ) the higher-orde©O(a') corrections in Eq(3).
I"+A'= [ fh¢>h T —(én' + én )}Jr(')(r—rh), The physical importance of the restricti¢d5) lies in the

(29) fact that according to this relation, black hole solutions of a
given horizon radius cannly existif the coupling constant

where of the Gauss-Bonnet term in EB) is smaller than a critical
value, set by the magnitude of the horizon scale. In fact from
a' e®h Eq. (35), reality of ¢, is guaranteed if and only if
F=14+-——¢y. 30
27 T % (30 :
efh< r2. (36)

From the @#) component, we obtain N4
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TABLE I. Corresponding values fog,, and ¢.. .

én be rn 2M D

—0.900 —1.59656 2.22172 2.40514 0.686968
—1.00 —1.62901 2.25806 241212 0.655905
—1.50 —1.88561 2.56717 2.63528 0.500778
—2.00 —2.23788 3.06161 3.09293 0.382030
—3.00 —3.08963 4.68710 4.69399 0.226401
—5.00 —5.01232 12.2578 12.2581 0.082250
—10.0 —10.0001 148.421 148.422 0.005937

In this picture,8= e?n can then be viewed as tii@ppropri-  does not allow for a clear view of what happens inside the
ately normalized with respect to the Einstein teoupling  horizon, thereby not giving any information on the curvature
constant of the GB term in the effective Lagrang{@ For  singularity structure.
a black hole of unit horizon radius,= 1, the critical value of
B, above which black hole solutions cannot exist, is then
B.=9%4\/6a’. One is tempted to compare the situation with
the case of S(2) sphaleron solutions in the presence of We now proceed to the numerical integration. Starting
Gauss-Bonnet ternj8]. Numerical analysis of sphaleron so- from the solution(A8)—(A10), atr=r,+e¢, e=10 8, we
lutions in such systems reveals the existence of a criticahtegrate the systenfA3), (A4) towardsr—o using the
value for the GB coefficient above which solutions do notfourth-order Runge-Kutta method with an automatic step
exist. In the sphaleron case this number depends on the nurprocedure and accuracy 19 The integration stops when
ber of nodes of the Yang-Mills gauge field. In our case, ifthe flat space-time asymptotic lim{20)—(22) is reached.
one fixes the position of the horizon, then it seems that irNote that only the choice=+1 in Eq.(A8) leads to solu-
order to construct black hole solutions with this horizon sizetions which have the desired behavi@2) for the dilaton
the GB coefficient has to satisfy E(B6). Thus, a way of field at infinity. SinceA(r) is not an independent variable,
interpreting Eq.(35) is to view it as providing a necessary and gy is related togy, andr, through Eq(A8), it seems that
condition for theabsence of naked singularities space- the only independent parameters of the problem ége
time. To understand better this latter point, we should conr, . andy,. Note that the equations of motion do not yield
sider the scalar curvature in the lintit>ry,. It is any constraint fory;. This is due to the fact that the equa-
tions of motion (10)—(13) do not involveI'(r) but only
2 5 I'(r). Thus, onlyI'’(r) can be determined by them and in
R=2(1=Mr)"+O(r—ry). (37 order to obtain(r) a final integration has to be performed.
This integration involves an integration constant which
will be fixed by demanding the asymptotically flat lini1).
Thus, the only independent parameters are ¢ysandr,,.
Note, however, that the equations of motion remain in-
variant under a shifp— ¢+ ¢ as long as it is accompanied
by a radial rescaling—re?o’?. Due to the above invariance

IIl. NUMERICAL ANALYSIS

The constani ; defined in Eq.(25) can be easily deduced
from Eg. (120 in the limit r—r, to be
N1=2/(e’néy +2ry,). Substitutingh,, we obtain

15 +/1- 6(a’)” e*n ? it is sufficient to vary only one of,, and ¢,,. For calcula-
2 g* rﬁ tional convenience we sef,=1. It turns out that for every
R= 2 6a )2 e | (38  value of the shooting parametgy, , satisfying the inequality
1+ \/1_ 2 Z (36), there is a black hole solution regular at infinity. This is
g h another new feature which follows from the presence of the

Gauss-Bonnet term. It is interesting to note that beyond a

This expression shows that the curvature is singular ayalue of the input parametepy,, the black hole reaches
r,—0, i.e., when the horizon shrinks. The pomt=0 can quickly its Schwarzschild valueM =r,,. Note that the dila-
be reached only whe#,= — . Thus, the inequality36), in  ton charge does not vanish. The approach to the Schwarzs-
a sense, forbids;, to become zero and reveal the singularity. child limit is a reflection of the fact that as we move ¢g

Above, we have argued on the possibility of having blackvalues ~smaller than the critical value In(®)
holes in the syster(B) that admit nontrivial dilaton hair out- =—0.8958 . .., thevariation of the dilaton fieldp(r) with
side their horizon. The key is the bypassing of the no-hair becomes eventually weaker and the dilaton ultimately be-
theorem[4], as a result of the curvature-squared terms. Irhaves as a constant. For an almost constant dilaton the
what follows we shall write down explicit solutions of the Gauss-Bonnet term is irrelevant and the mass takes up its
equations of motion originating from Ed3) and provide Schwarzschild value. At the end of our numerical calculation
evidence for the existence of black hole solutions to all or-and in order to fix a unique scale, we impose on the dilaton
ders ina’. Unfortunately, a complete analytic treatment of field the asymptotic conditiom..=0. This requires a shift
these equations is not feasible, and one has to use numerical— ¢ — ¢., as well as a rescaling—re~ %=, Since the ra-
methods. This complicates certain things, in particular, itdial coordinate has been rescaled, the other two asymptotic
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FIG. 1. Dilaton field for black hole solutions. Each curve corre- r
sponds to a different solution characterized by a different initial
value of ¢y, FIG. 3. Components of the energy-momentum tensor for

r,=1 black hole.

parametersM andD, are also rescaled according to the rule:

M—Me™ %2 andD—De %~ In Table | we display cor- M —D=1yr;
responding values fotp,, and ¢., as well as the rescaled 1
values ofry,, 2M, andD. Plots involving the dilaton field _ L i
#(r), for three different allowed values of the solution pa- 1S €quation is simply a connection between the set of pa-
rameter ¢,, are given in Fig. 1. The metric functions rameters describing the _solu'uo_n near the _hor_|zon and the set
e el as well as the three componeﬁ’£$ T ande M _ar_ldD. The RHS of this relz_;ltlon clearly indicates that the
of the energy-momentum tensor fog=1, are presented in existing dependence of the dilaton charge on the mass does
Figs. 2 and 3, respectively. not take the simple form of an equality encountered in

As we said before, the solution near the horizon is charEinstein-yang-Mills-dilaton(EYMD) regular solutions of

acterized by the parametéy, . However, the parameters that Ref. [9]. In order to find the relation betweavt andD we

H 12 _
characterize the solution near infini(20)—(22) are M and follow Refs. [6,7] and take into account #B(a"?) expres

D. From this, we can infer that a relation must hold betweer? " of the dilaton charge in the limft— o

the above parameters in order to be able to classify our so-

a'e¢h>

2
9

(40

D
lution as a one-parameter family of black hole solutions. Af- d(r)=¢oot —+---
ter some manipulation, the set of equatidh8)—(13) can be r
rearranged to yield the identity ,
=+ e’ of + 730 a j 1+ (41
o'e? 7 \2M g%  602M)° g*/ r

i r2e(F—A)/2(I~r_ ¢/)__2e(F—A)/2[(1_e—A)
dr g9 This relation can be checked numerically. The result is
shown in Fig. 4. Any deviations from this relation are due to
X(¢p'-T")+e Ar¢'T']|=0. (390  higher-order terms which turn out to be small. The above
relation (41) implies that the dilaton hair of the black hole
solution, discussed in this section, is a kind of “secondary
Integrating this relation over the interval,(,;r), we obtain  hair,” in the terminology of Ref[11]. This hair is generated
the expression

0.25 T T T T
T
0.20 | " 4
*
} 0.15 | i
D

0.10 |- i
0.05 - :

0 1 1 1 1

0 0.05 0.10 0.15 0.20 0.25
0 5:r), . J(M.6..)
1 10 102 10° )
ro. FIG. 4. Dependence of the dilaton chaf@eon M and ¢,. for

ther,=1 black hole. The functiori(M, ¢.,) stands for the coeffi-
FIG. 2. Metric componentg,; andg,, for r,=1 black hole. cient of 1f in Eq. (41).
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-1.0 T T T T

grr(r)

1 10 102 gu(r)

1 10 102
FIG. 5. Dilaton field for the singular solution (42). Each curve

corresponds to a different solution characterized by a different . . . .
value ofr, (r,=0.92, 0.75, 0.62 FIG. 6. Metric components for the;=0.68 singular solution

(42).

because the basic fieldgravitons of the theory associated
with the primary hairfmas$ act as sources for the nontrivial AS We can see, these solutions cannot be classified as black
dilaton configurations outside the horizon of the black hole.hole solutions since the metric componept does not ex-
hibit any singular behaviore” —const whenr —r,. Only
IV. ADDITIONAL SOLUTIONS g,r takes on an infinite value whemn is approached.
In order to determine whether the space-time geometry is

A second class of solutions can be obtained if we aIIOWreaIIy singular atrg, the scalar curvatur® as well as the
¢'(r) to be infinite at some finite value, of the coordinate  “curvature invariant” | = R*"*°R Lpo Were calculated. It
r. This choice, as we shall argue below, is not incompatibleurns out that none of the above guantities exhibits any sin-
with the finiteness of the energy-momentum tensor. This igjular behavior at which implies that the pathology of the
due to the fact that the Gauss-Bonnet term does not haveraetric is due to a pathology of the coordinate system and not
definite signature. These solutions have the same asymptotifuie to the space-time geometry itself. Moreover, this guar-
characterization in terms @.., M, andD as the black hole. antees the finiteness of the actitihcan be easily checked

Nearr=rg, one obtains that the Gauss-Bonnet combination is also finite which is
AT consistent with the field redefinition ambiguity arguments
=Ng(r=rg+---, given in the introduction It is a simple exercise to verify
that the components of the energy-momentum tensor are also
I (r)= Y1 finite. They are shown in Fig. 7. Unfortunately, at present,
(r)= H“L T (42 we are not in a position to discuss the nature of the solutions
s for r=<rg, and hence the only safe conclusion to be made
, from the above analysis concerns the absence péaked
B(1)= ot T —rst . oular Y
singularity.
To lowest order, the equations of motion yield the con- It is interesting to mention the existence of another class
straints of solutions, which are regular in the metric, do not possess
any horizon, but the dilaton becomes infiniterat0. Near
o' . 1 2r2 the origin these solutions are
’ :_+
a2® shsv1 16 (43)
and T j T T T T
2 1.0 b
ay;tby,+c=0, (44) T
. 0.5 F ‘ .
with 0
0 [
a=16e?%s(2e?sp.?+8r + Lr2),
-0.5 _
b= 4e¢s(e2¢s¢/3 4e¢s¢/3 2 16¢é g 2¢/3 4), r
(45 -LO | g

=—8e??s¢h.%r—e??spl 2+ 2Pl r i+ 8L+ l°. : : : : : :

These apparently singular solutions comprise a two-
parameter family. The behavior of the dilaton field and the FIG. 7. Components of the energy-momentum tensor for the
metric components is shown in Figs. 5 and 6, respectivelyt.=0.92 singular solutiort42).
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er=1+xe7 41/, interest due to the connection of the solutions with super-
string theory. We hope to return to these issues in a future
I/ (r)=ye %', (46)  publication.
b1
¢(|’) = T + ...
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APPENDIX

V. CONCLUSIONS AND OUTLOOK WQ shal[ consider now our system. of equations and we
shall investigate the existence of solutions under the general
In this paper we have dealt with solutions of the coupledassumptiond”’ — and ¢, ¢’ finite whenr—r,. We are
dilaton-graviton system in four dimensions, in the presenceot going to make use of any ansatz as the one employed in
of higher-curvature terms in the Gauss-Bonnet combinationthe previous section since we intend to derive the most gen-
We have demonstrated the existence of black hole solutionsral existing solution under the above assumptions. For cal-
for this system, characterized by nontrivial scaldilaton) culational convenience we seta’/g?>—1, shifting
hair. This hair is of “secondary”-type, in the sense that it is ¢— ¢—In(a'/g?). We start by observing that ther() com-
not accompanied by the presence of any new quantity thgfonent can be solved analytically to yield an expression for
characterizes the black hole. Indeed, it was shown above that:
the dilaton charge is not an independent quantity, but it can
be expressed in terms of the mass of the black hole. It should ————
be stressed, however, that irrespective of the precise type of A:M
hair, the set of solutions examined in this work bypasses the 2 ’
conditions of the no-hair theoref@]. Thus, our solutions
may be viewed as demonstrating that there is plenty of roonyhere
in the gravitational structure of superstring theory to allow
for physically sensible situations that are not covered by the 122
theorem as stated. Although our results were derived in the B= ¢ —1-1
framework of theO(«a’) effective superstring action, they 4
are nonperturbative in nature and they will persist at least in
situations of moderate curvatures. 3
In addition to the black hole solutions, we were able to y==T"¢'e?. (A2)
find two other families of solutions, one of which had the 2
interesting feature of having finite energy density. At
present, the physical significance of the solutions is not fulljWe then eliminateA’ using @d/dr)(rr). Choosing two of
clear to us. We hope to be able to study these structures iime remaining Eq910), (11), and(13) (only two of them are

5==+1, (A1)

the near future. linearly independent we obtain the system of equations
There are many features of the solutions which we did not

address in this work, one of which is their stability under d

either linear time-dependent perturbations of the graviton- ¢'=— El (A3)

dilaton multiplet, or under generic perturbatidibeyond lin-
earity). Such an analysis has been performed for the
Einstein-Yang-Mills-Higgs systerf6], and one could think d,

of extending it to incorporate higher-curvature gravity theo- r"=- g (A4)
ries. A stability analysis, when completed, will prove essen-

tial in understanding better the physical significance of the

black hole solutions found in this work. This is of particular whered, d,, andd, are given by
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d=4e*M " ¢r(—4+8et—4e® — AT 'r + 4T e r +5¢'%r°— ¢’ %er?) + 4 e T29(6—12eM + 6e?  + 61 'r — 8T 'er

+2F/eZAr_3¢/2r2+ ¢IzeAr2)_121"/¢/Ze3¢(1_e/\)2_8¢/e3/\r4,

d;=2I" ¢339 —6¢' —6I''e +12¢'e +I''e*' —6¢'e*") + ¢'%e" "29(24¢’ —8I''e ~ 484’ e" + 8I'' e
+24¢’ e — 420" 2r — 306" ?r + 200 ' 2e’r — 321" ¢’ e"r + 16 *er — 2I' 26 r — 2¢p'%* 1 + 31" ¢ ?r?
—3I"¢p'%eM2+24I" ¢'r +8I' ¢p' e 1) + ¢’ € (— 24+ 48e" —24e°M — 4T 'r — 16¢)'1 + 8T 'e’r + 32" e’r
—Ar'e® r— 164" r+ 320" 2r?— 161" ¢'r%+ 384 °r*+ 16" ¢’ e 1>~ 6¢'%e 1>~ 3l ¢'’r3+ ' ¢p'%er?

—8I'"%e"r?) +2e3 r(8—16e" +8e*" +4I''r —4I'' e

r_4F,2r2_6¢,2r2+1—”¢12r3_2¢,zeAr2),

dy=T"¢'e "2%r(181'?+6¢'°— 4T '%e* + 8¢ %"+ 2I''2e* +2¢'%e** +5I'" ¢'?e*r —8¢'3e r —9I'" ¢'?r)
—2I'"3¢'%3%(3+e*)+ ¢’ (8- 8e" — Al 'r 4l ' e’r —4T'2r2—2¢'2r2+ 1" ¢'r%) +e* T (8" — 16l ' e*
+8'e*A—AI"?r +8¢'2r + 81" 2er — 4T 2e?Mr —8¢p'2€? r — 121312~ 101" ' 2r2— 8" 3r2+ 4T '3 r2
+2I" ¢'2eM 2 +8¢" 2 2+ 13029 23+ 40 ¢'3r3+ 60 *r3+ 40" '3 r3—2¢ % 133" ' 4r*

_3F/2¢126Ar3).

Assuming ¢, and ¢ to be finite andl'’— when
r—ry,, we expand the RHS of EALl) near the horizon

8e?¢p' —8r+elep’3r2+2¢'%r3
4(e®¢p' +2r)

1
eAzz(e‘/’¢’+2r)F’—

+0

1
F) (AS5)

for (e?¢’ +2r)#0 andé= 1.2 Substituting Eq(A5) in Egs.
(A3) and (A4), we obtain

1(e?¢p’ +2r)(6e?+e?d'2r’+2¢'r3)

=3 —66% 1% 13+ 21 +1,
(A6)
—6e2?+e??¢p'r’+4e¢p'r3+4r
=— O T At I'2+0(I").
—6e“?+e?p'r +2r
(A7)

We now observe that in order to keef finite we have to
impose the boundary conditione8+e?¢’'?r?+2¢'r3=0
which relatese), with ¢y, :

2This has to be understood by the following fadi$:the choice

5=—1 leads toe® =1 near the horizon, which is not a black hole

solution, and (i) if (e?®’+2r)=0, then one obtainse®
=\3r(I'")Y2+... and ¢"=3re ¢(I'"")¥?+ ... which implies
that ¢y, is finite at the horizon only if$,— . This is inconsistent
with our initial assumption for finitep, and ¢y, .

e2¢h
$n=rne | —1to\[1-6-7|, o==1,
h
2
dp<In r—h> (A8)
h \/E ’
and implies
(ﬁ!!:l,
F":—F’2+1:>F’=r . +1. (A9)
—Ih

Note that this “black-hole”-type solution is unique and has
resulted directly from the requiremest, ¢, ¢” finite for
I'" —oo. Equivalently,

e D=y (r—rp+0(r—rp?

e MI=N\y(r—rp)+0(r—rp? (A10)

which is exactly the ansat@25) used in Sec. ll.y; is an
arbitrary constant, anl; = 2/(e®h¢|,+ 2r},). Notice that Eq.

(A8) is exactly the Eq(35), obtained previously, from the
dilaton equation of motion near the horizon. This shows that
if Eq. (A8) is satisfied, then not only the finiteness & is
guaranteed but also the expected singular behavior of the
metric is assured. The above analysis leads to the conclusion
that the asymptotic solutioA8)—(A10), is the only accept-
able black hole solution with finite,, ¢, and ¢y..
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