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Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models
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In pre-big-bang and in ekpyrotic cosmology, perturbations on cosmological scales today are generated from
quantum vacuum fluctuations during a phase when the Universe is contracéngd in the Einstein frame
The backgrounds studied to date do not yield a scale-invariant spectrum of adiabatic fluctuations. Here, we
present a new contracting background maghelither of pre-big-bang nor of the ekpyrotic forinvolving a
single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravi-
tational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that
if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the
scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for pre-
big-bang and for ekpyrotic cosmology, which involve two scalar fields with exponential potentials with back-
ground values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant
spectrum of adiabatic fluctuations with background solutions which have been studied in the past.
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[. INTRODUCTION case of inflationary cosmology. See, €.8,3] for recent re-
views of pre-big-bang cosmology.

Both pre-big-bang(PBB) and ekpyrotic cosmology are The ekpyrotic scenaript] (see alsq5]) assumes that the
attempts to construct alternatives to inflationary cosmologyisible Universe is a boundary brane in five dimensional bulk
by introducing ideas of string theory to cosmology. The pre-space-time, and that the heating event which corresponds to
big-bang scenaripl] is based on considering the dilaton on the big bang of standard cosmology resulted from the colli-
an equal footing with the gravitational field, motivated by thesion of this brane with a parallel one which is attracted to it
fact that these are the important low energy degrees of fredsy an interbrane potentidl(¢). The dynamics is described

dom. The action is givefin the string framg by by a four-dimensional toy model in which the separation of
. the branes in the extra dimension is modeled as a scalar field
S= ﬁj d*xJ—ge ?(R—(9¢)?), 1) ¢. The effective action is taken to be
1 1
— | 44w —a 2
whereg denotes the dilaton andf=M ;*=87G. The Uni- S‘f d*x _g(ﬁRJr 7(de)"=V(e) |, @

verse is assumed to begin in a cold empty state with an

accelerating dilaton. The initial evolution is dominated bywith a potential which for values of relevant to the gen-

the effects of the dilaton, and in the string frame yieldseration of cosmological fluctuations is given by

super-exponential expansion. In the Einstein frame, this cor-

responds to a contracting phase with a scale fattrgiven V(gp)=—Voe~ V@ZR)(mp) e, (3

by a(t)~(—1t)*? (the timet is negative in this phageBy a

duality transformation, this solution is related to an expandwhere 0<p<1 andm, denotes the 4D Planck ma@ssing

ing Friedmann-Robertson-Walker cosmology. Without cor-the notation of{6]). The branes are assumed to start out

rections to the action(1), however, the initial dilaton- widely separated and at rest. In this case, the energy is nega-

dominated(PBB) branch and the late time expandifigost tive and the scale factor associated with the acti@nis

BB) branch are separated by a singularity. Since the Hubbleontracting witha(t) ~(—t)P (the timet is again negative in

radius decreases faster than the physical wavelength corréiis phasg The timet=0 corresponds to a singularity of the

sponding to fixed comoving scales, quantum fluctuations offiour dimensional mode{2), as in the case of pre-big-bang

microscopic scales during the PBB branch can be stretchezbsmology* As in the case of pre-big-bang cosmology, co-

to scales which are cosmological at the present time, as in thmoving scales contract less fast than the Hubble radius dur-
ing this phase, and thus it is again possible that microscopic

*Email address: finelli@tesre.bo.cnr.it
TEmail address: rhb@het.brown.edu 1See, however, Ref§7—10Q| for criticism of the scenario.

0556-2821/2002/64.0)//1035228)/$20.00 65103522-1 ©2002 The American Physical Society



FABIO FINELLI AND ROBERT BRANDENBERGER PHYSICAL REVIEW D65 103522

sub-Hubble scale fluctuations during the phase of contractiothe contracting phase. A new aspect of this matching prob-
produce perturbations on cosmological scales today. lem is that the dominant mode af increases on super-
Neither for pre-big-bang cosmology nor in the ekpyrotic Hubble scales in the contracting phase, in contrast to what
scenarid is a scale-invariant spectrum of adiabatic fluctua-occurs in inflationary cosmology, where it is constant.
tions generated at the level of the single field actions de- In Sec. IV we study backgrounds with two scalar matter
scribed above. A heuristic way to understand this is to notdields. Note that both for pre-big-bang cosmology and in the
that the initial values of the fluctuations when they exit the€kpyrotic scenario, there are other light fields which should
Hubble radius are set by the Hubble constant. The Hubbl8€ included in the respective actiof) and (2). In both

constant is increasing rapidly as a function of time in both€aS€s there are axion and moduli fields which could play an
important role. These fields can be dynamical during the col-

scenarios, and thus a deeply blue spectrum of initial fluctua]a se phasé2?]
tions will result(spectral indexa=4 in the case of pre-big- pln trF])e case c‘)f pre-big-bang cosmology, it was realized in

bang cosmo!ogyn :.3 n the case of the ekpy_rotl_c scenario [23] that, in the presence of moving extra dimensions, axion
Careful studies taking into account the gravitational dynams

) . - fluctuations are amplified, and that the motion of the extra
ICS on super-Hubble scales conflrmed this resu_lt both for_predimensions can be chosen such that a scale invariant spec-
big-bang cosmology[12] and in the ekpyrotic scenario y,m of isocurvature perturbations resulfsr more work

[6,13—1.6.3 . s , . along these lines see e[@4,25). However, such a primor-
The idea of obtaining the "big bang” of our Universe 5| spectrum of inhomogeneities seeded by axion fluctua-
from a previous phase of cosmological contraction is, hoWsions is ruled out by the latest CMB anisotropy restiise
ever, very interesting. In Sec. Il we discuss a model consisté.g_[zs] for an analysis of this issiie
ing of scalar field matter with an equation of stée-0,P In Sec. IV of this paper, we present a new class of two
denoting pressure, obtained with the valpe 2/3 for the  scqjar field backgrounds. These backgrounds have an inter-
exponential potential in E¢3) (we note that fop=2/3 the  yratation both in the case of the pre-big-bang scenario and in
potential is positive, i.6Vo<0, as opposed to the case of the gkpyrotic cosmology. In the former case they correspond to a
ekpyrotic mode[4], where the potential is negative, i¥s ilaton-axion background with exponential dilaton potential,
>0). In this background, the quantum vacuum fluctuationsy, the |atter case they involve the scalar figldepresenting

expanding Friedmann cosmology at a nonsingular bounce,

yield a scale-invariant spectrum of curvature fluctuatidns.
Such a model is obtained here by considering an exponential
potential for the scalar field. In the PBB scenario exponential
potentials for the dilaton may be generated by non- \We begin with a brief review of the analysis of the spec-
perturbative effects or by considering non-critical stringtrum of cosmological fluctuations in single field background
theory (a cosmological constant in the string frame can genmodels.
erate an exponential potential in the Einstein frame To linear order in fluctuationgand neglecting gravita-

In order to connect the contracting phase to an expandingonal waves and vector modeshe metric can be written as
phase, it is necessary to assume that at sufficiently high cu(see e.g[26] for a comprehensive review
vatures corrections to Einstein gravity become important,
yielding a nonsingular bounce. Similar ideas are invoked to d?2=a?(p)[(1+2d)d7?—(1-2d)dxdx], (4
achieve a graceful exit in pre-big-bang cosmology. In Sec. llI
we apply matching conditior{0,21] corresponding to con- where 7 is conformal time. We have used the fact that if
tinuity of the induced metric and of the extrinsic curvature matter consists of scalar fields there is to linear order no
for the infrared modes to calculate the induced curvatureanisotropic stress.
fluctuations in the expanding phase. We find that the domi- Via the Einstein constraint equations, the linear gravita-
nant mode of the curvature perturbatignn the expanding tional fluctuationgdescribed byb) are coupled to the matter
phase inherits the scale invariance of the growing mode ofield fluctuations. In the single matter field case, with matter

fluctuations denoted byde, a convenient and gauge-
invariant variable i§27] (see alsd28])
°Note that the fluctuation generation mechanism in the recently

proposed cyclic modélL1] is the same as in the ekpyrotic scenario,
and hence also does not yield a scale-invariant spectrum of fluctua- v=a
tions.

%In the case of the ekpyrotic scenario, the calculation 1] . ) o )
yields a different result, but at least in our opinion it is flawed With an overdot denoting the derivative with respect to

because it is based on ad hocmatching condition at the bounce Physical timet. In particular, in the action for joint metric
which (as already mentioned ifi3]) does not yield the correct and maitter fluctuations, is a canonically normalized field,
result when applied to power-law inflatiqsee alsq 18] and[19] and hence it is useful to quantize the fluctuations in terms of

Il. FLUCTUATIONS IN SINGLE FIELD BACKGROUND
MODELS

® ol
op+ ﬁq))=aQ, (5)

for recent work on this issie it. We will be studying the linear perturbation equations for
“Note that we are assuming the absence of any initial classicdhis variable in momentum space, wkistanding for comov-
fluctuations, as is done in the ekpyrotic scenario. ing momentum.
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In an expanding Universe described by the Einstein equarubble radiusp is oscillating with frequency given bi.
tions, a convenient variable to use to track the amplitude ofrhe yvacuum state normalization ofon these scales is
the fluctuations on super-Hubble scales(jsthe curvature

perturbation in comoving gaud@9,34. In variable( is re-

lated to the metric fluctuations via v= E e k7, (12)
= Ew+¢ (6) We consider backgrounds which correspond in the Ein-
3 ltw stein frame to power law contraction
and it is related t&@ andv as follows: a(t)«(—t)P. (13)
H v In this case, the last two terms within the parentheses multi-
{= EQ: 7! (7 plying v in Eqg. (11) cancel, and the equation reduces to
: , p(2p—1) 1
with v+ k2— (p——l)z? v=0. (14)
z=a§. (8) Its solution can be expressed in terms of Bessel functions
Z,:
In an expanding Universe and in the absence of entropy J=7n
fluctuations, is constant on scales larger than the Hubble v:_nzly‘(_k,,) (15)
radius, as can be seen from its equation of motion which is 2
) H k2 where the index is related to the indep by
(=== 9. ©
Ha v’~1_p(2p-1)
4 = ( _ 1)2 (16)
In inflationary cosmology, it is thus useful to calculate the P
magnitude of{ at the time when the fluctuation scale be- and therefore
comes larger than the Hubble radius, to use the constancy OP
{ to evolve until the time when the scale re-enters the Hubble 11-3p
radius, and to infer the values @f and ® (which determine, v= (17

2 1-p°
for example, the spectrum of CMB anisotropiesthat time. P
However, in the case of a contracting Universe one musAs can be seen from the large argument expansion of the
(even in the absence of entropy fluctuatiobe more careful, Bessel functions, this solution automatically has the correct
since the term in E¢(9) proportional tok? may grow. In the  vacuum normalization.
case of pre-big-bang cosmology, the growth is only logarith- Making use of the long wavelength limit of the Bessel
mic in », and for the potential used in the original version of functions, and of the fact that for our class of backgrounds
the ekpyrotic model there is no growth gfat all. Hence, in /H is independent of time, we obtain the following power
these modelg remains a good variable to follow the mag- spectrum of the variablé:
nitude of the density fluctuations on super-Hubble scales.
In the Einstein frame, the equations of motion for cosmo- k3 ) 3- 20|
logical perturbations reduce to the following equation for the P(k)= 5 |¢|*~pk =" (18)
Fourier mode of the variable defined in Eq.(5) with co-
moving wave numbek (we suppress the indekon v): Thus, to obtain a scale-invariant spectrum of adiabatic fluc-
. tuations, we requirév|=3/2, whereas in the single field ek-
K2— Z_) -0 pyrotic scenario withp~0 one obtainsy~1/2 and thus
v , (10 > . . . .
spectral indexn~ 3. In the single field pre-big-bang scenario

. o ) the resulting values ane=1/3,y=0 and therefore=4.
where a prime denotes the derivative with respect to confor- - An interesting background is obtainedpf= 2/3. In this

v+

mal time 7. _ _ _case,|v|=3/2 and hence a scale-invariant spectrum of adia-
Making use of the background equations of motion, thispatic curvature fluctuations is generated in the collapsing
equation becomes phase’. This background corresponds to a contracting Uni-
v+ kz—a—ﬂ+a2V”+2a2 ﬂ+3H | v=0, (11
a H ' SThis result was already noted in the work [&1], and more

recently in[13] (it can also be seen from Fig. 3 16]). In the
where V is the potential of the matter fielgp. From this  earlier work[31], however, the transition to an expanding phase
equation it is clear that on scales much smaller than thevas not discussed.
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verse dominated by cold matter with equation of stBte it is necessary to carefully match the fluctuation variables at

=0 (with P denoting pressujeThe cold matter in this case the bounce.

is modeled by a scalar field with an exponential potential. The general relativistic matching conditions demand that

Note that the fluctuations in this model behave differentlyat the boundary surface the induced surface metric and the

than the fluctuations in a hydrodynamical model wkh extrinsic curvature be continuo{80,21. As a matching sur-

= cgzo, wherec§ is the speed of sound. This can be seen byface one can choose either a constant energy density surface

comparing the equation of motionll) for scalar-field- (from the point of view of longitudinal gauger a constant

induced fluctuations with the corresponding equation for hy-scalar field surfac For super-Hubble scale fluctuations, the

drodynamical mattefsee Chap. 5 of26]). Note that model- ~ difference between these two surfaces is of okdeand does

ing cold matter by a scalar field with nontrivial potential will not affect the results to leading orderkii The matching on

avoid the Jeans instability problem on small scales whicka constant energy density surface implies the continuity of

plaguesP=0 hydrodynamical matter. Note also that such aand ® across the surface. In pre-big-bang cosmolfay]

contraction[a(t) ~ (—1t)%®] solves the horizon problem. and in the ekpyrotic scenarfd3] this leads to the conclusion

that the growing mode ofb during the collapse phase

(which in the case of the ekpyrotic scenario has a scale-

invariant spectrumdoes not couple to leading orderkA to

the dominant(constant mode of the post-bounce phase. In
Let us consider the contracting model with=2/3 intro- ~ contrast, the late time value ¢fis the same as at the bounce.

duced above and imagine that it is connected via a nonsinthese results are confirmed in studies of cosmological per-

gular bounce to an expanding Friedmann-Robertson-Walkdt/rbations in generalized Einstein theor[é$,46,47 which

cosmology. In the following we will argue that in such a Yield a bouncesee alsd48,49).

model the scale-invariant spectrumé€onnects through the At the end of Sec. Il we have shown that, for our new

bounce to a late time scale-invariant spectrum in the expand?ackground, the growing mode ¢fin the contracting phase

ing phase. Thus, our model yields an alternative to cosmeebtains a scale-invariant spectrum. We need to show that to

logical inflation in providing a mechanism for producing a leading order ink® there is a non-vanishing coupling be-

scale-invariant spectrum of adiabatic fluctuations on scaletveen the pre-bounce growing mode gfand the post-

which could, provided that the phase of contraction lasts sufbounce dominant mode. Note that the rapid growth; aé

ficiently long, be of cosmological interest today. very different from what occurs in the inflationary Universe,
The graceful exit problem faced in order to obtain such an pre-big-bang cosmology and in the ekpyrotic scenario, and

bounce is similar to what is required to obtain a graceful exithat the analysis of the matching conditions needs to be re-

in pre-big-bang cosmology. In the latter case, there are indiconsidered.

cations that higher curvature and string loop effects can yield We begin with the following general solutigito leading

a nonsingular bounc§32—36. (See also[37,38.) Back-  order ink?) for { [see e.g. Eq(12.27) in [26]]:

reaction effects also can play an important {@€]. There is

also a constructiorf40,41 based on a Lagrangian with dzy

higher order corrections of the nonsingular Universe con- §:D+SJ 22 (19)

struction[42,43 which yields such a regular bounce. Since

the corrections to Einstein gravity will be important only \yhereD andS are constant coefficients. In our background,
very close to the bounce, and since we are interested ifhe S mode is the growing one, whereas in inflationary cos-

scajes vyhich at the bounce are much larger than the Hubbyﬁmogy it is decaying and thus subdominant. Making use of
radius, it appears reasonable to model the boufmethe Eq. (9), we can find the corresponding form &f:
purpose of matching the pre-bounce and post-bounce fluc- ’

Ill. SPECTRUM OF FLUCTUATIONS
AFTER THE BOUNCE

tuations as a gluing of two Einstein universes at a fixed

. ; - 1 HIS
surface specified by some physical criteri@@e, however, b=—— —| ]|, (20)
the concerns raised 15,18 on this issug 2mp a k

The naive expectation is that the dominant mode of the
curvature fluctuatio after the bouncéwhich is constantin ~ where  is the Hubble constant in conformal time. This
time) is given by the dominant mode prior to the bounce, thegives the mode of® which is decaying in inflationary cos-
mode which in our background has a scale-invariant spegnology. It also shows that this “decaying” mode df af-
trum. This is what happens in inflationary cosmology with fects the value of to orderk? (to leading order it cancels
reheating modeled as a discontinuous change in the equationt). There is also a constant mode ®fwhich determines
of state[44,45, pre-big-bang cosmologh21] and in the ek- the constant mode modg of {. The coefficients of the
pyrotic scenario with a nonsingular bounde]. Note, how-  constant modes ob and ¢ are related by a function of the
ever, that a similar “plausibility” argument applied to the equation of state of the background which containskho
variable® fails in both of the above cases. In both pre-big- dependence. Thus, in order to perform the matching analysis
bang and ekpyrotic cosmology the pre-bounce growing modge consider the following forms fob and{:
of ® does not contribute to leading order in the wave number
k to the dominant post-bounce mode®f Thus, in order to
be able to draw conclusions about the post-bounce spectrum®see[18] for a justification of this choice of the matching surface.
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§:D+Sf(7]), k3 _ 1"~ 2 H(1— 4;M2;—3
Pi(k)=——|?=p2®3 (”1 o) . (26
s X 27 2 Mpp ke~
= + —_—
®=ab+p k2 a®’ @D For p=2/3 one has an amplitude in agreement with observa-

tions for H, /My~ 101, where™, indicates the absolute

wheref(5)=[(d5/z%) and where the coefficients and 8 value of the Hubble rate at the boun@ehen the contraction
depend only on the equation of state. stops. _ . o

It is now straightforward to calculate the consequences of The model withp=2/3 which we are considering also
the continuous matching @b and ¢ across the bounce for 9generates a scale-invariant spectrum of gravitational waves,
the coefficients of the two modes ¢fbefore and after the S already realized if60] and[31]. This can be seen imme-
bounce. Quantities before the bounce will be denoted by diately sincen=ah, whereh is the amplitude of the tensor
superscript— and those after the bounce by a supersctipt  perturbation of the metric, obeys the same equation of mo-
Simple algebra yields tion as the scalar fluctuation variabe This is true in all
models with an exponential potential for the scalar fl&ld).
In order to compare the amplitudes of the power spefra
for scalar metric fluctuations arfél, for gravitational waves
in the collapsing phase, we first need to dividey M, (for
o dimensional reasonsThen, using the relatiotv) between?
F— B_ H_f+) _ (22) andv and the background values ldfand¢ we immediately

BT HT obtain

D+( atfTa?k? B
_—B+H+ =

B a fra%k?
 OBTHT

+S

In the ekpyrotic scenario, it follows from Ed15) and
from the fact thaty=1/2 that D~k Y2 and S~ ~k2 P, p 27
Hence, theD mode of{ after the bounce has spectral index P, 2°
n=3, in agreement with our earlier matching resultis].
However, for our present background we have3/2 and This is a definite prediction resulting from the analysis dur-
henceD ™ ~k®?2 and S™~k~®2 Since the matching of the ing the contracting phase.
S~ mode to theD ™ mode is not suppressed by factorskdf
the post-bounc® * mode inherits the scale invariance of the |\, A BACKGROUND WITH TWO EVOLVING FIELDS
pre-bounceS™ mode. Thus, we have shown that our back-
ground vyields a scale-invariant spectrum of fluctuations at We now turn to the question of whether it might be pos-
late times. sible to generate a scale-invariant spectrum of adiabatic fluc-
Let us now return to the analysis of Sec. Il and determinduations in pre-big-bang cosmology and in the ekpyrotic sce-
the amplitude of the scale-invariant spectrum of curvaturgario by turning on nontrivial background time dependence
perturbations afand, as we have shown above, thereforeof a suitably chosen second scalar field. As a first step, we
also aftef the bounce in our model with=2/3. As follows will have to construct new background solutions. We will

from Eq. (7) and from the background values @fand H: consider the action

V=g ( ! erMo L
H SZJdX— — R+ do)°+ z(dp) =V ,
¢ pl 29)
According to Eq.(15), the normalized solution fo® is with an exponential potential fap:
=_ —Bel/Mpy, 29)
o V=77 V(g)=—Voe Pl. (
_ Ali(p+12)m12) ~_
Q=e oa H3(—kn) (24

In the string-inspired scenario, the interpretation of this ac-
_ tion is that we add to the single field acti@®) a second field
whereH denotes the Hankel functiom=|v|, and where the ¢ with a non-minimal kinetic term. Suct: can be an axion-
scale factor is expressed in terms of conformal time as like field in a modified pre-big-bang scenario where the di-
laton ¢ has an exponential potential. In the ekpyrotic sce-
nario, with ¢ representing the separation of the braresan

a(n)=(—(1—=p)Myn)P =P, (25  pe an axion-like field or a second scalar field in an effective
theory for the brane worlds.
By inserting the long-wavelength limit{k»<1) of the We now look for self-consistent analytical solutions of the
Hankel function one gets background equations:
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1 (P/Z 0_/2
H2= (—+aZV(<p)+eW’MpI— (30

3M5 1 2 2

” ’ 2 « ap/M 12
¢"+2He' +a V(P:me Plgr (3D

p
" (P, ’
o'+ 2H+aM—)(r =0. (32
pl

We consider the following ansatz fa( ») and ¢(7):
a(n)=(~Mp(1—p)p?t=P (33
e(n7)=Alog(—=Mp(1-p) 7). (34)

Equation(32) can be immediately integrated giving
e~ @e/My

o'=C—5— (35)
a

PHYSICAL REVIEW D65 103522

Yo p(ap-1) (41)

My
This concludes all of the independent relations between the
parameters and integration constants for the exact solution
for the background obtained from the anseg4), (33).

Let us compare the dependenceacéndV(¢) on p and
on time in our two field solution with the corresponding
scalings in the single field model of Sec. Il. Comparing Eg.
(33) with Eq. (25) it follows that the dependence afon p
and on time is the same. Inserting E84) into Eq. (29),
making use of Eq(41), and comparing with the result in the
single field cas¢see e.g. Eq(12) of [13]] it follows that the
dependence d¥(¢) onp and on time is also identical. This
implies that the dependence prof the spectrum and ampli-
tude of gravitational waves is the same in the single field and
multifield models. Equatiori40) shows that the sum of the
kinetic terms in the multifield model with the axion is the
same as in the single field model.

A final remark for the case=0, in which o corresponds

whereC is an integration constant. We have the following g 3 modulus field. The solution obeying the anga® con-
parametersw, 8,p,A,C. By imposing that all the terms in  strycted in this section has a meaning &or0, only in the
the equation forp (31) have the same time dependence wecasep=1/3, i.e. vanishing potential fap. Only in this case

obtain (assumingv, and C are nonzerp

AP, (36)
v, 1-p

AL, 37)
My 1-p

and these relations lead to the constraint

al B=1-3p. (38

Note that this relation implies that for the case of pre-big-
bang cosmology withp=1/3 our action describes a modulus

field o (with a standard kinetic term
From the equation fot{’,”

Hr_HZZ_ 72+0,12ea(p/Mp| 39
2MS|[<P ] (39
we get
(A )2+ ° ). = (40)
Mo/ IM3(1-p)) (1-p)*

The interpretation of this result is thah/Mj and

analytic solutions exist, since bothando are massless, and
the global equation of state is stiff matt@ressure density
equal to energy densityln the case of an exponential po-
tential as in Eq(29), the moduluss dominates the energy
density for early times ifp<1/3 and for late times ifp
>1/3.

V. DISCUSSION

In this paper we have discussed ways of obtaining a scale-
invariant spectrum of adiabatic fluctuations in models in
which a contracting Universe is matched via a nonsingular
bounce to an expanding Friedmann-Robertson-Walker cos-
mology. We have assumed that new physics at high curva-
tures leads to a short period in which the background evolu-
tion is not described by the Einstein equations, thus enabling
a transition from a contracting to an expanding phdsam
the point of view of the Einstein frame scale fagtor

Our first result is that a contracting Universe dominated
by cold matter modeled as a scalar field with an exponential
potential with appropriately chosen index can yield a scale-
invariant spectrum of curvature fluctuatioffiuctuations in
the variable?) in the contracting phase, which is matched at
the bounce to a scale-invariant spectrum during the expand-
ing phase.

Our second result is that it is possible in the context of

C/[M2|(1—p)] are constrained to be on a circle of radius ekpyrotic cosmologyand also of other models with a phase

p
proportional to\/p. From the energy constraif80) we ob-

tain

of power law contraction with powgr+ 1/3) to obtain new
background solutions by considering a model with two scalar
fields ¢ and o, with exponential potential forp and non-
standard kinetic term coupling fer, provided that the coef-

"It is not an independent equation, but is obtained from the timdicients in the exponents of the potential and describing the

derivative of the Hamiltonian constraii80), making use of the

non-minimal kinetic term satisfy a particular relation. In the

equations of motion forp and . From this equation it is easy to context of ekpyrotic cosmology, this corresponds to adding a

derive another constraint among the parameters.

rolling second fieldo (an axion-like or the modulygo the
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usual four-dimensional effective action which contains a sca- This mechanism is an alternative to the one proposed re-
lar field ¢ describing the separation of the branes. It is im-cently based on axion decay to obtain a scale-invariant spec-
portant that both fields have time-dependent backgrounds. mum of adiabatic curvature fluctuatiofs2—54. One starts

the context of the pre-big-bang scenario, our model can b@ith a scale-invariant spectrum of isocurvature fluctuations
interpreted as adding an axionic field to the dilaton-gravity(like in the work of[23]), and assumes that the axion field
action, and assuming that there is an exponential potentigfhich is responsible for the scale-invariant spectrum decays

for the dilaton. _ at some late time when it dominates the background energy
Adding the new degree of freedom via the second scalagensity.

field leads to an isocurvature mode of the fluctuations. In the

PBB scenario, it was showi23] that for suitable field back-

grounds this isocurvature mode has a scale invariant spec- ACKNOWLEDGMENTS
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