PHYSICAL REVIEW D 67, 063514 (2003

Constraints on pre-big-bang parameter space from CMBR anisotropies
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The so-called curvaton mechanism—a way to convert isocurvature perturbations into adiabatic ones—is
investigated both analytically and numerically in a pre-big-bang scenario where the role of the curvaton is
played by a sufficiently massive Kalb-Ramond axion of superstring theory. When combined with observations
of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite
considerably the parameter space of the model: in particular, the initial displacement of the axion from the
minimum of its potential and the rate of evolution of the compactification volume during pre-big-bang infla-
tion. The combination of theoretical and experimental constraints favors a slightly blue spectrum of scalar
perturbations, and/or a value of the string scale in the vicinity of the SUSY GUT scale.
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[. INTRODUCTION directly the metric; hence no curvature perturbation is gen-
erated at this primordial level. In other words, the axion per-

At present, the largest-scale temperature fluctuations dlrbations are entropic, isocurvature perturbations. This fea-
the cosmic microwave background radiaticBMBR) are  ture persists, unfortunately, und&mduality transformations
consistent with dquasij scale-invariant spectrum of Gauss- [15,18. If such an axion is massless, or at least light enough
ian primordial curvature fluctuatiofld—3]. The analysis of Nnot to have decayed yet, the induced CMBR fluctuations on
the first acoustic oscillations occurring on shorter angulafarge scales can fit the Cosmic Background Expl6@0BE)
scales adds the information that such curvature fluctuationd@ormalization{17-20, but, being not adiabati@1], they are
should be predominantly adiabatig—7]. Although suffi-  not able to fit the observed structure of the first few acoustic
ciently small amounts of non-Gaussianity and/or isocurvaieaks.
ture perturbations are not excluded, the above-mentioned ob- A possible way out of this problerf8,10,22-25 is of-
servational features represent an important constraint for arfgred by the alternative scenario of a massive axion, initially
scenario trying to model the initial stages of our Universe. Indisplaced from the minimum of its nonperturbative potential.
a previous Lettef8] we tried to confront the pre-big-bang In that case axion perturbations couple to scalar metric per-
scenario[9—11] with these constraints. The present paperturbations through the non-vanishing axion’s vacuum expec-
contains a full description of that analysis and completes ittation value(VEV). Eventually, the axion relaxes toward the

Let us recall that, during the pre-big-bang phase, théninimum of the potential and then, if heavy enough, decays
quantum fluctuations of all the light modes present in the lowPrior to nucleosynthesis. During the relaxation process the
energy effective action are parametrically amplified. None-dominant source of energy undergoes a drastic change: it
theless, sizable large-scale adiabatic fluctuations are not eagPnsists of the radiation produced at the end of the pre-big-
||y produced from the initial vacuum through the usual bang evolution, and later becomes the pressureless fluid cor-
mechanism of parametric amplification. In particular, bothresponding to the damped coherent oscillations of the axion.
tensor and scalar-metric fluctuations are amplified with veryl'his nontrivial evolution results in a nonadiabatic pressure
steep spectrfl2,13, resulting in adiabatic modes which are perturbation which, in turn, is well knowf26,27 to induce
far too small to explain the observed level of large-scalecurvature perturbations on constant enetgy comoving
CMBR anisotropie$14]. hypersurfaces even on superhorizon scales.

However, not all the primordial spectra of pre-big-bang The interplay of such different sources of inhomogeneity,
cosmology are blue. For instance, in a pure gravidilatorfhroughout the different stages of the background evolution,
background, the pseudoscalar supersymmetric partner of tfventually determines the spectral amplitude of scalar curva-
dilaton in the dimensionally reduced string effective action,ture perturbations right after matter-radiation equality, when
the so-called Kalb-Ramond axion, emerges from the pre-bigall the scales of interest for the CMBR data are still outside
bang phase with a fluctuation spectrum whose tilt depends Orrh]e horizon. This conversion of isocurvature into adiabatic
the rate of change of the compactification volufd®,16.  perturbations, originally suggested in a different context by
Depending on this, the axion tilt can be negatived spec- Mollerach[28], also applies to more general ca$2s,25.
trum), positive(blue spectrum or zero(scale-invariant spec- ~ Depending upon the initial value; of the Kalb-Ramond
trum). However, since the homogenedimckgroundlcom-  background, different post-big-bang histories are possible. If
ponent of the axion is trivial, such a spectrum does not affect< ;<1 in Planck unit{see below, Eq(3.7), for the defi-
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nition of o], the axion oscillates for a long time before be- conservation equations determining the dynamics of the

coming dominant and eventually decays. g o it may sources:

never fully dominate the energy density before decaying. If, 1

instead,o;>1 the axion will dominate before oscillating and RA— > SPR= E(Tg(o) +77), (2.9

a slow-roll (low-scalg inflationary phase could take place in

that epoch. As we shall see, of all these possibilities CMBR PV

observations seem to favor the “natural” ong~1. In any g“BVaVEanL — =0, (2.2
. . . . . do

case, even if different post-big-bang histories will lead to

different spectral amplitudes of the Bardeen potential, adiaghere TA(s) and TP are, respectively, the energy-
batic scalar metric perturbations will always be present amomentum tensors of the axionic background and of the
some level outside the horizon, prior to decoupling. matter fluid. Notice that the covariant conservatiorT o)

The purpose of the present paper is to report on the cals gynamically equivalent to the evolution equation of the
culation of the spectral amplitude of the induced adiabaticaxionic field, i.e. Eq.(2.2), and implies, through the con-
metric perturbations, and on the comparison of the predictracted Bianchi identities:
tions of the pre-big-bang scenario with the observations
coming from the physics of the CMBR anisotropies. In order VT 3=0. 2.3
to achieve this goal it is mandatory to have a good under-
standing both of the axion relaxation mechanism and of thuJ-}n a conformally flat background geometry,
evolution of the inhomogeneities. Hence analytical results 2 > =2
will be supported with numerical examples and vice versa. ds’=a’(n)[dn’—dx’], 24
We will present, in particular, a full derivation of the results ggs.(2.1)—(2.3) lead to a set of three independent equations,
for the final adiabatic spectrum of the Bardeen potentialvhose specific form is dictated by the fluid content of the
(some of these results have been summarized alred@})in  primordial plasma. In the case of a radiation fluid we have

The paper is organized as follows. In Sec. Il the basic
equations describing the post-big-bang evolution of the inho- - - pr
mqogeneities and ofgthe bpackgrogund giqeometry will be intro- To=pr. Ti=—p Pr=3 29
duced. In Sec. lll the physics of the different post-big-bang
histories will be analyzed. In Sec. IV the evolution of the and Egs(2.1)—(2.3) lead to
background and of its perturbations will be discussed for the

case in which the amplitude of the initial axion background H = — a_2 n _/2_\/ 2.6
is smaller than 1 in Planck unitg;<1. In Sec. V we will 6| a2 ' '
discuss the evolution of the system in the complementary

caseo;>1. Section VI is devoted to the phenomenological

implications of the large-scale adiabatic perturbations pro- U"+2HU'+32£:01 2.7
duced through the relaxation of the axionic background. The

obtained results will be compared with observations. Con- p! +4Hp,=0. 2.9

straints on the pre-big-bang parameters will be derived. Sec-
tion VII contains our concluding remarks while, in the Ap- Here the prime denotes the derivation with respect to the
pendix, a self-contained derivation of the axionic spectraconformal time coordinatey, and H=(Ina)’. For future
produced by the pre-big-bang evolution has been included.convenience we also recall that the connection betwigen
and the Hubble parameter i§="H/a. The effective energy
and pressure densities afwill be given by
1. BACKGROUND AND PERTURBATION EQUATIONS ) )
As already mentioned, we shall start our analysis at some pU:U— +V, pa:U— —-V. (2.9
time %, in the post-big-bang epoch, assuming that the axion 2a’ 2a’
field has inherited from the preceding epoch appreciable

large-scale fluctuations, while other sources of energy as wefi"€ Set of dynamical equatiorg.6)—(2.8) is supplemented

as the metric are exactly homogeneous. It will also be asPy the Hamiltonian constraint

sumed that, initially, the dominant source of energy is in the 5 o
form of radiation. Th_e post-big-bang dynamics takes place, sza_ o+ U_+V , (2.10
in the present analysis, when the curvature scale has fallen to 6 2a2

a sufficiently small valudin string unit3 so that the use of

the low-energy effective action is appropriate. Furthermore;————

for 7> 75; the dilaton is assumed to be frozen already at its Gravitational units 16G=1 will be used throughout. When ex-

present value. plicity written in the formulas, Mp=(167G) Y?=1.72
Under these assumptions, the evolution of the geometry i 10'® GeV. In these unitsg is the canonically normalized axion

determined by the Einstein equations, supplemented by thigld.
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which imposes a specific relation on the set of initial datain the case of fluids with constant speed of squiadwrite
and is required, in particular, for the numerical integration ofequations for the combinatiorsg, /p, —4®), whose evolu-
the background evolution. tion greatly simplifies at large scales.

During the post-big-bang phase, the first order perturba- The fluctuations of the off-diagondbpacelike compo-
tion of Egs.(2.1)—(2.3) provides the lineatcoupled system nents of Eq(2.1) imply that®=¥. Hence, in terms of the
of evolution equations of the inhomogeneities. To first ordewvariables defined in Eqg2.12-(2.19, the (00) and (Q)
in the scalar metric fluctuations, the line eleméht) can be  components of the perturbed Einstein equatitasting as

written as[27] Hamiltonian and momentum constraints for the evolution of
5 ) _— the Bardeen potentiatan be written in terms of the gauge-
ds*=a*(n){(1+2¢)dy*—25,BdXdy invariant velocity potentials,, v, , and of the radiation and
—[(1—2<,/;)5ij+2&iajE]dx‘dxi}. (2.11 ﬁ));ivc:-] density contrast$,= op,/p;, 6,=3p,/p,, as fol-

Since there are two gauge transformations preserving the
scalar nature of the above metric fluctuations &,E,B),
two gauge-invariant(Bardeen potentials can be defined

2
a
VO - BH(HD+®')= 7 (pd+pyd,), (220

[27,29
a2
1 HO+D'=—[(p,+ +(p,+pP,)v,]. (2.2
b=+ a[(B—E’)a]', (2.12 4 [(prtpP)u+(p PVl (2.21
, Here the axion velocity potentiad,,, is defined by
V=y—H(B-E'). (2.13
Appropriate gauge-invariant variables can also be defined for v o= X (2.22
the perturbations of the sources, in such a way that 7 avp,+p,
x¥=60+c'(B-E'), (2.14  and is the axionic counterpart of the velocity potential intro-
(o) ) ) duced for the radiation fluid.
8p:Y"=bp,+p;(B—E'), (2.19 The constraint$2.20 and(2.21) are to be supplemented
) by the dynamical equations coming from the perturbation of
v =v,+(B—E’'), (2.1 the(ii) components of Einstein’s equatiofs1), of the axion

equation(2.2) and of the continuity equatio(®.3). For the

whose physical interpretation is particularly simple in thegauge-invariant quantities defined above, such dynamical
so-called longitudinal gaugg27] in which E=0=B. Here equations are, respectively,

6T9=8p,, and the velocity potential is defined by the off-

diagonal fluctuations of the radiation energy-momentum ten- a’ a®
sor as D"+ 3HO +(HP+2H ) D= T5pdt 4 3P,
2.2
STO=(p+ py)u®au;, (217 (&9
2
whereu®=1/a and, in the longitudinal gaugeéu;=adv,. " , 2., 9V, vy 2o 2
: ' . +2 —Vix+—ax—40'd’'+2—a“d=0,
By perturbing the diagonal components (o), and X Fix X Jo? X—%0 do
using Eqgs.(2.12 and(2.14), the fluctuations of the axionic (2.29
energy and pressure densities can be expressed in a fully
gauge-invariant way as followfs: 4_,
S5 —4d' — §V v,=0, (2.25
1 Vv
Opy= - —do'’+ o' '+ —a’y|, (2.18
a do 1
v, — Z&—CDzO. (2.26
1 12 1o N 2
op,= ; —®o'to' Y - ga X\ (2.19 Finally, the perturbation of the covariant conservation of the

axionic energy-momentum tensor leads to two useful equa-

The variables characterizing the gauge-invariant fluctuationdONs:
of the sources can be defined in different, but equivalent,

r_ 2 _ _ ’
ways[26,30. For instance, it is sometimes usefakpecially PS5 (Pet Pe) VU= 3HP0,— 3P (Pytpy)

+3Hop,=0, (2.27
2In the following, since we will be dealing only with gauge- p +p! 5p
invariant quantities, the superscript(df)” can be consistently vi+| AH+ v ,— T —®=0, (2.28
dropped without confusion. Potpo PstpPs
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which are implied, as it should be, by Eq2.23—(2.26 AH | HD+ D' HD+ D’
when the background equatio(6), (2.7) are used. [=—| D+ — | E—( +H2— ,

It is also useful to notice that, by combining Eqg.10 a’ | Prot™t Prot H=H'
and(2.23, we can eliminate the fluid variables, and we ob- (2.34)
tain

where the second equality follows by using the background
equations of motiori2.6)—(2.10. By using this variable, Eqg.

Q"+ 4HD' +2(H2+H' YD — Evzq) (2.31) can be written as
3
d¢ H 4HCE
o2 o 1V = Prad V2 (23
ST e T3 (229 @1 Patra T b

here we have defined
which, together with Eq(2.24), provides a closed system of W W v I

equations forb andy. Of course, the velocity potential and SPnac= OPror— C§5Ptm- (2.36

the density contrast of the fluid do not disappear from the

physics of our problem, and have to be directly computedAs noticed long ag$26,29,31,32, the variable/ represents
using the Hamiltonian and momentum constraints of Eqsthe inhomogeneities in the spatial part of the space-time cur-

(2.20 and(2.2). vature, measured with respect to comoving hypersurfaces
(o=constant). Using Eq2.21), the variable can also be
Curvature perturbations from nonadiabaticity usefully related to the total velocity potential as
Given the system of Eq$2.23—(2.26), supplemented by {=—(P+Hvy), (2.37

the constraint$2.20, (2.21), it is sometimes appropriate to

select variables obeying simple evolution equations in thavhere

long-wavelength limit, in which the spatial gradients are neg-

ligible. For this purpose, a particular combination of Egs. (Prott ProdVio= (Pr+ PV (Pt )V (2.38
(2.20 and(2.23 will be considered, and the fluctuations in

the total energy and pressure densities will be defined: ~ In our specific case, using the full set of background and
perturbation equations in the long-wavelength limit, where

Opiot= OPpst Oprs OPtor= OPsT OP; - (2.30 8,~4® according to Eq(2.25), the expression fof can be
written in the following convenient form:
In terms of the quantities defined in EQ.30, the evolution
of the Bardeen potential can be formally written in terms of

3
a single equation 2(PotPo) 6= pods

4p+3(Pytpo)

{=- (2.39
®"+3H(1+c2)D' +[2H' +H?(1+3c2)]®—cV2d
2
a 2
= Z[5ptot_ Cs0ptotls (2.3

As we will discuss in detail in Sec. V, in the absence of a
dominant radiation fluidSp,.qiS zero at large scales, i.e. up
to terms containing the Laplacian &. However, in a radia-
tion dominated regimedp,,¢#0 and Eq.(2.35 implies ¢’
wherec, is the speed of sound for the total system, defined#0 even in the long-wavelength limit. Let us then compute
by the general form oBp,,,q, for the full system of axion plus

fluid perturbations. By using the previous definitions we ob-
2Pl Pt P an

S 1
Pt Pot Py

(2.32
S+ ®(ci—1)(p,+p,)

1 2
OPnad= Pr §_Cs
or, using the explicit form of the background equations,
o' x' Y )
9 30"V + 22 (1—03)—5)((1%5)- (2.40
1 pr+Z(pa+p0)+§ﬁ o
=3 3 , (233 On the other hand, using Eq&.20 and(2.21), we can write

prt Z(p<r+ p(r)

2
S

C

4 o'x
®(py+py)=—— V2@ +3H— +4Hpw,
whereV ,=aV/da. a a

The left-hand side of E2.31) (except for the Laplacian
term) can now be expressed as the time derivative of a single +p, 5+
gauge-invariant functio, namely,

o'x' oV
a Jo

. (2.41

063514-4



CONSTRAINTS ON PRE-BIG-BANG PARAMETER SPAE. . . PHYSICAL REVIEW D 67, 063514 (2003

Thus (neglecting the spatial gradient df) we get with the curvature of the potential. The axion background
will then start oscillating, at a typical scale
2 Y
BPnac= — 3 Prd— 2 x+AHpw(ci—1) Hoge~m (3.2
) o'y (note that, as already mentioned, we are assuming that the
+3H(cs—1) 2z (2.42  potential is quadratjc At the curvature scale

) . . H,~ma(t), (3.3
The above equations are useful to compute, in some specific

phase of the dynamical evolution, the source term of Edihe axjon field will dominate the background. The specific
(2.39 whose integration allows us to obtain the explicit time 4 ,e of the scaled depends uporr, and also upon the

dependence of. In [8] we have determined the evolution of ¢ o1ytion afters, . In fact, during the oscillatory phase the
the fluctuations by following the variable. In the present .. ionic energy density decreases, on the average; 3si.e.
investigation we will solve the perturbation equations both ingiover than the energy of the radiation backgroupgd
terms of® and{, checking numerically the consistency of _,-4 Erom Egs.(3.2 and (3.3 it is then clear that de'_

the two approaches. pending on the initial value ofr, the oscillations of the
axionic background may arise either before or after the phase
lll. POST-BIG-BANG HISTORIES of o dominance.
- i , _lrrespectively of its initial value, the coupling af to
At the beginning of the post-big-bang evolution the back photons is gravitational, i.e. suppressed by the Planck mass.

ground is characterized by a *maximal” curvature schlg The decay takes place when the curvature scale is of the
whose finite value regularizes the big-bang singularity of the y P
me order as the decay rate, namely when

standard cosmological scenario, and provides a natural cutoft’
for the spectrum of quantum fluctuations amplified by the

phase of pre-big-bang inflatiaisee below, in particular Sec. H~Hy~ m_3 (3.4)
VI). In string cosmology models such an initial curvature ME,

scale is at most of the order of the string mass scale, i.e.

H; =Mg~10 GeV. The late decay ofr is in general associated to a significant

The Kalb-Ramond axion has gravitational coupling toentropy release, which has to be carefully constrafissd-
photons and to the QCD topological current but it is not38] not to spoil the light nuclei abundances and the baryon
necessarily identified with the invisible axid83] usually — asymmetry generated, respectively, by primordial nucleosyn-
invoked in the explanation of the stroi@P problem via an  thesis and baryogenesis.
initial misalignment of the QCD vacuum angte[34]. The In our context, for typical values df;, and for a realistic
potential of Kalb-Ramond axion is, strictly speaking, peri-scenario, the decay of is constrained to occur prior to
odic. The periodicity of the potential occurs whenever anucleosynthesis, i.e. at a scalég>Hy~(1 MeV)%/Mp,
Peccei-Quinn symmetry is spontaneously broken down to @nhich impliesm =10 TeV. The lower bound on the axion
discrete symmetry corresponding to shifting theangle by  mass is even larger if we require that the decay occurs prior
multiples of 2 (see, for instancd,35]). However, close to  to baryogenesis at the electroweak sdalearacterized by a
the minimum of the potentiali.e. sufficiently late in the temperature of the cosmological plasma of order 0.1)TeV
process of relaxationthe potential can be assumed to bewhich impliesm =10* TeV. If, on the contrary, baryogen-
quadratic. Such an approximation is expected to be realistigsis occurs at a large enough scale preceding the phase of
for values ofo that are small compared to its periodicity. axion dominance and decay, then the minimal valuanof
Unfortunately, translating periodicity ift into periodicity in  allowed by the entropy constrairit36—3§ is, in general o
o involves a normalization factor that is unknown in the dependent. In that case, however, the resulting lower bound
strong-coupling region where the dilaton is supposed to bés strongly dependent on the given model of baryogenesis,
frozen at late times. For this reason, we shall keep the initishnd can be somewhat relaxed by various mechanisms. In the
displacement in Planck units;, as a free parameter. rest of this paper we will thus adopt a conservative approach,

We start our study of the background and perturbatiorby taking the nucleosynthesis boumd=10"1*M as a typi-
evolution at an initial curvature scalé;<H,, when the en- cal reference value.
ergy density of the background is mainly stored in the radia-
tion fluid, while the energy density of the axion is dominated

) A. Late dominance of the axion: o;;<1
by the potential:

If o(7;)=07<1, then the axionic background first expe-
o )= po(m)=V(n). (3.1 riences a phase of radiation-dominated oscillations, from
Hosc down toH . The duration of this phase depends upon
During the first stages of the evolutian remains approxi- oj, since eosc/aa)~cri2, and it may be rather long, i
mately fixed at the initial valuer; up to correctiongO(V ,). <1. During this phase the axion potential energy decreases
In the course of such a “slow-roll” phase, the curvature scaleasa™ 3. Consequently, the typical scale of axion dominance
of the background decreases, until it becomes comparabls, from Eq.(3.3),
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H,=mo!. (3.5 H,<H,<H,<M,, (3.11)

From H, down to Hy, i.e. inside the regime of axion- which, inthe case of a quadratic potential, amounts to requir-
dominated oscillations, the effective equation of state of theng

gravitational sources, averaged over one oscillation, mimics

that of dusty matter, witp,)=0. During this regime the
scale f‘?‘Ctor anql the H'.“'bble parameter also have OSCi"atinﬂs in the case of Eq(3.7), this bound is not so restrictive,
corrections, which vanish on the average, and decay aw

for | i It should be st d h that th iven the limits on the axion mass. Indeed, in the case
fort.arge |m§:s. fs tOE[J f(tahs res_set,) okwevera fa € e'>1, the most stringent constraints are coming not from the
ective equation ot staté of the axion background, 1or CUVay, . tion of the background geometry but, as we shall see,
ture scales smaller thaf,,, depends upon the curvature of

i Y . from the evolution of the fluctuations that forbid too large
the potential around the minimum. If, for instance, the po- 9

tential is not quadratic, but quartic, the coherent oscillation values ofar. One is then left with a situation where= 1
. q h quartic, : sandH(;:HOSC. In such a case, the phase of axion-dominated
will lead to an effective equation of state that simulates

radiation fluid, i.e. 3p,)=(p,) [39]. Bscillations  will take place right after the radiation-

Tho ocCUITeree ot e o o ted bhase requires dominated period of slow roll, without a long intermediate
u Xi i p QUITeS apoch of inflation.

Hy<H,, (3.6
C. Initial conditions for the fluctuations
which imposes a lower bound on the initial axionic ampli-

Given the coupled system of gauge-invariant perturbation
tude, namely b y garg P

equations, the initial conditions for the Bardeen potential, for
the perturbed radiation density and for the radiation velocity

1>0i>Vm/Mp=0. 37 field, will be imposed as follows:
This constraint, however, is not so demanding, given the O (7)=0, 6(7.,K)=0, v(7 k=0, (3.13

generous lower bound om (in Planck unit$ allowed by

nucleosynthesis and baryogenesis. Finally, after the axion derssuming that no appreciable amount of adiabatic metric per-

cay, the Universe enters a subsequent radiation-dominatedrbations has been directly generafet large scalésby

epoch. From this moment on, the evolution of the backthe pre-big-bang dynamics. The only nonvanishing initial

ground fields is standard. fluctuations are theisocurvaturg axionic seeds, amplified
from the vacuum during the pre-big-bang evolution:

If o(n;)=0;>1, then the axion, right after the onset of Xm)=xi(k) =0, (3.19
the radiation-dominated epoch, starts again rolling down its50 that, from Eq(2.18), 5,(, )-(*)#0
potential. This initial part of the evolution is completely ' oo X
analogous to that of the;<<1 case. However, for;>1, the
axion dominance will occur before the onset of the axion
oscillating phase, i.e.

B. Early dominance of the axion: o;>1

In the present analysis we shall assume that the amplitude
of the initial axion fluctuations is smalléfor all modes than
gj, i.e.

32 4
Hooe<Hy (3.9 K |X|(k)|<0'|- (3.19

In the opposite casé®? x;(k)|>o;, we are led to the case
already analyzed ifl7-19,2]1 whereo; was assumed to be
H,~ V(o) 3.9 280 and the obtained large-scale fluctuations are of the
7 isocurvature type, and strongly non-Gaussians;lf o, the
(since the kinetic energy of the axion is negligible during thenon-Gaussianity is rather small, but can be enhanced if the

slow-roll evolution. At H=H_ the Universe enters a phase gxion does not dominate at deca,i\g;) [23,40.
of accelerated expansiofslow-roll inflation whose dura-

where, for a generic potential,

tion, for a quadratic potential, is given by IV. BACKGROUND AND PERTURBATION EVOLUTION
FOR o<1
_ Afinal —ex 1( 2 2 ) (3 1@ :
O Qe T8 Jinitial ™ Tfinal) |- : In view of the forthcoming phenomenological applica-

tions, the main quantity that we need to compute is the spec-
This inflationary phase will last untiH=H,~m, o5,y  tral amplitude of the Bardeen potential after axion decay,
=1 (if we assume, again, that close to its minimum the po-during the subsequent radiation-dominated evolution, as a
tential is quadratic For H<H . the background will be function of the spectral amplitude of the axion fluctuations
dominated by the coherent oscillations of the axion, whosemplified by the phase of pre-big-bang inflation. It is impor-
decay will eventually produce a second radiation-dominatediant, for this purpose, to have a reasonably accurate control
phase(in full analogy with the caser;<1). on the evolution of the background and of the fluctuations.
This scenario requires, for consistency, that Using different approximations, motivated by the hierarchy
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of scales discussed in the previous section, we will first ana©n the other hand, from Ed2.24), the evolution ofy, is
lytically determine the evolution of the system through theapproximately given by
different cosmological stages. Numerical integrations will
then be used in order to check the analytical results in the , 1 a?
cross-over regimes connecting the different phases of the Xk= "5 Voo 3y Xk (4.9
background evolution.
The first term on the right-hand sidBHS) of Eq. (4.8) thus

A. The radiation-dominated slow-roll regime contains three derivatives of the potential, and it is sublead-

ing with respect to the second term. Direct integration of Eq.

During the first stage of evolutiom,(7;)>V(#,). In this (4.8 then gives

limit, Egs. (2.6—(2.8) and(2.10 simplify to
2

a2 ~1la 2
HZ:@P“ (4. q’k(?})——@ﬁVﬂXﬁO(V,a)
1
pl+4Hp,=0, (4.2 =— ——V xx+O(V2). (4.10
14 p,
v
o"+2Ho' +a’>—=0. (4.3  As aconsequence, from Ed2.25 and(2.26 we can deter-
do mine &, andv, as
Equationg4.1) and(4.2) imply thatHa is constant. Further- 1 a2
more, since the kl!’letIC ener.gy'of'ls subleading with re- 5K, ) =— 1 oV xi+ O(V?U),
spect to the potential, the axionic field slowly rolls down the 1
potential. In such a situation a systematic expansion in the
gradient of the potentialy ,, can be developed, and the 1 a2
background evolution is adequately described by the follow- v(k,p)=— 2_10_3V,0Xk+ O(V?U). (4.11)
ing approximate equation H
1 a2 Inserting now the obtained solutions in the remaining equa-

o'= (4.9 tions (2.21) and (2.23 (not used for the above derivatign
we can see that they are satisfied with the same accuracy.
The time evolution of, in the radiation-dominated,

slow-roll regime can finally be determined from Hg.34):

TEH
which can be integrated to give

1
O'i—z—o

Vo Vo

H2 H2

: (4.9

1V ,
=g Goxt OV, (4.12

i.e.ois approx?r_nately constant up to_corrections_ thqt depeng0 thatd, and £, obey the following simple relation:
upon the specific form of the potential, and which induce a

slight decrease of the axion background. ~_ 2

In order to solve the Hamiltonian constraif&.20 it is Pl == N4+ OV,). “.13
now convenient to work in terms of the Fourier components |t should be appreciated that E@.12) can also be ob-
of the perturbation variables,, 5,(k), and so on. Since we tained by direct integration of Eq2.35. In the limit (p,,
are interested in large scale inhomogeneities we first obtainy. , y<p,, Eq.(2.33 implies indeed
from Eq. (2.25,

k 2l L7y 4.1
5!‘( )_4(I)kv (46) Cs_ 3 2pr H N ( . 4)
where the integration constants vanish because ofE#3.
Consequently, using Ed2.18), the Hamiltonian constraint
(2.20 can be written as

On the other hand, from Eq§2.40 and (4.6), the approxi-
mate form of§p,.{K) is

) 0_12
a‘p— ——

4
Pnad K) == 3V oxict O(V) (4.19
4

—3H(HD+ Dy) — Dy :Z[U/XIQ"'V,aasz],

(4.7) (again, terms with more than one derivative of the potential

where the spatial gradients have been consistently neglected@ve been neglectgdy inserting this result into Eq2.395
Using Eq.(4.), we are led to the equation

ddy _ Voxk
dina or

: (4.16

oV
o' xpt %az)(k ) 4.9

1
q3|/(+3H(I)k2 - m
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whose direct integratiotrecall thatp,~a %) leads, as ex- 0
pected, to Eq(4.12). —2x10”7
The above approximate results fér, and ¢, hold for a —ax10”7
generic(flat enough potential. However, in order to check ~  —ex10”"
the correctness of our approximations numerically, it is use- 5; ol e =001
ful to consider the simple case of a quadratic potential: 810 G
2 TL0 Ly = 0.002
m 2 -1.2x10
V(o)=—5o". (4.17) -6
2 -1.4x10 .
100 2000 4000 6000
In that case, Eqg4.4), (4.9), (4.10, (4.12) lead to n

FIG. 1. The full curve shows the result of a numerical integra-
) (4.18 tion for the casé+;=0.01, and for the set of parameters reported in
the figure. The dashed curve shows the approximate analytical so-
lution based on Eqg4.10 and(4.20.

u?
(A 4.8
1 20(7‘ L)+0(p*7°)

o(r)=0,

2
kazxi(k){l—%(#—nwwrs)

. (4.19

the numerical integration for a quadratic potential. The ana-
lytical results of Eqs(4.18—(4.21), based on the slow-roll

oixi(K) 2, 4 4.8 approximation, are also illustrated, for comparison, by the
Pul(7)= ga Lw (- DHOw ], (4.20 dashed curves.
aixi(k) . . I
()= T[MZ(T“— D+0(p*®)], (4.2 B. Radiation-dominated oscillations

During the radiation-dominated regime, and for a qua-
where x;(k) is the initial spectrum of the axionic fluctua- dratic potential, the axion evolution equati¢®.7) can be
tions, and we have defined tl@imensionlessrescaled mass written as
and conformal time coordinate:

g 5
7 —, tu°rg=0, g=oa, (4.29
=—, u=mupa=m/H;. (4.22 dr

7i

The time #; is the initial integration time and; the initial  and its exact solution can be given in terms of Bessel func-
normalization of the scale factor. These rescalings are usefgions[41] as

in order to compare the numerical results with the analytical

calculations. 5
We have performed a numerical integration by choosing _ M7
initial conditions at sub-Planckian curvature scales: i.e., 9(7)= \/;61’4 2 ) (4.29
Hi=;l<1, 7i>1, (423 where Cy, is a linear combination(with constant coeffi-
' cienty of Bessel functions of order 1/4 and7?/2~m(t
(in Planck unity, and settinga;=1. Given a value ofs;  —1j). By imposing the correct boundary conditions and nor-

compatible, for a given mass, with E(.7), the constraint malization, in such a way that(7) — o for ~— 1, we obtain
(2.10 fixes the initial radiation backgroung( 7;) to a value

much larger than the axionic potential. Similarly, the initial 0.002
values of the derivatives ob, and y, are obtained by im- 0.0019
posing, on the initial daté3.13—(3.15), the Hamiltonian and )
momentum constraints of Eg&.20 and(2.21). It has been 0.0018
checked that all the constrair(tsoth for the background and = 0.0017
for the fluctuations are satisfied at every time all along the ‘é“o 0016 °i=0'(_)51
numerical integration. The system describing the evolution : m=10
of the fluctuations, in particular, can be integrated in two 0.0015f [ x,=0.002
different (and complementajyways. We could either use 0.0014
Egs.(2.23—(2.26 and follow the evolution of all variables,

100 2000 4000 6000

or use Eqs(2.24—(2.29 and integrate the system only in

terms ofd, andy, . We have performed the numerical inte-

gration in both ways, and checked that the results are the FIG. 2. Evolution ofy,, reported for the same set of parameters

same. as in Fig. 1. The dashed curve corresponds to the approximate ana-
In Figs. 1, 2 and 3 we report, as full curves, the results ofytical result of Eq.(4.19.

|
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0
100 1000 2000 3000
n

FIG. 3. Evolution of{,, for the same set of parameters as in
Figs. 1 and 2. The numerical res(ll curve) is compared with the

approximate analytical result of E¢#.21) (dashed curve

; 1
0-(7-):ﬂ JIIA(ETZ)r 77i<77<77(r1
7 Jua pl2) 2
(4.26
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whose small and large argument limits lead, respectively, to

u?
xk(f):x«k)[l—ﬁw“—l)}, (4.30
2xi(k) ﬁ{/wz 3 )
= ——gm|. (4
X7 7'3/2\/7T_I-L31/4(M/2) “ 2 8" (492

We notice that Eq(4.30 is obtained by solving thapproxi-
mateevolution equation

Xe+ 2Hx+m?a2y, =0, (4.33
i.e. neglecting the terms containing the Bardeen potentials in
Eq. (2.24). In the slow-roll approximation, as previously
stressed, these terms can be neglected fmreericpotential
term. However, they can also be neglected in the oscillating
phase, provided the potential is well approximated by a qua-
dratic form. We have explicitly checked that the exact ana-
lytical solutions(4.26) and (4.30 are in perfect agreement

where Jy, is the first-kind Bessel function. Notice that the with the results of a numerical integration performed with a

small argument limit of this equation, fae<1 and7—1,

exactly gives the resul4.18), obtained in the slow-roll ap-

quadratic potential.
Thus, for a potential which is generic during the slow-roll

proximation. This exact analytical solution can also be useghase(but still quadratic during the oscillating regipiewill
as a consistency check of the quadratic approximations whefe sufficient to work out the slow-roll solutions specific to
the potential, during slow roll, has a more complicated anathat potential, from Eqsi4.4), (4.9), and match thentwith

lytical form.

their first derivative to the WKB solutions of Eqg4.24) and

The onset of the axion oscillations can be determined4.33: namely,

from the first zero of),,(u 7%/2), which occurs for

2
%zz.m, 4.27)
namely for
‘1 2.35 (4.29
Tm=—=, €;=2.35. )
" u

Different definitions of the oscillation starting time, for i
stance related to the breakdown of the slow-roll approxima
tion, would lead to similar numerical values, i.e. to E

(4.28 with €;=(12)"* In the large argument limity/272

>1) of Eq. (4.26 the solution finally describes the oscillat-

ing regime,

o(7)

20, {,U,TZ 3 )
= co§ —— 7|,
7T Iy wi2) 2 8

(4.29

Nosc< N<1Ng

7 e
X2(K) MTZ
Xk(T):—TZaiMT3cos(—2 +y]. (4.35

The matching will allow a determination of the precise am-

n- plitudes and phases of (andy,) in terms ofo; [and x;(k)].

As an application of this technique let us consider the
example of the quadratic potential, using the slow-roll solu-

“tions for < 7,,. The result of this exercise is reported in Fig.

4 where, with the full curves, we illustrate the numerical
results (coinciding exactly with the analytical solutions
With the dashed curves we show the interpolating solutions
obtained by matching Eq$4.18 and(4.19 (obtained in the
slow-roll approximatiohwith the WKB solutiong4.34) and
(4.39), valid in the oscillating regime.

The time evolution ofr( %) and x.(7) explains why, for
=11, [i.€. after the slow-roll regime whe®,~a* accord-
ing to Eq.(4.10], the Bardeen potential enters a phase of

where the phase and amplitude of oscillations are fixed b¥inear evolution(in conformal time. This feature is illus-

the initial conditions.

An approximate solution of Eq(2.24), similar to Eq.

(4.26), holds for the axion fluctuations: namely,

i(k) 1
Xi(7)= XT m31/4(%72) v i<n<7,,
(4.30

trated in Fig. 5, where we report the numerical results for the
evolution of the Bardeen potential, computed for different

values of the axion mass.

An analytical estimate of the slope of the linear regression

for &, after the end of the radiation-dominated slow roll,

can be obtained from the Hamiltonian constra{@t20),

which can be recast in the following form:

063514-9
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0.01 () =oixil - e esurl, >y (438
0.008
0006 In the case of a quadratic potential we obtain
0.004 €,=0.001, €3=0.0437. (4.39
0.002 The accuracy of this result can be appreciated from Fig. 5,
0 where the dashed lingbarely distinguishable from the nu-
_0.002 merical solutions are plotted according to Eq94.38),
) \ (4.39. A different form of the potential will not affect the
A angular coefficient of the regressiémhich is determined by
100 10000 20000 30000 " . .
the phase of the radiation-dominated oscillatjormit only
n the constant,.

It may be interesting to look also at the analytical estimate
of €3, for a quadratic potential. The initial amplitudes and
x2(k) of Eq. (4.37) are determined by the large argument
limit of the exact solutions, Eq€4.29 and (4.32. In this
case we get

FIG. 4. The exact, numerical evolution efand y, (full curves
is compared with the interpolating solutiddashed curvesob-
tained by matching the slow-roll solutiorig.18 and (4.19 with
the WKB approximated solutior(g.34) and(4.35), valid during the
radiation-dominated oscillations of the axion.

I'?(5/4)
6

=

Jd Spy) = ™
o T P= "5

Jdo dxk

ar ot

. (436 =0.0435, (4.40

+pPriox

) . in excellent agreement with E¢4.39. For a generic poten-
where we only assumed a quadratic form for the axion potja|, we could also determine; by adopting an approximate
tential. By using the WKB solution$4.34 and (4.35 we  procedure, i.e. by taking the slow-roll solutions far and o
obtain from Egs.(4.4) and (4.9), and matching them im, to the

WKB solutions(4.34) and(4.35), in order to determine am-
) plitude and phase.
—12cog2y+ut) The linear growth of the Bardeen potential continues until
p., decreasing aa 3, equalsp,. This happens at a time,
such that

o2x2(K) . o2x2(K)
96a’ a 3842°u

K=

, (4.37)

/.LT2/2dX
+18 ?CO$X+ v)
12H °=a’m?c?2. (4.41)

where the integral can be expressed in terms ofwTi The expansion of Eq4.29 for u<1 then gives
— Jw(cosx/x)dx and Sifv) = [§(sinx/X)dx, and we have as-

sumedB=y. The oscillating terms are suppressed by’ €
and can be neglecte@h agreement with the numerical re- Te= 5 €= =5.74. (4.42
sults of Fig. 5, since we are considering the regime 7, of p 21'*(5/4)

>1. On top of the oscillating terms, the amplitude of the ) ,

term responsible for the linear growth can be extracted fronf. oM EQ.(4.38 we can then finally obtain the value of the
the numerical solutions by fitting their asymptotic behaviorBardeen potential, at the onset of the phase-afominated
oscillations. By using the value af, given by Eq.(4.42), the

with the line :
result is
0
()= e, I —e,6,=0.25. (443
-2x107° K(7,)=¢€s o €5= €4€63=U.20. :
_ -4x107®
£ C. The axion-dominated oscillations
¢ _6x107° : - - o
Using standard techniques suitable for the oscillating re-
-8x107¢ , gime[39,27, Egs.(2.10 and(2.7) can be solved and, in the
~0.00001 m=10" case of a quadratic potential, the oscillating terms lead to a
' geometry that reproducébut only on the average matter-

100 6000 12000 20000 dominated universe. The oscillating corrections will be sup-
K pressed for largécosmic or conformaltimes, and can be

FIG. 5. The results of the numerical integrations for the Bardeerfasily computed in the cosmic-time gauge, where
potential are illustrated by the full curves for a quadratic potential
and for different values of the mass. The dashed lines represent the H= o2

linear fit of Eq.(4.38. 1%
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_ Since p, vanishes only on the average, more accurate
H2=1—2[02+ m?o?], solutions have to be supplemented by oscillating corrections.
Using Egs.(4.49 an approximate form of the perturbations
in the oscillating regime can be obtained. One finds that

o i 2
o+3Ho+m7e=0. (4.44 5,(k) and®, are almost constaritip to oscillation i.e.
Using the auxiliary variabl@ =do/d In a, which satisfies 5 () Ecp “ 1—(;05( 2afm773> 52
4z _ 31 z 1+4Z 4.4 " 2 : | |
do - 3\t ogl| g 443 L
~ __ - &anZ 3
and defining two angular variables, ¢), () =Po(k)| 1 ma 7 sin 3mam )
Z=\/125sind, o=r cosé, (4.4 mas7,°
| | LTS
(such thaH=mr/+/12), the following two equations are ob- (man°)
tained:
_[(map® 3 man°®
. N .3 , xk(7)=x0(K) Sm< 3 |t 3COS< 3|
6=~ —-mrsin2g—m, r:—7mr25|r120. (4.47 mas 7
(4.59
They can be solved, and the solutions expanded for larg@&here
times at any order in 1/
A similar procedure can be carried out in conformal time. Do(K)=(P(m),  7e<n<nq, (4.59
Equations2.7)—(2.10 are equivalent to the following set of
equations: and
V3 ma 7 mas 7° 4
r__N° 2,20 _ k)=——=®dy(k). (4.56
r 2maf7;rsm2 3 | o=rcog—3 Xo(K) \/§o()

(4.48
The above solutions satisfy the evolution equations of the
(where a¢ is an appropriate dimensionful integration con- fluctuations up ta?( % °).
stan}, and their solution leads to the expansion
3 D. The axion decay and the subsequent
e 3 cos(z ma 7 )+O 1 radiation-dominated phase
2af2m2774 3 7°

a(n)=a;

When the decay rate of the axion equals the cosmological
expansion rate, energy is transferred from the coherent oscil-

2 3 ma7y° 1 lations of o to the radiation produced by the axion decay.
H(n)= ;+ 45|n< 3 +0|—= || The radiation produced thanks to the decay of the axion will
man K quickly dominate the expansion and the second radiation-
3 dominated phase will take place.
()~ 4\3 cos(mam )4—(9 1 (449 The Bardeen potential prior to decay is given by Eq.
man° 3 7° (4.53 while, after the decay, its evolution equati¢?.29
reduces to

A posteriori as a cross-check, Eq&t.49 can be inserted

into Egs.(2.6—(2.10, to see that all terms up t&(1/7°) D"+ 4HD' +2(H2+H' )D— EVZCD:O =
cancel, as expected. 3 v 7 s

In the phase dominated by the oscillating axion the effec- (4.57)

tive gravitational source is pressureless, on the average. By , )
inserting the conditiop,,)=0 into the background and per- and the corresponding exact solution can be expressed as

turbation equations, we get [27]
(0,(K))~=2(Dy), (8(K)~—2(5,(k)), (4.50

1 .
Py(7)=—[B1(K)(wncoswy—sinwn) +B,(k)
which can be inserted into ER.39, obtaining K

X(wysinwp+coswn)], 7>7n4, (459

5 5
<§k>26<50(k)>:_ §<(Dk> (4.51 where w=k/\/3. In the sudden approximation, the twai-
mensional arbitrary constantsB,(k) and B,(k) can be
when(p,)~0 andp,>p;,. uniquely fixed by matching, at the decay tinyg, the solu-
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tions (4.53 and (4.58 together with their first derivatives. In the equation forb, the effect of the finite duratiofl ! is

The terms containingk(zy) are small and negligible for then equivalent to averaging over the decay time. At the end
modes that are outside the horizon at the time of the axioof the following section, numerical examples of the decay
decay, i.e. for the ones relevant to the physics of the observedill be discussed in detail.

CMBR anisotropies. Furthermore, terms proportional to in-

verse powers ofn/Hy~M3/m? are also small and can be v, BACKGROUND AND PERTURBATION EQUATIONS
consistently neglected. Hence, up to subleading terms, the FOR o,>1

final value of the Bardeen potential can be written as . o
If o;>1, the epoch of axion domination precedes the os-

cillation epoch. The previous solutions for the slow-roll re-

2 COSw sinw i i i i inati
B ()= Do(K)| 2 c05< ?:3) 3 : );7 _ ( )Z , gime are still valid, and the axion starts dominating when
@nRen pal=6H2=Va, (5.1
(4.59
2, 2 i.e., for a quadratic potential, when
where B=mnqa(ng)~mHq~Mpg/m=. The p-dependent
prefactor is a consequence of the approximation of sudden (12)v4
decay where the axion field is assumed to decay at a specific T=Te™= T (5.2
MO

time 74. This sudden approximation also neglects the pos-
sible (exponentigl damping of the oscillations i, arising
in Eq. (4.53.

It will now be shown that thg8-dependent prefactor is an
artifact of the sudden approximation. In a realistic model of

decay, in fact, the energy-momentum tensors of the radiatiof,o avion oscillates almost immediately after becoming

fluid and of the axion will not be separately conserved, beqqminant, and the amplitude of the Bardeen potential at the

cause of their relative coupling induced by the friction term <.t of the oscillatory phase is obtained from Ea20 as
I'(o'/a)?, which leads, in cosmic time, to the generalized P €420

If oj=1, then

Tm™= Ty (5.3

conservation equations: u? . 1 yi(K) 1
' q)k(ﬂm)z—gXi(k)ffiTm:_77:_7)6('()-
pst(BH+T)(ps+p,)=0, (5.9
) If the initial value o; is larger than 1, but not too large, then
pr+4Hp—T'(ps+Pp,)=0. (460  Egs. (5.9 and (4.20 are still valid, but Eq.(5.4) is to be
multiplied by the factoraiz, arising from a short period of
The fluctuationsy, will experience a similar damping, axion dominance toward the end of the slow-roll evolution
(see below. This effect, for moderate values of, is illus-
22y trated in Fig. 6 where, for the given parameters of the plot,
Y'+(2H+Ta)y’' —V2X+ﬁazx—40"b’ the final amplitude of the Bardeen potential is estimated as
o
N O (7m)=—eexi(K)oj, €=0.143 (5.5
2 2q—
+ 2(?0'a =0, (4.61 still in good agreement with the approximate value 1/7 of Eq.

(5.4).

If o>1, thenr,>1,, and a phase of inflationary expan-
sion dominated by the axion potential will take place be-
tweenr, and 7,,,. During this phase the axion slowly rolls,
(Ehe radiation energy density is quickly diluted ps-a 4,
and the time evolution of the fluctuations is correspondingly
modified. The Hamiltonian and momentum constrai@t0

and(2.21) can now be combined to give

while thed, evolution will still be described by Eq2.29.
This treatment of the damping of the fluctuations was sug
gested in 8] (see alsq42)). The effect ofl" is, primarily, to
induce a damping in the oscillations of the background an
of the axion fluctuations according to Eq4.60 and(4.6J).
Moreover, theldamped fluctuations of the axionic field will
also influence the dynamics df, according to Eq(2.29.
The time-dependent oscillations of E@.53 (occurring in
the absence of frictionwill then be further suppressed Iif
#0 (more details will be given in the following sectipris

a consequence, thg-dependent correction tends to disap-
pear from Eq.(4.59, leading to the final result 252

cZ=1+

4V2®,=3Ho' xy— Pyo'?+ o' xy+V 8%, (5.6

and the speed of sound of E®.33 becomes

Vv, 5,
. 3Ho' 6.9
sinwy coswy

D) =30o()| 5= T,

(4.62

from which, using Eq(2.40,
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0 0.007
~0.002 0.006 I'=0
-0.004 O'OOSK m=4-102
g,x-o.ooes g 222;1 Gi=2
-0.008 T %=2:107
0.002
-0.01 0.001 \\\\F=m3
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100 7000 17000 27000 20000 0 20000 40000t60000 80000 100000
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FIG. 6. The full curves are the results of numerical integrations ~FIG. 7. Time evolution of the amplitude of th#b, oscillations
for the cases;>1. The dashed curves correspond to the approXi_(mulnplled byt in cosmic time, with and without the damping term

mated results of Eq$4.20 and(5.5). due to the axion decay.
Using Eq.(5.15 we finally obtain the Bardeen potential at
_ 2V, 120 o 1 a2 the onset of the phase of-dominated oscillations:
5Dnad—3H [ Pyo’ o x = 3Ho xk—aV o xil- P
ag
(5.9 Py (7m) ~ Tixi(k), (5.16
The combination of Eqs5.6) and(5.8) leads to where we used the expression fogiven above and the fact
that o(7,)=0; and o(7,)~10(1). For 7> 7, the axion
vV eventually oscillates, and the subsequent evolution has the
OPnad= ”T, Vb, (5.9 same features as already discussed in the previous section,
3Ho for the caser;<1.

, In the following, the dynamics of the decay will be inves-
Hence, from Eq(2.39, we get thatf,~0 at large scales. tigated numerically, and Eq2.29 will be solved together
According to its definition, on the other hand, the con-jith Egs.(4.60 and(4.61). In order to illustrate the results

stancy of{y implies, in cosmic time, that let us recall that, in the absence of frictiph =0 in Egs.
. (4.61)], the evolution of y, and ®,, during the axion-
2tay) P 1 - dominated oscillations, is given by Eq4.53 and(4.54). In
M1+ay) H 1+ (510 paricular,
is also a constant, where D (7)=Dy(K)+ 6P(7), (5.17

where 6®,(7) is an oscillating functioh decaying asy 3

~t~1. The frequency of oscillation 0f®, is controlled by
the axion mass. In analogy with E¢6.17 we can also de-
fine Sy, which, for I'=0, corresponds to the oscillating
function appearing in Eq4.54). The evolution oft &, and

of 8y, for I'=0, is represented by the full bold curves of
Figs. 7 and 8. Notice thad®d, and Sy, oscillate very fast

whereA is a constant controlled by the value of the Bardeenand that, for our illustrative purpose, we have plotted their

. o ; d . . amplitudes calculated as the average of the semidifference
potential at the beginning of inflation. Assuming a quadraUcbetWeen the maximum and the minimum of each oscillation
potential for 7<7, we have, from Eq. (5.4, A= '

. . i and the semidifference between the successive maximum
_(1/7)(Xi(k)/o'i)(H2/H)ra- By using the dynamics of slow- znd the same minimum.
roll inflation, If the oscillations ofé6d, are only suppressed by a power-
law function of time, we have seen that there are mass-
dependent terms that appear in the amplitude of the Bardeen
potential after the decay. The integration of EG529 and
of (4.60 and(4.61) shows however that, with the inclusion
. m?2 of the appropriate friction termg@lue to the decayinto the
o=— =0, (5.19 energy-momentum conservation equations, the oscillations in

3H . ;

6d, and dyy are exponentially suppressed and, in such a

case, no mass-dependent correction is left in the amplitude of

ay=—H/H2 (5.1

It follows that, during inflation, we can parametrize the evo-
lution of ®,, to lowest order, as

@, =A(H/H?), (5.12

2

2 2
H?= 0%, (5.13

we can deduce that

RO — (5.15 %In order to avoid confusion we note théd, and, in the follow-
H2 a? ing, Sy, are not the power spectra &f and y.
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0.002 Imposing the continuity of the solutior(6.1) and (6.3) and
0.00175 =0 of their first derivatives aty= 7, one obtains
0.0015 f"
0.00125} [~ m=4-10"2 ~ 3Pg(k) » .
N A(k)= — 2XofOSX gt (X5qT 2) SiNXeqls
£ 0.001 N ci=2 (k) 5x3, [~ 2xeeosKeqt (Xeqt 2)SiNXeq
0.00075 S~ x=2-107 (6.9
0.0005 A
S~ F=m’ 5
0.00025 R, 3Do(k)7n .
------- B(K) = ——— [ 3XedCOSXeqT (X5~ 3)SiNXeql,
0 20000 40000 60000 80000 100000 Xeq
t (6.5

_FIG. 8. Time evolution qf the amplitude of tk@g_k oscillations, whereXe= wneqzkneq/\/g- For scales that are outside the
with and without the damping term due to the axion decay. horizon prior to decouplingxeq<l, and Eq.(6.3 becomes

(kneq)z

the Bardeen potentigthe asymptotic, constant value @f, Neq 5
75 (7) }, 7> Teq- (6.6

is however unaffected by such a damping mechahidine Dy (7)=Dy(k)
damping of the oscillations, on a time scale of orfiert, is
illustrated by the dashed curves of Figs. 7 and 8.

1+

o ) For 7> 7¢4 the decaying mode is highly suppressed, and
If we compare the sudden-decay approximation, diSye are then in the situation of constant Bardeen potential

cussed in the previous section, with the numerical results op‘i ht after equality. with an amplitud® (k). which lrecall-
Figs. 7 and 8, we see that the finite duration of the deca)/g quaty. D oK), [

hveicall ical ng the previous result$4.43), (5.4), (5.16)] is completely
process can be physically represented as a dynamical averag&iermined by the axion spectrum and by the initial condi-
to zero of the oscillatory terms in the evolution ®f . In

X , tions of the axion background. More precisely, the final am-
view of these results, when matchidy, to the post-decay plitude can be parametrized as follows:

phase, we should take into account the fact that all the de-

rivatives of®, are exponentially suppressed with respect to ®o(K)=P(ng)=—F(07) xi(kK), (6.7
P, /ty, and thus can be safely neglected. This leads to the

result reported in Eq4.62. where

VI. LARGE-SCALE ADIABATIC FLUCTUATIONS C2
f(O'i)cho'i-l— ;_03, (68)

In order to discuss the direct impact of our results on the !
possible generation of the observed CMBR anisotropies, thgnd
evolution of the large-scale metric fluctuations should be fol-
lowed down to the matter-dominated phase, for all tinges ¢,=0.13, ¢,=0.25, c3=0.01. (6.9
>neq- In particular, the phase and the amplitude of the
Bardeen potential prior tojeq Will fix the initial conditions  The above coefficients; have been obtained by integrating
for the subsequent evolution of the inhomogeneities, and Wi|humerica||y the evolution equations of the background and
be crucial to determine whether they are of adiabatic 0bf the fluctuations for different values of; (both larger and

isocurvature nature. _ _ smaller than 1 Then, following the hint of the analytical
We recall that, after the axion decay, the amplitude of theesuits obtained by solving the evolution piecewise, the final
Bardeen potential has been computed as value of® () has been fitted with Eq6.8), and the values

reported in Eq(6.9) have been determined.

The value(6.8) of the Bardeen potential provides the ini-
tial condition for the subsequent hydrodynamical evolution.
Such evolution will allow us to determine, in turn, the pre-
where, as in the previous section= k/\/§. For 5> 7¢q, cise value of the temperature fluctuations through the Sachs-
matter domination sets in, the background satisfigs 2 Wolfe effect. In particular, the modes that are outside the
+H?=0, so that the evolution of the Bardeen potentialhorizon for 7¢,< 7< 74e.Will determine the large-scale tem-
(outside the horizonis described by perature fluctuations relevant to the COBE observations.

By perturbing the corresponding conservation equations

Sinwny COSwn

Dy (77)=3Po(k) ol 1=7eq (6.1

(0m)? (o)

. , 2 on a matter-dominated background, we obtain
v+ 3HP,=0, H=;, (6.2
4
' U2, _ ’_
whose solution can be written as 2 3V v —42’=0, (6.10
N B(k) _ o1
<Dk(n)—A(k)+7, 7= Neg- (6.3 vi = 78— =0, (6.11
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8~V ,—30'=0, (6.12  Notice that, outside the horizoky,=kv, as required by
local thermodynamical equilibrium. Furthermore, f&m
v+ Hop—®=0, (6.13 <1, the velocities of the two fluids are proportional tor).

When the modes are outside the horizon, E§s18 and
where 6,,= dpm/pm anduv,, following the notation of the (6.20 imply that the density contrasts, and ., are both
previous sections, are the gauge-invariant density contraspnstant and proportional according to
and velocity potential of the matter fluctuations. Also, in the

above equations, 8,=(413) 6. (6.22
H= E pmazzﬁ. (6.14 This result has a simple physical interpretation, and implies
n 7? the adiabaticity of the fluid perturbations. The entropy per

matter particle is indeed proportional &=T3/n,,, where

As already stressed at the beginning of this sectbnis  n,, is the number density of matter particles afids the
constant during the matter-dominated phase. Using this propadiation temperature. The associated entropy fluctuation,
erty we can now work out the specific relations between thesS, satisfies
different fluid variables, for modes that are outside the hori-
zon right after equality, so as to explicitly check the adiaba- 5S 3
ticity of the fluid perturbations. —= Zé,— Sm» (6.23

The system of Eq946.10—(6.13 can be easily solved by

going to Fourier space. Far,, we have
where we used the fact that~T* and thatp,,=mn,,,

kn wherem is the typical mass of the particles in the matter
kUm(k)Z?q’o(k)v kp<l. 6.15  fluid. Equation(6.22 thus implies8S/S=0, in agreement
with the adiabaticity of the fluctuations.

Since ﬁvm (evaluated outside the horizowontributes di-
rectly to the Sachs-Wolfe effect, it is important to notice that A. Sachs-Wolfe effect and COBE scales

this term is subleading with respect to the other contributions . . .
arising in the case of adiabatic fluctuations. We will indeed The fluctuations of the Bardeen potential and of the radia-

. o tion density contrast are sources of a slight temperature dif-
show that, unlikéVuv,,,, which is suppressed, the contra@bt  ference between photons coming from different sky direc-
is instead constant outside the horizon, and proportional 1,45 This is the essence of the Sachs-Wolfe effédt. In

Do(k). ] i terms of the gauge-invariant variables introduced in the
Insertingv, from Eq. (6.10 into Eq.(6.1) we get a de-  resent analysis, the various contributions to the Sachs-

coupled equation fob,, namely, Wolfe effect, along then direction, can be written 427,30

5’+k—25=—fk2¢ (k) (6.16 AT . o - o -
rogt o3t o ' = (N,70,%0) =| 7+ N Voot @ | (7dec X( 7ded)
The general solution is Ndec .
| - [™@ v @iman,
6(knp)=A.coswn+Bsinon+4dy(k)[coswn—1], 0

(6.17 (6.29

and the constantd; and B, can be determined by consis- . .
tency with the other equations and with the Hamiltonian conwhere 7, is the present time, and(»)=Xq—n(n— 7o) is
straint(2.20 written in the case of a matter-radiation fluid. the unperturbed photon position at the timéor an observer

The final result is in X,. The termu,, is the peculiar velocity of the baryonic
4 matter component. We are preliminarily interested in the ef-
8K, 7)= §d>0(k)[cos(u77—3] (6.18 fects of scales still outside the horizon at the time of the

matter-radiation equality, which are the scales relevant to the
observations of the COBE-DMR experimdr4,44. In or-
Dy(k) . der to correctly take into account the constraints imposed by
kv (k,7)= 73 Sinw7, (6.19  the COBE normalization on the spectral amplitude of the
Bardeen potential, let us compare the relative weight of the
different terms appearing in the Sachs-Wolfe form@z24).

Sm(k, )= — 2D (k) — Po(k) (kn)?, (6.20 From Eq.(6.19 we can see that, for our adiabatic initial
6 conditions, the fluctuation in the matter velocity potential is
subleading for superhorizon scales, suppressed by the term
ko (K, 7) = Mq) (k) 6.21) kn<1 with respect to the constant values &fand ®.
mie 3 O ' Furthermore, sincé’'=0 andW¥ =®, the integrated Sachs-
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Wolfe effect can also be neglected. By inserting E§18 per cell of phase space is produced. Friom a typical cur-
into Eq. (6.24 we thus obtain the usual result for adiabatic vature scaleH; (which can be, at most, of the order of the

fluctuations, namely string masgcan be obtained:
AT . 1 - Ky
= (M 720,%0) = 3P (e X(7ded), (6.29 Hi=1 <M. (6.3

1

to be used for the comparison of our theoretical predictiond he particular value of the scaté; may be regarded as a
with the COBE normalization. phenomenological parameter of the chosen model of pre-big-
On the other hand, by taking the Legendre transform abang evolution. Even assuming, according to the standard
the present timer,, the temperature fluctuations of Eq. lore[46], thatM¢~10"" M, still the exact relation ofi; to
(6.24) can be generally expanded into spherical harmonidVs depends on the detailed dynamics of a highly curved and

functions, Y, as strongly coupled background. The approach of the present
investigation has been to include all the theoretical indeter-

AT . . . - mination intoHq, trying to have a reasonable control of all
5 (Xo.n,770) = ;n arm(Xo) Yem(N), (6.26  the other numerical factors associated with the post-big-bang

evolution. In Eqg.(6.30 the particular value oh depends
where the coefficients,, define the angular power spec- UPON the specific model of pre-big-bang evolutjds,21. In
trum C, by the case of a ten-dimensional model with an isotropic six-

dimensional internal space, the line element can be written as

* _ o
(@em: 3 ) = Oeer S C .29 ds2=dt2—a%(t) y;;dxidx — b2(1) yo,dy?dy?, (6.32
and determine the two-point correlation function of the tem-wherei,j run over the three external spacelike dimensions
perature fluctuations, namely anda,b run over the six internal dimensions. Defining as
or - oT - VeV
<7(n)7(n )> r=— (6.33
(ﬁzﬁ’:cosﬁ) 2V6V3

the relative rate of variation of the externdy=a® and in-
ternalVg=b® volumes, the spectral indexcan be expressed
as[21]

1
:E; (2¢+1)C,P,(cos?). n:4+6r2—2\/3+6r2
(6.29 1+3r2 '

= 2 (@) Yem(MYE o (07)

£¢"'mm’

(6.39

These coefficient€, , in turn, are related through E6.25,  The case of flat spectrue. n=1) corresponds to the case
to the power spectrum oby(k), and for 2<¢<100 they r==1. If internal dimensions are statice. r=0), thenn
can be expressed §45] =4-2,/3=0.53. Blue spectra are allowed when the rate of
variation of the external volume is much smaller than the
2 (=dk 132 internal one. The maximah achievable in this case is
Cf:ﬁfo ?<|q>0(k)| YK Tilk(70~ 70ed]- (629 =2, corresponding to the case of static external manifold
(r—o0).
As already stressed, the spectrum of the Bardeen potential Béaring in mind Eqs(6.31) and (6.34, we can use Eq.
is fully determined, in our context, by the initial spectrum of (6.30 and perform the integral of Eq6.29. For —3<n
axionic fluctuations amplified by the pre-big-bang dynamics.<3 the integral appearing in E¢6.29 can be done analyti-
A self-contained derivation of such a spectrum, including thecally [45] and the result is
mass contribution, is presented in Appendix A. Consider first

n 2 n—1
the case of minimal pre-big-bang models, whose related C(€SW):2_ fz(ai)(i) (ﬂ)
spectrum is reported in EGA14). The spectrum of curvature 72 Mp/ @
perturbations will then be, at large scales, 1 n
Hp12) 1 r(3—n)r<€—§+z
k3|q)o(k)|2:fz(C’i)k3|Xk|2:f2(Ui)(—) (—) , X 5 : (6.39
Mel ta 22— 2| e+ 22
2 2 2
k<kj, (6.30

Here wo=10"18 Hz andw,(t,) =H,a, /a, are, respectively,
wherek; is the maximal amplified comoving frequency, i.e., the proper frequencies corresponding to the present horizon
in our conventions, the frequency at which only one axionscale and to the present value of the cutoff séale
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r 1/6
wl(t0)=(HlHeq)1/2<a) o Pzt o<, (6.36

r 1/6
w1<to>=<HlHeq>l’2(a) 012, 7

PHYSICAL REVIEW D 67, 063514 (2003

with other theoretical constraints pertaining to the various
models of background evolution.

B. Acoustic peak region

In the previous discussion of the modes that are outside

(we have rescaled; taking into account the kinematics of the horizon before decoupling, we have completely ne-

the various cosmological phases framdown toty). The

glected the possible scattering of radiation with baryons. In

factor Z, = (a,s/a,) denotes the amplification of the scale fact, if we move to smaller angular scalés. typically to
factor during the phase of axion-dominated, slow-roll infla-¢ =100), the main contribution to the CMBR temperature

tion, for the caser;>1. Notice thatw,(ty) depends on the

fluctuations comes from the oscillations of the various

mass, on the initial amplitude of the axion background andPlasma quantities, the so-called Sakharov oscillajé8s A
on the axion decay rate. If the axion decays at a typical scalg®rect approach to this problem is then to perturb consis-

fixed by Eq.(3.4), Egs.(6.36) and(6.37) lead to

/3
H, 12 m 1
w1(ty) =10 (—) . o<1, 6.3
1(to) o\ M, YR i (6.38
1/2 1/3
_qepo [OiH1) M -1 _
=10 wo( M M- zZ;', o>1 (6.39

(we have usetH =10 °H~10 °"Myp). Hence, in spite of

tently the Boltzmann equations for the different species of
the plasmg49-51. Furthermore it can be relevant to dis-
cuss the case of a smooth transition between radiation and
matter dominated epochs. In such a context it becomes dif-
ficult to provide an analytical description of the system and,
in order to compute the patterns of the acoustic oscillations,
we will indeed present some numerical examples in the third
part of the present section.

It is however useful to emphasize that the phases of the
Bardeen potential for the adiabatic mode of 1) deter-

the fact that the initial axionic spectrum does not have anynine not only the relative weight of the Sachs-Wolfe contri-
mass dependence, the mass appears again when computmgions, but also the specific phase of the oscillatory patterns
the amplitude of the spectrum at the present horizon scalet small scales in the temperature fluctuations. For scales

o

The amplitude of the Bardeen potential, on the othe

¢ =100 the contribution to the temperature perturbations

given in Eq.(6.24) is dominated by acoustic oscillations.

hand, is constrained by the COBE normalization of the quadThis aspect can be appreciated by looking at E§sl8—

rupole coefficientC,, which in our case is given by

H 2 ® n-1
_ 2¢2, 1) 20
where
(3 r 3+n
| o0 T@-mr| == y
a”_7_2F2 4—n - 9—n\" (6.4
2 2
Using the experimental resyi7]
C,=(1.9+0.23 x10 % (6.42
we are thus led to the bounds
H.\ (=02 m\—(h-1)3
2¢20 \ 2(n-1)/3 _'1 o —29(n—1)
i A
=1.9x10" % <1, (6.43

H,\ G2/ | —(h-1)/3

2¢20 yon—1 _(1-ny2[ 1 o —29(n—1)

apfo(o)Z, o (MP) (MP) 10
=1.9x10"1% o>1.

(6.44)

(6.2 in the limit k»>1, where the peculiar velocity of
baryonic matter does not oscillate. Instead, from &ql8),
we find that the term$,/4 and®, appearing in Eq(6.24),
combine to give a single term oscillating like a cosine:

AT 1 Dy(k)
?(kvn()!nde()zZér(kandet)+(b0(k)~ 3

COS® Ngec-

(6.495

In this argument the interactions of baryons with the radia-
tion fluid have been neglected. The dynamics AfT(T),

can be obtained from an exact Boltzmann equation with
source term provided by Compton scattering coupled to the
continuity and Euler equations for the fluid variables. Before
recombination, Compton scattering is very rapid and there-
fore the Boltzmann, Euler and continuity equations for the
photon-baryon system can be expanded in powers of the
Compton scattering timgs0,51]. Within this approximation
the baryon velocity field is damped and T/T), oscillates

as a cosine for adiabatic initial conditions. In the approxima-
tion of [50,51], the oscillations in AT/T), have an ampli-
tude proportional to (+R) Y4 where R(7%)=3p,/(4p,).
This result simply tells that the baryonic content of the
plasma determines the height of the first peak. Notice that
this is in sharp contrast with what happens in the case of
light axions[17,18, where the Bardeen potential is quadratic
in the axion fluctuations, and the initial conditions for the

These constraints, imposed by the COBE normalization, wilhydrodynamical evolution are of the isocurvature type. This
be discussed at the end of the present section, and combinedplies, in particular, that the oscillatory patterns of the
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CMBR anisotropies will be shifted by/2 if compared with
the case discussed in the present paper.

C. Constraints on pre-big-bang models

In this subsection we will discuss the bounds imposed by
the COBE normalization, together with other constraints fol-
lowing from the evolution of the background geometry. Let
us start with the axion spectrum of minimal pre-big-bang
models, Eq.(6.30. In such a case, and for a flat Harrison-
Zeldovich spectrungi.e. n=1), the COBE normalization is
inconsistent with a cutoffH, at the standard valudig
~10"! Mp of the string mass scalé6]. By usingn=1, and
taking for o; the value minimizingf (o), log o;

c FIG. 9. Allowed values ofr; andm (in Planck unit$ according
o-iminz \Ezl_gg, f(gi’“‘”)zo_34, (6.46 to Egs. (6.43, (6.44, with H;=10"2Mp. The allowed region
C1 (within the thick line$ is bounded by the conditiom< 1.4 (left and

) right bold lineg, by the nuclesosynthesis constramt>10 TeV

we have indeed, from Eq$6.40—(6.42, (lower bold ling, and by the condition§3.7) (upper left bold ling

H,=5.2x 10~4 Mp. (6.47) and(3.12 (upper right bold ling

Y h . lue of. i f th . ~Mys, for a wide range of axion masses, and f@narrowej
OWEVET, the precise vajue of, 1S one of thé main uncer- range of values ofo;. In particular, for the caseH;

tainties of pre-big-bang models. As we shall see in a mo—_ 10 2Mp, we find 1=0; =10 %, for o;<1. For o,>1

ment, the valued, =M (or H;=Mgyr) may become con- e results are complementary for the spectral index, but
sistent with the COBE normalization for nonflablue) there are much more stringent bounds @n because the
spectra, and even for a strictly flat spectrum in the case Offlationary redshift factoiZ, grows exponentially withr? .
nonminimal implementations of the pre-big-bang scenarios.ng 5 consequence, the allowed region dor 1 is distorted
Let us first recall the various constraints to be imposed oryng compressed, as illustrated in Fig. 9.
the spectrum. The conditiof6.43 is to be combined with The allowed region may be further extended if the infla-
the constrain(3.7), the condition(6.44 with the constraint  tion scaleH, is lowered(see for instanc§52]), and a flat
(3.12, which are required for the consistency of the corre-(n=1) or almost flat spectrum may become possible if
sponding classes of background evolution. Both conditiong,a;H; <10 °Mpo;, for o;<1, and if cja;H;
are to be intersected with the experimentally allowed ranges10 °Mp/ o, for o;>1 [see Eqs(6.43, (6.44)]. The cor-
of the spectral index. We will us@s a reference valiighe  responding allowed values ¢, and o; are illustrated in
generous upper bourid], n <1.4. Also, for our illustrative  Fig. 10 form=10"°Mp, and for three different values of
purpose, we will take the maximally extended range of al-around 1.
lowed values of the axion mass, satisfying the nucleosynthe- However, a flat spectrum may be allowed even keeping
sis constraintn =10 TeV. pre-big-bang inflation at the string scald{~My), provided
We will assume, finally, that in the cage>1 the axion- we consider a nonminimal pre-big-bang scenario. In that
driven inflation is short enough, to avoid a possible contri-context, in fact, the high-frequency branch of the axionic
bution to C, arising from the metric fluctuations directly spectrum may be modified, getting steeper enough to match
amplified from the vacuum during such a phase of axionidhe string-scale normalization at the end point of the spec-
inflation. This requires that the smallest amplified frequencytrum, while the low-frequency branch remains flat quas-
modew,,, crossing the horizon at the beginning of inflation, iflat, see Appendix to agree with large-scale observations.
at decoupling be still larger than the Hubble horizon at theExamples of realistic pre-big-bang backgrounds producing
corresponding epoch. This imposes the conditiog(ty) such an axion spectrum have been presented already in
=H (a,/ag)> wgedto) = Hged @gec/ @p), NAmMely [19,53-58.
A nonminimal spectrum can be parametrized by the Bo-
(6.49 goliubov coefficient§which will be given in Eq.(A16)], in
’ ' terms of a generic break scétg and of the high-frequency
slope paramete®. In that case, for a long and/or steep
to be added to the constraif8.12) for o;>1. enough high-frequency branch of the spectrum, the large-
The allowed region in the planflogo;,log(mMp)} is  scale amplitude may be suppressed sufficiently to allow flat
illustrated in Fig. 9 forH,; =10 ?Mp, using for the inflation  (or even redl spectra at the COBE scale. In fact, for the
factor the parametrizatioﬁ,,=exp((ai2—1)/8). Along the  nonminimal spectrum(A16), the normalization condition
thin full curves the parameters satisfy the COBE normaliza{6.40 becomes
tion, for fixed values of, ranging from 1.1 to 1.4the con- 2 n—1 s
dition (6.48), in this case, is always automatically satisfied C,= azfz(ai)(ﬂ) (ﬂ) (&) . (6.49
A growing (“blue” ) spectrum is thus allowed even H;

m 5/6

Mp

Z, =107,
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log &3

FIG. 10. Allowed values ofH; as a function ofs; for different
values of the spectral index and for=10"°Mp.

Flat or red spectran<1) are thus possible even fdi;
=10 2Mp, provided

(6.50

5
w
affz(ai)(w—i) <107

In order to illustrate this possibility we will choose a spe-
cific model of background by identifyings with the equi-
librium scalekgq, in such a way thah corresponds to the
spectral index of all scales relevant to the CMBR anisotro
pies, whilen+ & provides the average spectral index for all
other scales, up té&;. We will also assume for the axion
background the “natural” initial valuer;=1, so that

Hl 1/2

The COBE normalization can then be written explicitly as

w3

w1
Wg

107 (6.51)

m 1/3
Mp

Weq

C,=a?f?(1)

( Hl)(sna)/z(
>< —
Mp

By using the experimental value &, given in Eq.(6.42

m

—(n—1+4)/3
10~ [276+290—1)]
e

(6.52

we can now obtain a relation between the high-frequency

slope parametep and the spectral inder at the COBE
scale, for any given value d¢fl; andm. In Fig. 11 we illus-
trate such a relation for differefitealistig values ofH,, and
for a typical axion massn=10 °Mp. It should be stressed
that, forn=1, ando; of order 1[i.e. near the minimum of
f(ay)], the curves at constari; are almost insensitive to
the values ofm, and remain stable even if we changeby
various orders of magnitude, as illustrated in Fig. 12.

We have also reported, in Fig. 11, tfresent most strin-
gent bounds om, obtained by a recent analysis of the
CMBR anisotropies and large-scale structufg6,57, i.e.
0.87=n=1.06. They are all compatible witH,;=Mg, pro-

vided we allow for a small break of the minimal spectrum,

PHYSICAL REVIEW D 67, 063514 (2003
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FIG. 11. Relation betwee# andn for different values oH, (in
Planck unit$, for m=10"°Mp, and foro;=1. The vertical dashed
lines denote the experimentally allowed range &8%1.06.

mechanisnisee for instancg52]) the string mass is lowered
down to the grand unified theoryGUT) scale, i.e.H;
=10 3Mp.

In Fig. 12 we have plotted the same curves of Fig. 11 for
two, very different values of the axion mass, 2, (bold
curves and 10 *Mp (thin dashed curvésAs clearly illus-
trated by the figure, the dependence on the mass is very mild,
and it becomes practically inapprecialfler the given range
of parameterswhenH; approached g

Having discussed the constraints imposed by the COBE
normalization the(scalay angular power spectrum can be
computed and compared to the available experimental data
provided by COBE[1,2], BOOMERANG [4], DASI [5],
MAXIMA [6] and ARCHEOPS7]. This exercise has been
done and here the main results will be summarized.

We have selected particular combinations of the param-
etersH,,m, § ando;, chosen in such a way as to satisfy the
COBE normalization, Eq(6.49. In particular we took the
case of strictly scale-invariant spectrum with tHe satisfy-
ing Eq. (6.47. We also analyzed the case wheiR~Mg,
taking, as an exampler;=1 andm=10 °Mp. Following
our previous discussion, in this case a slightly blue spectrum
can be achieved if the high frequency breéakis of order of
0.18. This case would then lead to a scalar spectral imdex
=1.02. Finally, as an example of red spectrum with 0.9
we tookH;~ 10 2Mp with a break of the order of 0.22 and
with the same values a¥; and m used in the case of blue
spectrum.

In order to obtain the angular power spectra it is necessary

0.4
0.35
0:3
0.25
w 0.2
0.15
0.1
0.05

0.

FIG. 12. Stability of the curves of Fig. 10 for two different

with §=0.2-0.3. On the other hand, as already stressed, n¢hoices of the axion mass, 18 (bold curve$ and 10 *Mp

break at all is neededi.e. §=0) if, for some dynamical

(thin dashed curves
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to specify a number of parameters characterizing the fluidh symmetric evolution of all 9 spatial dimensiomsoduloT
evolution after equality. In this respect, the following fiducial duality). Since the constant mode of the curvature fluctua-
set of cosmological parameters has been ugd: h, tions leads to adiabatic initial conditions for the fluid evolu-
=0.65, 2,=0.7, and hﬁQb=0.02. The selected value of tion after matter-radiation equality, the location of the Dop-
h3(), is rather robust, even if no final consensus has beefler peak is correctly reproduced.
reached on the second significant figure beyond 0.02. We On the other hand, the absolute normalization of fluctua-
have also assumed the simplest scenario for the late-timéons at large scalesay those relevant for COBEepend on
cosmological evolution, with no significant effects of reion- several details of the model. Indeed, the axion spectrum is
ization. naturally normalized at its end point, given by our parameter

The agreement of the experimental data with the theorett1- If one takes, naivelyd;~M¢~10'" GeV and assumes a
ical predictions of pre-big-bang models for the height andflat spectrum one finds values AfT/T that are a couple of
position of the peak distribution in thé, spectrum of Eq. orders of magnitude too large when compared with COBE'’s
(6.27) is generally good. An interesting indication stemming data. However, one can think of marindividual or com-
from this preliminary analysis is that the relaxation of thebined effects that can bring down our normalization to agree
strict COBE normalization allows a better general agreemen#ith the data, e.g.
of the fit with the other data at highet. Since the data A slight (blue) tilt to the spectrum;
reported in[7] fill the “gap” between the last COBE points A blue spectrum just at high frequengye. for scales that
and the points of the first peak—6], we are led to argue that €xit late, during the strongly coupled regime
a much more accurate normalization of our spectra could be A lower H;/Mg ratio;
achieved by adopting, as large scale normalization, directly A lower M¢/Mp ratio.
the ARCHEOPS points. In the near future we hope to extend the present discus-

Hence, in view of the accuracy of the forthcoming MAP sion to forthcoming CMBR anisotropy data at even smaller
data, it will be important to confront more systematically theangular scales. It would be interesting to see if a combined
pre-big-bang parameter space with these qualitatively nev@nalysis of the experimental data may give further useful
satellite measurements. The encouraging preliminary resulfints on the parameter space of the scenario explored in the
already obtained will then be extended to a full scan of thedresent investigation.
pre-big-bang parameter space and presented elsewhere.
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In the present paper the possible conversion of isocurvahOSp'ta“ty while this work was carried out. G.V. wishes to

ture, primordial axionic fluctuations into adiabatic, large- acknowllyedge' the support Of? Chalr'e Interf\atlonale Blaise
scale metric perturbations has been discussed in the contep?s,c‘?‘l’ ad”ml\l/rlusée_red by_ th? '.:0 dndstlcan de:]EC“?Ie I_\lorrgale
of the pre-big-bang scenario. Depending upon the specifigﬁpe.'eure' A i 'O,,Va?nr']n' 'S indebte dto the nSt'tf,th €
relaxation of the axionic background toward the minimum of ysique Therique” of the "Universite de Lausanne” for
the potential, a constarand large enoughmode in the partial support.

Bardeen potential can be generated, for scales that are still

outside the horizon right after matter-radiation equality. APPENDIX: AXIONIC SPECTRA

After analyzing the dynamics of the background and of its During the pre-big-bang phase the quantum mechanical

fluctuations, the final amplitude and spectrum of the Bardeeq,ations of the axionic field will be amplified from the

potential has been related to the initial axion spectrum diyyitia| yacuum state. The obtained spectrum provides the ini-

rectly arising from the vacuum fluctuations amplified duringy;a| congition for the evolution of the axion fluctuations in
the pre-big-bang epoch. Our goal has been to include, with,, post-big-bang phase. At very large scales, such a spec-
reasonable accuracy, the details of the post-big-bang evolyz,m will not depend so much upon the details of the pre-
tion, in such a way that the pre-big-bang parameters could b hang evolution. At smaller scales, however, it can be
d|rectly constrained by the COBE normalization, and by _thestrongly affected by specific dynamics of the strong coupling
anaIyS|§ of the Doppler-peak structure. All the the<,)ret'c""land high-curvature regime. In spite of the fact that the spec-
uncertainty reflects in our lack of knowledge Hf which slope at large scales is not affected by high energy cor-

determines the end point of the primordal axion spectrum. o ctions; the large scale amplitude is affected and, in particu-
The main conclusion of this work is that a phenomeno-;, 4 steeper slope at small scales has important

logically appealing spectrum of adiabatic scalar perturbazonsequences for the normalization of the low-frequency

tions can naturally emerge from the simplest pre-big-bang, anch of the spectrum. In this appendix we will consider,
scenario through a conversion of the initial isocurvature pere

; ) : Separately, the axion spectrum obtained in the case of mini-
turbations of the Kalb-Ramonq axion. Since, at the Iargema| and nonminimal pre-big-bang models.

scales tested by CMBR experiments, the above conversion
preserves the scale dependence of the original spectrum, it is
important for the latter to be quasi-scale-invariant at large
scales. This can be achieved, for instance, if the very early The linearized evolution of massive axion inhomogene-

stages of pre-big-bang cosmology at weak coupling involveties x,, neglecting their coupling to scalar metric perturba-

1. Minimal pre-big-bang models
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tions, in a spatially flat cosmological background, is de-maximal scalek, as the energy scale where one axion is

scribed in general by the equation produced per unit volume of phase space.
, Consider now the nonrelativistic spectrum in the case
m k222 2|y = when the mode becomes non-relativistic while it is ill-
it |kKiHma z =0, (A1) side the horizonDefining ask,, the limiting comoving fre-
quency of a mode that becomes nonrelativistig€ ma,,) at
where the time it reenters the horizok{=Ha,,), we find, in the
7=ae?,  =zx\. (A2) radiation erd 18,19,
12

In the pre-big-bang phaseyK 7;) the axion is massless. In km:kl(ﬂ> (A8)
the post-big-bang, radiation-dominated phase, taking place Hiy

for »> 7, the gauge coupling freezeg € const) and the We are thus considering modes wkkk,,,. In order to es-

axion acquires a mass. The produced axion spectrL.lm,_ fimate the spectrum, in this limit, let us write E@4) in a
principle, has a relativistic and a nonrelativistic branch: this,

; . L form suitable for comparison with known results of parabolic
is because, in the radiation era, the proper momentum is lind tions:
red-shifted with respect to the rest mass, and the whole spegy Inder equations.
trum, mode by mode, tends to become nonrelativistic. The 42
spectral slope of the relativistic and nonrelativistic branches

of the spectrum are in general different. However, if the ax-

2
ot Z—b)lpk:o, x=7(2a)"2  —b=k?/2a,

ion modes, as in the present case, become nonrelativistic (A9)
when they are still outside the horizon, the solution is thenyhere
exactly the same as in the relativistic limit.

Consider first the relativistic branch of the spectrum. For m?a’=a?7?, a=mHa?, (A10)
7< 7, the solution of Eq(Al) can be expressed in terms of
the second-kind Hankel functiofi¢1] as and wherea~ 7 has been assumed. The corresponding gen-

oa2) eral solution can be written as
() =n"H,; (kn), (A3) = Ay1(b.x)+ Bys(b.x). (AL1)

whereu depends on the parameters controlling the kinemat- i
ics of the pre-big-bang backgroufid specific example will Wherey; andy, are the even and odd parts of the parabolic
be given below, see EqgA7) and (6.34)]. In the radiation cyhn_dgr _fun_ctl_on_s[41]. The n_ormallzatlon to EqA6) in the
era, 7> 77, one has’/z=0, and the evolution equation of elativistic limit (i.e. x—0) givesA=0 and

i acquires a massive correction: 112

yo(b,Xx). (A12)

k
P+ (k2+m?a?) g, =0. (A4) ‘/’k:C(k)(Z

Assuming that the axion mass is negligible at the transitiorOutside the horizonk»<1, and for nonrelativistic modes,
epoch 7, the solution(A3) can be matched to the plane- k<ma, we take(respectively the limits —bx?*<1 and—b

wave solution <x?, the solution can be expandedygs-x~ 7+2a, so that
the mass disappears from the amplitude:
1 . .
p=—=Lc (ke *7+c_(k)e 7], (A5) |c(k) |22
Vk |xid = T (A13)

and the final result foy, is . . .
Kk The insertion of the spectrufd7), usingk,=a;H, leads to

the final result

(=" sink) (A6)
=——s=i ,
Xk 77 a\/E Y " K\ (n=1)/2
k¥ xul =Ha| - (A14)
51
where
. k )(”5)’2 2. Nonminimal pre-big-bang evolution and spectral breaks
c(k)y=|— , A7 : . o .
o Ky (A7) Equation(A14) holds in the case of minimal pre-big-bang

_ ) ~models, where the dynamical evolution of the dilaton field is
with n=4-2|u| . Note that the expression of the Bogoliu- gictated by the solution of the low-energy equations of mo-
bov coefficientc(k) and of the mean number of produced tjon, However, when the dilaton enters the strong coupling
axions, n,=|c(k)|?, contains different numerical factors of regime, different types of scenarios may emerge. In particu-
order 1. At the same time the maximal amplified momentumlar, relation(A2) defining the form of the axion pump field,
k, can be defined in different ways, all equivalent up tomay change in the infinite bare string-coupling limit, as sug-
numerical factors. In the present analysis we will define thegested by the arguments recently developef5@. In the
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framework of{ 52] the axion coupling function, as well as the break, at a momentum scale that will be conventionally de-
other coupling functions pertaining to fields of different spin, noted byk,, and the Bogoliubov coefficients can be written
may have a finite limit for infinite bare string coupling. in the form

Hence, toward the end of the pre-big-bang ph@se when

strong coupling is presumably reached k\n—5+e
VP v reache |ck|2=(k—) C ke<k<ky,
z~a[c,+O(e ¥?)], (A15) 1
wherec, is a constant. Since the axionic pump field now _ E nmere E s K<k
depends only on the scale factor, it will naturally be steeper kg Ke ' s

for small length scales. A complementary possibility, dis-
cussed if19], is the presence of an intermediate high-energy
phase, which precedes the standard radiation era, and whittere §>0 parametrizes the slope of the break at high fre-
is still part of the accelerated pre-big-bang regime, but inquency, whilen is the usual spectral index appearing at large
which the kinematics of théusua) canonical pump field is scales and computed on the basis of the perturbative evolu-
significantly different from its low-energy behavior. tion of the dilaton field. From EqA16) it can be argued that

In all these cases the obtained spectra, at small scales, dtee steeper and/or the longer the high-frequency branch of
possibly steeper than in the case of minimal pre-big-banghe spectrum, the larger the suppression at low-frequency
models. In the simplest case the spectrum will have only onscales.
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