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SUMMARY

In principle, betatron oscillations could be damped by detecting
and compensating statistical variations of the average heam position,
caused by the finite number of particles present. It is shown that
achieving useful damping in the ISR would be difficult with presently

avalilable techniques.

1. STOCHASTIC DAMPING

As is well known, Liouville's theorem predicts that betatron
oscillations cannot be damped by the use of electromagnetic fields
deflecting the particles. However, this theorem is based on statistics
snd is only strictly valid either for an infinite number of particles,
or for a finite number if no information is available about the position
in phase plane of the individual particles. Clearly, if each particle
could be separately observed and a correction applied to its orbit,
the oscillations could be suppressed. It is also well known to be
possible to damp coherent betatron oscillations (where the beam behaves
like a single particle) by means of pickup-deflector feedback systems.
In the same way, the statistical fluctuations of the average beam
position, caused by the finite number of particles, can be detected with
pickup electrodes and a corresponding correction applied. In other
words, the small fraction of the oscillations that happens to be coherent

at any time due to the statistical fluctuations, cen be damped .

After the beam would have passed through such a damping system
(for which the name "stochastic damping" could perhéps be used}, it would
no longer present any coherent oscillations, and further damping would
seem to be impossible. However, there are two effects that reintroduce

randomness, and therefore some coherency:



a) Not all particles have the same revolution time, due to

momentum spread.

b) Different particles have different Q-values.

As will be shown in the following sections, the first effect

would be the most important one in the ISR.

For ISR application, damping of the vertical betatron oscilla-

tions would be most interesting, since it would inerease the luminosity.

It is clear that for efficient damping the feedback system
should have a large bandwidth (i.e. a short response time). In this way
smaller samples of the total number of circulating particles will be
seen as separate entities by the system, and the ideal of separate
treatment of each particle will be more closely approx1mated. In the

following section this will be shown in a more quantitative wmy.

2. CALCULATION OF THE DAMPING TIME

We shall assume that a damping system can be made that suppresses
coherent betatron oscillation of the beam that passes through it once.
0f course, only the components of coherent oscillation within the band-

width of the system will be removed.

We shall first consider the smallest sample of particles that
the system will be able to distinguish. This is about equal to the
number of particles that passes through the system 1in one rise-time.

We assume that there are n particles in this sample, with oscillation
amplitudes A;, A, ... Ay, randomly chosen according to a distribution

funetion F(A), with



The mean square amplitude 1s
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We shall describe the position of each particle in phase space,
as it enters the damping system, by A and Y, as shown in Fig. 1. The

centre of gravity of the sample in phase space is then at
1 1 .
[ = L& cos )T, [ 2 2(A sin y)]

The damping system will now bring this centre of gravity back
o the origin by giving the same kick to all particles. The new position

of particle 1 will then be
1 . 1 .
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The square of the amplitude of particle i will now become
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The new mean square‘amplitude is
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Comparing (1) and {2), we see that the r.m.s. amplitude is
reduced by a fraction
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The average value of this reduction is found by integrating
over all possible combinations of the parameters A and ¢:
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Now it can be shown that
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It appears that the average damping achieved by one passage
through the system is independent of the amplitude distribution. (This
Probably means that a simpler derivation of the result above could be

given.)
After 2n passages through the damping system, assuming complete

randemizing of the sample populations between passages, the r.m.s.

amplitude would be reduced by a factor e.

We shall now suppose that all particles pass through the system
once per revolution, and that the randomizing during one turn is indeed
complete (see par. 3). If the rise-time of the system is 1, we have

approximately

T
n=N—_—
Ty



where N is the total number of particles in the ring, and T, the

revolution time. The damping time constant is then

Ta

2n - Tr = 2NT

1l
- , we have Ty =

If the system bandwidth is F S

gy
For instance, if we could obtain a bandwidth of 1 GHz, with

L x 10l* particles in the ISR, we would obtain a damping time of

35 hours. This does not look attractive. With a smaller number of

particles stored, the result might be of marginal interest, although

probably much development would be required in order to achieve the

required bandwidth. It can easily be seen that in sccelerators (such

as, for instance, the PS) the avallable time is insufficient to achieve

significant damping.

3. THE RANDOMIZING PROCESS

With a bandwidth of 1 GHz, the rise-time is about 0.16 ns, and
the smallest particle samples seen by the system are 5 cm long. I1f the
ISR would contain its maximum momentum bite of 2% (corresponding to the
design figure N = 4 x 10!%), the circumference of the closed orbits for
maximum and minimum momentum would be different by about 25 cm. As 8
consequence, at energies well aﬁove the transition energy, after each

turn the S cm long samples would contain a guite different population.

Since it seems difficult to analyze what will be the damping
time if the randomizing process is less efficient thean in the example
above, a simple Monte Carlo programme was vritten, simulating damping
in the ISR for different amounts of "smearing out" due to momentum spread.
This programme, although necessarily dealing with a very much smaller
number of particles (i.e. 2500) than expected in the ISR, ig thought to

be valid for study of the above mentioned randomizing behaviour. The



results for a constant density stack are shown in Fig. 2. The "mixing
factor" is equal to the distance, gained per turn by the particles with
lowest momentum on those with the highest momentum, divided by the sample
length. For a mixing factor of 50 or larger the programme showed the

same damping rate as derived in section 2.

The randomizing effect of the Q-spread was also simulated, and
it was found that this effect was quite small for practical Q-spread

values, compared with the momentum spread effect.

The examples given at the end of section 2 can now be corrected
for non-ideal randomizing. As a result, the damping time required for
4 x 101% particles would be increased to 45 hours. On the other hand,
it would be possible to install five damping systems equally spaced
around the ISR circumference. Each of these systems would work with a

mixing factor of 1, and the resulting damping time would be
32 x 2
5

hours = 14 hours.

The computer results show, however, that the damping only
continues at the predicted rate until the amplitudes are reduced by a
factor 2 to 3. Then the damping rate decreases. This effect seems to
be independent of n or T. Bowever, it seems nearly sure that this is
caused by some approximation made in the computer program. In.reality
such a behaviour would seem to be quite impossible; it could only be
due to the disappearance of randomness and this would be completely re-

established in a very short time compared to the damping time.

k. FINAL NOTE
This work was done in 1968. The idea seemed too far-feteched
at the time to justify publication. However, the fluetuations upon which
the system is based were experimentally observed recently. Although it
may still be unlikely that useful damping could be achieved in Practice,

it seems useful now to preseni at least some gquantitative estimation of

the effect.



Fig. 1
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