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Characterizing

perturbations
Homogeneous Universe:
Metric:
ds’= az(n)(dnz—y,-kdxidxk) =0ga/3dx“dxﬁ
Matter:
e(x,n) = eo(n) — energy density
p(e) — pressure
Inhomogeneities:
Metric:

Gop =" Gaptd9ap(Xm),
3g4pdx%dxP = 2a[pdn>-B;dx’dn + (wy y~E |i)dx dx¥]
Matter:
e = go(n) + 6e(x,n),
or in the case of scalar field
@ = @o(n) +6¢(x,n)



Gauge transformations and
fictitious perturbations
Example:

Let us consider the coordinate
transformation: x - x and

t = J' adn —t= t + f{x,t) in unperturbed
homogeneous Universe:

t = const t

energy density doesn't
depend on x

Then e(t) = e Ax.0) = e(®) - &f

The Universe is homogeneous, but in the
new coordinate system it looks like

inhomogeneous: 5e(x, 1) = —£f.

These inhomogeneities are fictitious.



Gauge transformations in general:
Under coordinate transformation:

x® =X = x% +&°
one has

6g =6g=6g— L Og
Resolution of the problem of fictitious modes:
1.use gauge invariant variables or

2. completely fix coordinate system and do
not allow any coordinate transformations

Gauge invariant variables:

Build out of the metric perturbations: ¢,y, B, E
and/or matter variables

(e.g. dp) formal "4 vector” X which
transforms as X* oX%= X* + £

Then, for the perturbations of any tensor:
g =Y q + éq, the variables

50 =08g+Lx"'q

are gauge invariant
Example: X* = [(B-E'),E;], () = a%



Basic gauge invariant variables:
* Gravitational potential

® = ¢+ (1/a)[(B—-E)a]

Potential @ is directly related with the
temperature fluctuations of CMB in big scales
as 2L = L@ and enters the metric in the
newtonian gauge as

ds?= a%[(1 + 20)dn>~(1 - 2d)y ;dx’dx¥]

e Canonical quantization variable
vV =aop +zy

where 6¢ are the fluctuations of scalar field
or velocity potential and

z = a(l + %)1/2

Equations:

Considering plane wave perturbation
®,v « exp(ikx) and introducing new “rescaled

variables u = “T’;(I) and ¢ = %, we can derive

from Einstein equations the following
equations for { and « :



¢ = —(k/z*)u,
u' = kz%¢
Duality: § = u, u = ¢, z = 1/=.

Matching conditions: When the equation of
state p(e) changes sharply ¢ and « are
continuous

Solutions:

In the scales bigger than the horizon scale
the "conserved quantity” ¢ is about
gravitational potential ® : ® = O(1)¢ if
E+p ~ E.
* For the perturbations with the scale
smaller than curvature scale
(Apn = alk < H!,H=4is the Hubble
constant):

¢ oc etikn/z = eiik”/a(l + %) 172

* When the perturbation scale is bigger
than the curvature scale (1, < H!)

{ oc const

These statements are true for an arbitrary
equation of state p = p(¢)



Why do we need
inflation?

Initial conditions at ¢, ~ 1093 sec
 Homogeneity problem:

( size of the Universe ) aj
Ld - - &
size of causal region ), 0

1

where a; = (<4 ) ‘and g are the initial and
current "speed” of expansion
 Initial velocities (flathess) problem:

For the given matter distribution the "allowed
mistake” in the initial velocities:

B ¢ (oY’
a; a;

If p = €/3, then a « Jf and a;/ay > 10,
Root of the problem:

Gravity is attractive force= a; > ay
Idea of inflation:

Gravity acts as repulsive force during some
period of the universe evolution when we
have accelerated expansion and a(¥) is
increasing.



rate of
sxpansipr

Quantum £ ; t. - transition to to
gravity Friedmann era 0

a; < ap= no problems anymore with causality
and "fine tuning” of initial velocities.

-Oninflation4 = H+H? > 0 > |H| < 1?
The duration of inflation estimated as
tr ~ (HP/H):H ~ 2 (%) H™' should be
longer than 70H'= (e + p), < 2 -L¢,

* Inhomogeneities problem:
Generic initial conditions: de/e ~ O(1)
Inflation should:
- eliminates initial inhomogeneities =
a; < ao . Since (Qo - 1) = (@ - 1)( &),
one gets prediction Q, = 1!
- generate new inhomogeneities (10-5)



Generation of primordial
fluctuations

- Uncertainty principle = inevitable quantum
fluctuations of the fields in the vacuum

Example: quantum fluctuations of the metric
in Minkowski space

-33
hy = 10 lcm

These fluctuations are smaller than 1038 in
the appropriate galactic scales today

- Quantum metric fluctuations are big enough
(107°) only in the scales close to the Planck
scale (1033cm). They should be transferred
to the galactic scales (10%3cm) as a result of
the expansion of the Universe without loosing
in amplitude.

-To characterize the fluctuations we use
canonical variable

v =a(e+zy),z = a(l + 2)* and the
"conserved quantity” ¢ = v/z which at
hydrodynamical stage when p + € ~ ¢ is about

gravitational potential: ® = O(1)¢ (reminder:

4L - +@ in COBE scales)




For the plane wave perturbation with
comoving wavenumber £ , the physical wave
length A,, = a/k increases « a

A

t, t>t.

—t H'= -?— - curvature scale
a
The evolution of the amplitude of the
perturbation with given k crucially depends on
how big is the physical scale of perturbation
A,» compared to the curvature scale H™' :

« When 1,, < H!, the amplitude of {
decays as 1/z.

v is canonical variable= quantum fluctuations

have the amplitude vy ~ _Jl_zf in the scales

< H1. Therefore,
2k a1+ Y2

- When 1,, > H!, the amplitude of §

stays constant irrespectively on the
equation of state.
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galactic sc;_es

H'oc g-‘-[ 3 x a(t)
ai decreases i)n inflation m

Quantum
fluctuations
are big

No Inflation- no chance to get big fluctuations
in galactic scales! Curvature scale increases
faster than a and the amplitude of
perturbations which were originally big
always decays (« 1/a)

Inflation- Curvature scale on inflation
increases not so fast as 1,, = a/k. Quantum
fluctuations in comoving scale k£ become
frozen when A,, = a/k ~ H! with amplitude
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Spectrum:

G

Log dependence
on the scale

: dots denote perturbations
e with different comoving scales

H-1 galactk: scales A Ph

-Spectral index:

dl |
ns=1 = dlﬁli _3(1 +& ) ~Ha+3 dlne (1 + 5 )k~Ha

Generically (1 + {;—)gal £ - and second
term is negative= n; < 0.96

Example: Scalar field with potenhal m??

- m a[ A
D~ ~ My ln( A )
Required m ~ 1013 Gev

Gravity waves have an amplitude h ~ ¢,

that is they are smaller by factor (1 + £) ;%a .
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How robust are
predictions of inflation?

input from HEP

?'QL

IDEA AND BASIC PHYSICAL c";
PROPERTIES OF INFLATIONARY m
MODEL ARE ESTABLISHED ? '_%77
o
Robustbredictions l???
e Spatially flat Universe - Energy scale of
Qotal = 1+ 10—5 inflation—prediction
of the amplitude of
perturbations,

 Nearly scale-invariant  concrete Fs
spectrum (ns < 0.96). - Transition from inf-
Perturbations are lation to Friedmann,
Gaussian reheating mechanism

-The origin of small
number 1073 , chara-

terizing perturbations
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* Isis possible to get QO < 1? Yes.

Cost. Two inflationary stages. Second one
which takes place "inside the bubble” the kills
the prediction QQ = 1 should have fine tuned

duration. Q exponentially depends on the
duration.

* |s it possible to get non-flat spectrum,
nonadiabatic, nongaussian
perturbations? Yes.

Cost. -In "one fluid” model with specially
designed peculiar behavior of the equation
of state (potential) one can get peculiarities in
the spectrum of (gaussian, adiabatic)
perturbations. To put them in the interesting
scale one should fine tune time when it

happened. Exponential dependence on
parameters!

- Two (or more) "fluids” models: € = g1 + ¢,,

p = p1 + p2. Fine tuned parameters to have
both of the component of the matter to be
relevant simultaneously. Possible to have few
inflationary stages and then one can get:

1. peculiarities in the spectrum (picks, valley)
2. spectrum with n, > 1

3. even nongaussian isocurvature
perturbations.
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