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Breakdown and regeneration of time reversal
symmetry in nonequilibrium Statistical Mechanics

Giovanni Gallavotti*
THES, 91440 Bures s/Yvette, France

Abstract: A review and non technical exposition of recent studies on the rel-
evance of time reversal, on its spontaneous breakdowns, and on its possible
resurgence as a weaker symmetry that still anticommutes with time evolution.

1. Time reversal and irreversibility.

This review illustrates joint work with F. Bonetto ([BG]) and P. Garrido
([BGG]).

Time reversal symmetry is manifest in most fundamental equations. It is very
often associated with the property of motion reversibility and considered the
source of various difficulties into which run attempts at fundamental explana-
tions of easily observed irreversibility phenomena.

It is important to realize immediately that a microscopically reversible system
can exhibit irreversible behaviour even without invoking thermodynamic limits
or suitable ansatzes. Consider an example, which is paradigmatic and not really
as special as it might look initially: a system of N particles (one or more)
moving on a closed surface X, interacting via conservative pair forces with
potential V' and subject to an external field of potential £ ® which “drives”
the system (in the sense that ® is not single valued on the surface ¥, i.e. the
corresponding force is an “electromotive force”) and to the forces that keep the
particles on £ and also enforce as a constraint that the total energy £ = K +V
is an exact constant of motion (K = 5= 3", p2, if m is the particles mass).

Thus the equations of motion are:

m§£=_quV(ﬂ)‘EQ1‘¢+ B (1.1)

R; are determined by imposing that the par-
ticles stay on the surface and keep constant total energy £. The constraint is
anholonomous and it will be supposed ideal in the sense that it verifies Gauss’
least constraint principle, see appendices of [G1], [BGM].

It realizes a thermostatted model in the cases of interest to us, in which the
geometry of ¥ is nontrivial and the external field is locally conservative but
not globally conservative.

For instance X could be a torus deprived of a few convex regions, obstacles,
and the picture will be like:

where the constraints reactions R

»
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Fig.1: Circular scatterers of radius Ry and Ry in a periodic box “horizontal electric field” E =FEj
along the axis J and 1 particle. -

Fig.1

This can be considered a model for electric conduction in a crystal with N
(N = 1 in the figure) free electrons per cell. After an elementary analysis of
the gaussian constraint, if V' is (for simplicity) supposed a hard core potential
and p. =mg_, the equations (1.1) for the latter simple model become:

.. . £ 'Zi P,

mq,=Ej ap, a Z.‘B? (1.2)
plus elastic collision rules (at particle-particle or particle-obstacle collisions).
The energy £ equals the kinetic energy K, and if K is written K = dN kg9 (d
being the space dimension and kg the Boltzmann’s constant) this is a model
for electric conduction at temperature 9. The equation (1.2) should be com-
pared with the one sometimes used in the simplest electric conduction models
(simplifications of Lorentz’ model of conductivity) at temperature ¥:

mg.=Ej-vp,, v = const (1.3)

where v is a phenomenological constant adjusted so that the average kinetic
energy is dNbg—"l.

The two models (1.2) and (1.3) should be essentially equivalent (for a discus-
sion see [G2],[G3],[G4]). But it is clear that they are deeply different in various
respects. Namely the first is time reversal invariant in the sense that there is an
isometry I defined on phase space, i.e. the familiar map I(q,p) =(g,—p),
which anticommautes with the time evolution operator (g, B)——;St(ﬂ’—ﬁ): -

1S5 = 5,1 for all ¢ (1.4)
while the second is manifestly not /~invariant.

Nevertheless (1.2) shows an irreversible behavior in the sense that if E #0:

1 T
TA a(St:r)dtm(aM >0 (15)

for almost all choices of the initial datum z (with respect to the area distibution)
and time reversal symmetry implies “only” that the contraction of phase space
in the backward direction is also (@), > 0.

Since the phase space contraction rate is:

24 febbraso 1997 2



o8(z) = (AN - 1) afz) = %_T:E >7 (1.6)

we see that (a)y > 0 implies singularity of the probability distribution s,
giving us the time averages of observables F followed on the trajectory starting
at a point £ = (¢, p), randomly chosen with respect to the area on the surface
of energy £:

T
-71—“'/0 F(Stx)dtm/p+(dx)F(x) (L.7)

In other words the distribution g4 which, for the driven system, is the analogue
of the microcanonical distribution cannot be expressed in the form (if z =

(¢,p),de=dpdq):

pE(2)6(K +V - E)dz (1.8)

for any pg, except when E = 0 (in which case pg is just a constant and p, is
the microcanocial ensemble).

The property {(a)4 > 0 is of course essential and one has to make sure that
it holds. Fortunately this is a theorem in simple cases (e.g. N = 1), see
[CELS],[BGM]. It is also in general true that (a), > 0, as proved by Ruelle’s
H-theorem, [R]. Finally the property (a);+ > 0 can be verified numerically quite
easily in systems with few degrees of freedom, see for instance [BGG].

Calling g the analogue of uy for the time averages towards the past (clearly
p_ is the time reversal image of uy: p_ = Ipy) we can try to visualize
(improperly, as it will be seen shortly) the situation by thinking that there is
a set Ay of 0 area such that py(A4+) = 1,area(A4) = 0 and another set A.
(time reversal image of Ay: A_ = TAy) with u_(A-) = 1,area(A_) = 0 such
that a randomly chosen initial datum z evolves towards the closure of Ay as

the time tends to Foo:

A

Fig.2

\_/ A+
and an initial z randomly chosen (with respect to the uniform area distribution)
will evolve towards A, as t = +o0 and towards A_ ast — —o0, if as usual A
denotes the closure of the set A.
For very large t the average of the values taken by an observable over the tra-

Jectory of z, i.e. the average of of F(S;z), will be the same as that of F(S;z)
where 2 is a (suitably chosen) point on the attracting set A}, whileast - ~co
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the history of F will look the same as that of F itself on the trajectory of a
suitable point z_ € A_.

For very large positive ¢ the points Syz and S:z, will not be really different,
while for very large negative ¢ the points S;z and S;z_ will be essentially the
same,

But, no matter how large a prefized time 1y is taken, the t-average of he
function F(S_-;(S:,z+)) will still be [ Fdp, (both forward and backward) and
that of F(S¢(S;,z-)) (also both forward and backward)will still be [ Fdu_: this
is a mathematically clean way of describing the phenomenon of irreversibility.

We see that time reversal symmetry plays no role except in the fact that it says
that the forward attracting set A, and the backward attracting set (i.e. the
repelling set) A_ are linked by the symmetry [A; = A_.

However the picture cannot be so simple: in fact if E = 0 the two sets A,
and A_ coincide if one assumes the ergodic hypothesis. Thus we can at most
expect that the two sets Ay and A_ are “very close” when E # 0 is small.

In fact for driven systems the role of the ergodic hypothesis can be taken by
the chaotic hypothesis, {GC], which will imply more: namely that the system
is so chaotic that ‘Z+ = A_ = whole energy surface not only for E = 0 but also
for all £’s small enough.

For reference the chaotic hypothesis states:

Chaotic hypothesis: A many particle system can be supposed, for the purposes
of computing time averages of macroscopic observables, to be a miring Anosov
system.

In spite of its apparent “uselessness”, only partly due to the fact that Anosov
systems are not really familiar to most of us (se [G4] for instance), it turns out
to be, like the similarly useless ergodic hypothesis for equilibrium statistical
mechanics, an hypothesis rich of implications.

Anosov systems, also called hyperbolic, are systems with highly unstable mo-
tions; the motion in the vicinity of a point © seen from an observer that moves
with z is like the motion near an hyperbolic fized point. So unstable that any
other system close enough to them shares the same property of showing highly
unstable motions. In particular if the system is ergodic and Anosov at E = 0
it will remain Anosov at small E and its attracting set will be the whole phase
space.

This shows that the above picture was naive and basically incorrect close to
equilibrium where one cannot really distinguish A, from A_ (in a practical
sense) because they are dense into each other (being Ay, = A_)..

Thus reversibility and irreversibility can coexist in a far stronger sense: namely
A, = A_ coincide with the whole phase space but A, # A_, us(Az) =
1,ux(A+) = 0. And close to equilibrium the reversible system described by
(1.2) behaves irreversibly even though the attracting set is the full phase space.

In [GC] it was pointed out that such property, rather than hindering the
theoretical interpretation, does lead to observable consequences in the form
of relations between observable quantities, and such relations are eract and
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parameter free, hence they are general laws. Except for their importance they
can be compared to the relations that, in equilibrium statistical mechanics,
follow from the ergodic hypothesis and express the exactness of the differential
form (dU + pdV)/T (called the heat theorem by Boltzmann, [G5]).

In the above example, (1.2), the consequence is a strong restriction on the
distribution of the current fluctuations. Let J(z) = Y, L - J be the total

tm

current in the j direction (see Fig.1l) and J.(z) be its average over a time
interval 7: J,(z) = f fﬁjz (S:tz)dt. We observe this quantity as a random

variable with the dlstrlbutlon that is assigned. to it by the stationary state p
and write it as J;(2) = p(z) J4, where J; is the stationary average current
(J+ = [Jdp4) and p is a “dimensionless average current”.

Then the distribution of p will be written as m,(p)dp = e$P)"dp, with ((p)
being an entropy function for the fluctuating variable p and the fluctuation
theorem of [GC] says:

¢(p) —¢(-p)

=1, ~-p* * 1.
Ty p <p<p (1.9)

where p* > 1 is the maximum observable value of the current (note that by
our definitions (p)4 = [pdps =1).

In general reversible systems the role of the current is plaid by the phase
space contraction rate og(z): as noted above the current in the model (1.2) is
proportional to og(z) (because is is essentially og(z) = —M , by (1.6),(1.2)).
The quantity og(zr), however, can be defined in geneml as the divergence of
the equations of motion and in driven systems it is expected to have a posi-
tive avera.ge oy if p and the average contraction rate o,(z) = o, p are defined

by o-(z) = 7! f r/2 ogg(Syz)dt then its stationary distribution verifies (1.9)

whatever the meaning of the driving force parameter actually is. This is im-
portant for later developments even if one is just interested in the syster (1.2).

The above relation holds as long as A, = A_, [GC]. However it has long been
known since the observation of the so called string phase in similar systems,
[EM], (and it is easy to check in various cases, see §6 of [BGG]) that for large
E such property cannot be generally true and A, NA_ = @ so that the attract-
ing set A, becomes strictly smaller than the phase space (¢.e. it has an open
complement in it).

Time reversibility of the stationary state is spontaneously broken in a quite
spectacular way; irreversibility becomes obvious (as the above described naive
analysis now applies); but the fluctuation theorem seems to be gone.

Nevertheless there is some experimental evidence, [BGG], that a relation like
(1.9) continues to hold even at large E, with possibly 1 replaced by another
constant (still parameterless).!

! Time reversal symmetry and density of attractor and repeller imply equal number of positive and
negative Lyapunov exponents: therefore a very sensitive test of the density of A4 is that the
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Therefore a natural idea is that there might still be a kind of time reversal
symmetry for the system, a symmetry in which the phase space is exactly the
attracting set A, if there was another map I* transforming the invariant set
Ay into itself and anticommuting with time reversal, then a relation “like” the
(1.9) could hold. Indeed the derivatiion of such relatlon is, for the model (1.2),
essentially based on:

(1) the assumption of time reversal symmetry and that the system is a mixing
Anosov flow on the whole phase space.

(2) the proportionality between the phase space contraction o and the electric
current, see (1.6) recalling that K = 5=~ p? is constant.

and at least (1) would be verified (se¢ below for what concerns (2)).
Thus we look for a local time reversal, i.e. for a map I* such that:

I*St —'—-5_31*, I*Z.{. =X- (110)

and the idea is that under very general settings one can find a third map I
commuting with S, and transforming A_ to A4 so that I* = /- anticommutes
with S; and changes A4 into itself (recall that I exchanges Ay and 4_).

The above reminds us (or at least me) very much of the well known fact that
in our Universe time reversal T is not a symmetry but TCP is such: hence /
plays the role of T, I that of CP and I* that of TCP.

In [BG] we discuss a condition (see below) ensuring that every time the time
reversal symmetry / is spontaneously broken because the attracting set be-
comes smaller than phase space, and is therefore mirrored by a repeller set, a
new symmetry I* =] - ] anticommuting with the evolution is spawned.

This does not yet make the (1.9) apply immediately because, since only one of
the two conditions mentioned before (1.10) is fulfilled, it can be shown to “only”
give a relation like (1.9) valid for the fluctuations of the average contraction
rate of the area element of A (see also the comments following (1.9)): we saw
that such rate was, in the small E case, proportional to the current but there
seems to be no a priori reason to be so once one compares the current with the
area contraction on the attracting set A, when the latter is smaller than the
whole phase space.

However in [BG] use is made of another recently discovered remarkable prop-
erty of thermostatted systems like (1.2}, the pairing rule of the Lyapunov ex-
ponents, [ECM1],[DM],[WL] whereby the (non trivial) Lyapunov exponents
arranged in decreasing order of size are paired so that the sum of the expo-
nents equidistant? from the two central ones is a constant equal to the average

number of positive Lyapunov exponents is less than that of the negative ones, see [BGG]. The
parameter values where the density of the attractor no longer holds are values corresponding to
which the system shows a “non trivial” vanishing Lyapunov exponent: thus they are values in
correspondence of which the chaotic hypothesis does not hold. They are however special isolated
parameter values, see [BGG].

2 In systems of particles subject to gaussian constraints there are 2k degrees of freedom and at least
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friction (a)4+. And arguments are given leading to a proportionality of the
total current to the area contraction rate of Ay. If A is the number of pairs
of Lyapunov exponents and M is the number of pairs with two negative ex-
ponents (which never exist, by time reversal symmetry, when A, is the whole
phase space) then the fluctuation theorem (1.10) is modified into:

{(p) =<(=p) M

I =1—W, -p"<p<p (1.11)

a surprising result because one might naively expect a r.h.s. greater than 1, se

[BGG], [BG].

I conclude by stating in qualitative form the assumptions that insure that time
reversal is an unbreakable symmetry in the sense that at every spontaneous
breakdown it respawns a new (“smaller”, i.e. defined on an invariant set much
smaller than the whole phase space) symmetry which still anticommutes with
time evolution.

The assumptions amount at the requirement that the system should verify a
geometric property called in [BG] aziom C. To introduce the property we note
that the chaotic hypothesis has to be interpreted, in the cases in which the
attracting set is not the whole phase space, as saying that the attracting set is
a smooth surface and the flow restricted to it is a Anosov flow. Such attractors
are special cases of the aziom A attractors (which essentially are more general
only because the attracting set is not supposed to be a smooth surface).

A difficulty with axiom A attractors is that the axiom A property is a local
property formulated in terms of motions near the attractor. And this is not
satisfactory in systems in which what happens near an attractor is related
to what happens far from it (because, for instance, there is a time reversal
symmetry mapping the attracting set into a repelling one).

This was probably perceived by Smale, [Sm], when he introduced the notion
of ariom B systems which basically are systems with attracting sets verifying
axiom A and with some relation between the stable manifolds of the attracting
sets and the unstable manifolds of the repeller and of other possibly existing
invariant sets.

Smale’s axiom B is too weak for our purposes (and it has the disadvantage of
not being structurally stable, ¢.e. such that a small modification of the equa-
tions of motion does not substantially change the nature of the system and
keeps it still veryfying axiom B).

The axiom C of [BG] is a strengthening of the axiom B property, which is stable
under perturbations. Informally the axiom C property in simple systems with
only one attracting set and one repelling set, different from each other, is that

two trivial Lyapunov exponents: the one associated with the flow direction and the one associated
with the constrained variable (the energy in the case (1.1)). Therefore, in absence of other trivial
exponents and if the exponents are ordered as Ay 2 A9 2 ... Ap_) 2 A 2 ... Aok _9, the pairing
rule concerns the pairs (A _1,A) ... (A1, Agg_3). Under the chaotic hypothesis in equilibrium
the sum of each pair is 0 and one element is positive and one negative; in presence of driving
force this remains true for small enough force altough the sum of the pairs is now negative, but
eventually there may appear pairs consisting of two negative exponents.
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the stable manifold of the points on }L reaches the repeller A_ approaching
it transversally (of course without ever reaching it) and viceversa the unstable
manifolds of the repeller reach the attractor transversally, see the schematic
picture in Fig.3 below,

In the figure the first picture illustrates a point ¢ € A4 and a local piece
of its stable manifold, the second picture a point 2/ € A_ with a local piece
of its unstable manifold; the third picture shows an intersection between the
unstable manifold of a point z € A} and the stable manifold of 7z, which is a
manifold (one-dimensional in the picture but in general of dimension equal to
the codimension of A1 ): the intersection generates a correspondence between
A4 and A_ which in fact defines /. The points “between the two sets” represent
most of the phase space points and are wandering (or nonrecurrent) points.

L0V LA S S
(S S

Let & be the dimension of the surfaces A4 and u and s be the dimensions of
the relative (i.e. relative to the dynamics restricted to A4) stable and unstable
manifolds of the points in Ay so that u 4+ s = 4. In the case of Fig.3 it is
u=s,0 =3.

Then the complete (i.e. relative to the dynamics in the full phase space) stable
manifolds of the points in A4 have dimension s 4+ m for some m > 0 (because
the stable manifolds of the points of A; “stick out” of A, by the attractivity
of Ay; in Fig.3 it is m = 1).

Time reversal symmetry implies that « = s and that the dimension of the
unstable manifolds of A_ is also u+m: hence u+ s+m is the dimension of the
phase space; and the stable manifolds of points of A, intersect the unstable
manifolds of the points in A_ locally on manifolds of dimension m. The latter
intersect A1 and A_ in single points and can be regarded as threads linking
A, and A_ and establishing the correspondence I (which is defined only on
A+ and not outside them, so that I* also is defined only on Ay). This shows
that the Fig.3 represents correctly, if symbolically, the general case.

The axiom C excludes the possibility that the stable manifold out of z € A4
in the first figure wraps around A_ instead of “cutting through it”, and also it
excludes the corresponding possibility for the unstable manifold of z/ € A_.

Hence one can view the above axiom as a maximal simplicity assumption. It
is not clear whether the axiom C property is really relevant for nonequilibrium
statistical mechanics since the spontaneaous breakdown of time reversal sym-
metry may occurr at extremely large driving fields: at least this seems to be so
for (1.2) regarded as a conduction model, [BGG], as well as in the pioneering
experiment of [ECM2]), source of all the above theoretical ideas.

Fig.3

A Y
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But the above philosophy applies also to the theory of fluid motions, [G2),
[G3], and leads to properties that might be checkable experimentally (in real
or numerical experiments): and in such cases it is certain that the attractors,
being finite dimensional, will be much smaller than the total phase space (which
is infinite dimensional).

Therefore in [BG] we proposed to modify the Anosov property in the formu-
lation of the chaotic hypothesis into the axiom C property, at least in the cases
of reversible systems. ,

Finally one may object that in reality systems are dissipative in the naive sense
of the word, like in the example (1.3), and irreversibilty (due to some constant
friction coeflicients) is always accompanied by an explicit time reversal violation
(i.e. the equations of motion are not time reversal invariant).

The latter question is examined, giving among other considerations arguments
for the effective equivalence between (1.2) and (1.3), in [G2],[G3],[G4]. For irre-
versible equations that are phenomenological macroscopic descriptions of evo-
lutions microscopically based on reversible equations it is argued that the usual
irreverstble macroscopic equations (like the Navier-Stokes equations) should be
equivalent, for practical purposes, to other time reversible macroscopic equa-
tions: practical purposes should include taking the average of “local observ-
ables” in some limiting situation (like the thermodynamic limit in the case of
particles systems or the limit of infinite Reynolds number for fluids). Here
local means depending only on the coordinates of particles that are in a fixed
volume {while the container volume tends to co) in the case of particle sys-
tems or depending only on finitely many Fourier modes in the case of a fluid
(while the Kolmogorov momentum, or equivalently the Reynolds number tend
to 00). And in fact this is used to suggest a natural extension of the notion of
"statistical ensemble” to nonequilibrium statistical mechanics.

Basically one can think of the phase space of a system described by irreversible
equations and with a small attractor as being “half” the phase space of another
system which is reversible, verifies axiom C and has the same attractor. Being
reversible it must, however, have (somewhere in its phase space) also a repeller:
hence the axiom C will guarantee that there is a time reversal symmetry valid
on the attractors of the second system and, therefore, properties that hold for
the second system as a consequence of the existence of a time reversal symmetry
will also hold for the first. In other words the motion on the attractor of such
irreversible systems will still look like a reversible motion.

It is not clear that this is enough for establishing a fluctuation theorem for
interesting irreversible systems: doubts have been expressed in [G2],[G3],[G4].
But the arguments against do not seem really compelling and surprises are
possible. Independently on the fluctuation theorems the assumption that for
instance (1.2) and (1.3) are in some sense equivalent leads, when combined
with the chaotic hypethesis, to experimentally testable predictions. And the
same is true in the case of the Navier-Stokes equations, see [G2], [G3]. Work
on these questions is in slow progress.
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