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Constraints on pre-big-bang parameter space from CMBR anisotropies
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The so-called curvaton mechanism—a way to convert isocurvature perturbations into adiabatic ones—is
investigated both analytically and numerically in a pre-big-bang scenario where the role of the curvaton is
played by a sufficiently massive Kalb-Ramond axion of superstring theory. When combined with observations
of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite
considerably the parameter space of the model: in particular, the initial displacement of the axion from the
minimum of its potential and the rate of evolution of the compactification volume during pre-big-bang infla-
tion. The combination of theoretical and experimental constraints favors a slightly blue spectrum of scalar
perturbations, and/or a value of the string scale in the vicinity of the SUSY GUT scale.
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I. INTRODUCTION

At present, the largest-scale temperature fluctuations
the cosmic microwave background radiation~CMBR! are
consistent with a~quasi-! scale-invariant spectrum of Gaus
ian primordial curvature fluctuations@1–3#. The analysis of
the first acoustic oscillations occurring on shorter angu
scales adds the information that such curvature fluctuat
should be predominantly adiabatic@4–7#. Although suffi-
ciently small amounts of non-Gaussianity and/or isocur
ture perturbations are not excluded, the above-mentioned
servational features represent an important constraint for
scenario trying to model the initial stages of our Universe.
a previous Letter@8# we tried to confront the pre-big-ban
scenario@9–11# with these constraints. The present pap
contains a full description of that analysis and completes

Let us recall that, during the pre-big-bang phase,
quantum fluctuations of all the light modes present in the l
energy effective action are parametrically amplified. Non
theless, sizable large-scale adiabatic fluctuations are not
ily produced from the initial vacuum through the usu
mechanism of parametric amplification. In particular, bo
tensor and scalar-metric fluctuations are amplified with v
steep spectra@12,13#, resulting in adiabatic modes which a
far too small to explain the observed level of large-sc
CMBR anisotropies@14#.

However, not all the primordial spectra of pre-big-ba
cosmology are blue. For instance, in a pure gravidila
background, the pseudoscalar supersymmetric partner o
dilaton in the dimensionally reduced string effective actio
the so-called Kalb-Ramond axion, emerges from the pre-
bang phase with a fluctuation spectrum whose tilt depend
the rate of change of the compactification volume@15,16#.
Depending on this, the axion tilt can be negative~red spec-
trum!, positive~blue spectrum!, or zero~scale-invariant spec
trum!. However, since the homogeneous~background! com-
ponent of the axion is trivial, such a spectrum does not af
0556-2821/2003/67~6!/063514~23!/$20.00 67 0635
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directly the metric; hence no curvature perturbation is g
erated at this primordial level. In other words, the axion p
turbations are entropic, isocurvature perturbations. This
ture persists, unfortunately, underS-duality transformations
@15,16#. If such an axion is massless, or at least light enou
not to have decayed yet, the induced CMBR fluctuations
large scales can fit the Cosmic Background Explorer~COBE!
normalization@17–20#, but, being not adiabatic@21#, they are
not able to fit the observed structure of the first few acou
peaks.

A possible way out of this problem@8,10,22–25# is of-
fered by the alternative scenario of a massive axion, initia
displaced from the minimum of its nonperturbative potenti
In that case axion perturbations couple to scalar metric p
turbations through the non-vanishing axion’s vacuum exp
tation value~VEV!. Eventually, the axion relaxes toward th
minimum of the potential and then, if heavy enough, dec
prior to nucleosynthesis. During the relaxation process
dominant source of energy undergoes a drastic chang
consists of the radiation produced at the end of the pre-
bang evolution, and later becomes the pressureless fluid
responding to the damped coherent oscillations of the ax
This nontrivial evolution results in a nonadiabatic press
perturbation which, in turn, is well known@26,27# to induce
curvature perturbations on constant energy~or comoving!
hypersurfaces even on superhorizon scales.

The interplay of such different sources of inhomogene
throughout the different stages of the background evoluti
eventually determines the spectral amplitude of scalar cu
ture perturbations right after matter-radiation equality, wh
all the scales of interest for the CMBR data are still outs
the horizon. This conversion of isocurvature into adiaba
perturbations, originally suggested in a different context
Mollerach @28#, also applies to more general cases@23,25#.

Depending upon the initial values i of the Kalb-Ramond
background, different post-big-bang histories are possible
s̄,s i!1 in Planck units@see below, Eq.~3.7!, for the defi-
©2003 The American Physical Society14-1
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nition of s̄], the axion oscillates for a long time before b

coming dominant and eventually decays. Fors i,s̄ it may
never fully dominate the energy density before decaying
instead,s i@1 the axion will dominate before oscillating an
a slow-roll ~low-scale! inflationary phase could take place
that epoch. As we shall see, of all these possibilities CM
observations seem to favor the ‘‘natural’’ one,s i;1. In any
case, even if different post-big-bang histories will lead
different spectral amplitudes of the Bardeen potential, ad
batic scalar metric perturbations will always be presen
some level outside the horizon, prior to decoupling.

The purpose of the present paper is to report on the
culation of the spectral amplitude of the induced adiaba
metric perturbations, and on the comparison of the pre
tions of the pre-big-bang scenario with the observatio
coming from the physics of the CMBR anisotropies. In ord
to achieve this goal it is mandatory to have a good und
standing both of the axion relaxation mechanism and of
evolution of the inhomogeneities. Hence analytical resu
will be supported with numerical examples and vice ver
We will present, in particular, a full derivation of the resu
for the final adiabatic spectrum of the Bardeen poten
~some of these results have been summarized already in@8#!.

The paper is organized as follows. In Sec. II the ba
equations describing the post-big-bang evolution of the in
mogeneities and of the background geometry will be int
duced. In Sec. III the physics of the different post-big-ba
histories will be analyzed. In Sec. IV the evolution of th
background and of its perturbations will be discussed for
case in which the amplitude of the initial axion backgrou
is smaller than 1 in Planck units,s i,1. In Sec. V we will
discuss the evolution of the system in the complemen
cases i.1. Section VI is devoted to the phenomenologic
implications of the large-scale adiabatic perturbations p
duced through the relaxation of the axionic background. T
obtained results will be compared with observations. C
straints on the pre-big-bang parameters will be derived. S
tion VII contains our concluding remarks while, in the Ap
pendix, a self-contained derivation of the axionic spec
produced by the pre-big-bang evolution has been include

II. BACKGROUND AND PERTURBATION EQUATIONS

As already mentioned, we shall start our analysis at so
time h i in the post-big-bang epoch, assuming that the ax
field has inherited from the preceding epoch apprecia
large-scale fluctuations, while other sources of energy as
as the metric are exactly homogeneous. It will also be
sumed that, initially, the dominant source of energy is in
form of radiation. The post-big-bang dynamics takes pla
in the present analysis, when the curvature scale has falle
a sufficiently small value~in string units! so that the use o
the low-energy effective action is appropriate. Furthermo
for h.h i the dilaton is assumed to be frozen already at
present value.

Under these assumptions, the evolution of the geomet
determined by the Einstein equations, supplemented by
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conservation equations determining the dynamics of
sources:1

Ra
b2

1

2
da

bR5
1

2
~Ta

b~s!1T a
b!, ~2.1!

gab¹a¹bs1
]V

]s
50, ~2.2!

where Ta
b(s) and T a

b are, respectively, the energy
momentum tensors of the axionic background and of
matter fluid. Notice that the covariant conservation ofTa

b(s)
is dynamically equivalent to the evolution equation of t
axionic field, i.e. Eq.~2.2!, and implies, through the con
tracted Bianchi identities:

¹aT b
a50. ~2.3!

In a conformally flat background geometry,

ds25a2~h!@dh22dxW2#, ~2.4!

Eqs.~2.1!–~2.3! lead to a set of three independent equatio
whose specific form is dictated by the fluid content of t
primordial plasma. In the case of a radiation fluid we hav

T 0
05r r , T i

j52prd i
j , pr5

r r

3
, ~2.5!

and Eqs.~2.1!–~2.3! lead to

H852
a2

6 Fr r1
s82

a2
2VG , ~2.6!

s912Hs81a2
]V

]s
50, ~2.7!

r r814Hr r50. ~2.8!

Here the prime denotes the derivation with respect to
conformal time coordinateh, and H5(ln a)8. For future
convenience we also recall that the connection betweenH
and the Hubble parameter isH5H/a. The effective energy
and pressure densities ofs will be given by

rs5
s82

2a2
1V, ps5

s82

2a2
2V. ~2.9!

The set of dynamical equations~2.6!–~2.8! is supplemented
by the Hamiltonian constraint

H 25
a2

6 Fr r1
s82

2a2
1VG , ~2.10!

1Gravitational units 16pG51 will be used throughout. When ex
plicitly written in the formulas, MP5(16pG)21/251.72
31018 GeV. In these units,s is the canonically normalized axion
field.
4-2
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which imposes a specific relation on the set of initial d
and is required, in particular, for the numerical integration
the background evolution.

During the post-big-bang phase, the first order pertur
tion of Eqs.~2.1!–~2.3! provides the linear~coupled! system
of evolution equations of the inhomogeneities. To first ord
in the scalar metric fluctuations, the line element~2.4! can be
written as@27#

ds25a2~h!$~112f!dh222] iBdxidh2

2@~122c!d i j 12] i] jE#dxidxj%. ~2.11!

Since there are two gauge transformations preserving
scalar nature of the above metric fluctuations (c,f,E,B),
two gauge-invariant~Bardeen! potentials can be define
@27,29#

F5f1
1

a
@~B2E8!a#8, ~2.12!

C5c2H~B2E8!. ~2.13!

Appropriate gauge-invariant variables can also be defined
the perturbations of the sources, in such a way that

x (gi)5ds1s8~B2E8!, ~2.14!

dr r
(gi)5dr r1r r8~B2E8!, ~2.15!

v r
(gi)5v r1~B2E8!, ~2.16!

whose physical interpretation is particularly simple in t
so-called longitudinal gauge@27# in which E505B. Here
dT 0

05dr r , and the velocity potential is defined by the o
diagonal fluctuations of the radiation energy-momentum t
sor as

dT i
05~pr1r r!u

0dui , ~2.17!

whereu051/a and, in the longitudinal gauge,dui5a] iv r .
By perturbing the diagonal components ofTm

n (s), and
using Eqs.~2.12! and ~2.14!, the fluctuations of the axionic
energy and pressure densities can be expressed in a
gauge-invariant way as follows:2

drs5
1

a2 F2Fs821s8x81
]V

]s
a2xG , ~2.18!

dps5
1

a2 F2Fs821s8x82
]V

]s
a2xG . ~2.19!

The variables characterizing the gauge-invariant fluctuati
of the sources can be defined in different, but equivale
ways@26,30#. For instance, it is sometimes useful~especially

2In the following, since we will be dealing only with gauge
invariant quantities, the superscript ‘‘~gi!’’ can be consistently
dropped without confusion.
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in the case of fluids with constant speed of sound! to write
equations for the combination (dr r /r r24F), whose evolu-
tion greatly simplifies at large scales.

The fluctuations of the off-diagonal~spacelike! compo-
nents of Eq.~2.1! imply that F5C. Hence, in terms of the
variables defined in Eqs.~2.12!–~2.19!, the ~00! and (0i )
components of the perturbed Einstein equations~acting as
Hamiltonian and momentum constraints for the evolution
the Bardeen potential! can be written in terms of the gauge
invariant velocity potentialsv r , vs , and of the radiation and
axion density contrastsd r5dr r /r r , ds5drs /rs , as fol-
lows:

¹2F23H~HF1F8!5
a2

4
~r rd r1rsds!, ~2.20!

HF1F85
a2

4
@~r r1pr!v r1~rs1ps!vs#. ~2.21!

Here the axion velocity potential,vs , is defined by

vs5
x

aAps1rs

~2.22!

and is the axionic counterpart of the velocity potential intr
duced for the radiation fluid.

The constraints~2.20! and ~2.21! are to be supplemente
by the dynamical equations coming from the perturbation
the~ii ! components of Einstein’s equations~2.1!, of the axion
equation~2.2! and of the continuity equation~2.3!. For the
gauge-invariant quantities defined above, such dynam
equations are, respectively,

F913HF81~H 212H8!F5
a2

12
r rd r1

a2

4
dps ,

~2.23!

x912Hx82¹2x1
]2V

]s2
a2x24s8F812

]V

]s
a2F50,

~2.24!

d r824F82
4

3
¹2v r50, ~2.25!

v r82
1

4
d r2F50. ~2.26!

Finally, the perturbation of the covariant conservation of t
axionic energy-momentum tensor leads to two useful eq
tions:

rsds82~ps1rs!¹2vs23Hpsds23F8~ps1rs!

13Hdps50, ~2.27!

vs81S 4H1
ps81rs8

ps1rs
D vs2

dps

ps1rs
2F50, ~2.28!
4-3
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which are implied, as it should be, by Eqs.~2.23!–~2.26!
when the background equations~2.6!, ~2.7! are used.

It is also useful to notice that, by combining Eqs.~2.10!
and ~2.23!, we can eliminate the fluid variables, and we o
tain

F914HF812~H 21H8!F2
1

3
¹2F

52
s82

6
F1

s8

6
x82

1

3

]V

]s
a2x, ~2.29!

which, together with Eq.~2.24!, provides a closed system o
equations forF andx. Of course, the velocity potential an
the density contrast of the fluid do not disappear from
physics of our problem, and have to be directly compu
using the Hamiltonian and momentum constraints of E
~2.20! and ~2.21!.

Curvature perturbations from nonadiabaticity

Given the system of Eqs.~2.23!–~2.26!, supplemented by
the constraints~2.20!, ~2.21!, it is sometimes appropriate t
select variables obeying simple evolution equations in
long-wavelength limit, in which the spatial gradients are ne
ligible. For this purpose, a particular combination of Eq
~2.20! and ~2.23! will be considered, and the fluctuations
the total energy and pressure densities will be defined:

dr tot5drs1dr r , dptot5dps1dpr . ~2.30!

In terms of the quantities defined in Eq.~2.30!, the evolution
of the Bardeen potential can be formally written in terms
a single equation

F913H~11cs
2!F81@2H81H 2~113cs

2!#F2cs
2¹2F

5
a2

4
@dptot2cs

2dr tot#, ~2.31!

wherecs is the speed of sound for the total system, defin
by

cs
25

ptot8

r tot8
[

ps81pr8

rs81r r8
, ~2.32!

or, using the explicit form of the background equations,

cs
25

1

3 H r r1
9

4
~ps1rs!1

3

2

s8

H V,s

r r1
3

4
~ps1rs!

J , ~2.33!

whereV,s[]V/]s.
The left-hand side of Eq.~2.31! ~except for the Laplacian

term! can now be expressed as the time derivative of a sin
gauge-invariant functionz, namely,
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z52FF1
4H
a2 S HF1F8

r tot1ptot
D G[2S F1HHF1F8

H 22H8
D ,

~2.34!

where the second equality follows by using the backgrou
equations of motion~2.6!–~2.10!. By using this variable, Eq.
~2.31! can be written as

dz

dh
52

H
ptot1r tot

dpnad2
4Hcs

2

a2~r tot1ptot!
¹2F ~2.35!

where we have defined

dpnad5dptot2cs
2dr tot . ~2.36!

As noticed long ago@26,29,31,32#, the variablez represents
the inhomogeneities in the spatial part of the space-time
vature, measured with respect to comoving hypersurfa
(s5constant). Using Eq.~2.21!, the variablez can also be
usefully related to the total velocity potential as

z52~F1Hv tot!, ~2.37!

where

~ptot1r tot!v tot5~pr1r r!v r1~ps1rs!vs . ~2.38!

In our specific case, using the full set of background a
perturbation equations in the long-wavelength limit, whe
d r;4F according to Eq.~2.25!, the expression forz can be
written in the following convenient form:

z52

3

4
~ps1rs!d r2rsds

4r r13~ps1rs!
. ~2.39!

As we will discuss in detail in Sec. V, in the absence o
dominant radiation fluiddpnad is zero at large scales, i.e. u
to terms containing the Laplacian ofF. However, in a radia-
tion dominated regime,dpnadÞ0 and Eq.~2.35! implies z8
Þ0 even in the long-wavelength limit. Let us then compu
the general form ofdpnad, for the full system of axion plus
fluid perturbations. By using the previous definitions we o
tain

dpnad5r rS 1

3
2cs

2D d r1F~cs
221!~ps1rs!

1
s8x8

a2
~12cs

2!2
]V

]s
x~11cs

2!. ~2.40!

On the other hand, using Eqs.~2.20! and~2.21!, we can write

F~ps1rs!52
4

a2
¹2F13Hs8x

a2
14Hr rv r

1r rd r1Fs8x8

a2
1

]V

]s
xG . ~2.41!
4-4
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Thus ~neglecting the spatial gradient ofF) we get

dpnad52
2

3
r rd r22

]V

]s
x14Hr rv r~cs

221!

13H~cs
221!

s8x

a2
. ~2.42!

The above equations are useful to compute, in some spe
phase of the dynamical evolution, the source term of
~2.35! whose integration allows us to obtain the explicit tim
dependence ofz. In @8# we have determined the evolution o
the fluctuations by following thez variable. In the presen
investigation we will solve the perturbation equations both
terms ofF and z, checking numerically the consistency
the two approaches.

III. POST-BIG-BANG HISTORIES

At the beginning of the post-big-bang evolution the bac
ground is characterized by a ‘‘maximal’’ curvature scaleH1,
whose finite value regularizes the big-bang singularity of
standard cosmological scenario, and provides a natural c
for the spectrum of quantum fluctuations amplified by t
phase of pre-big-bang inflation~see below, in particular Sec
VI !. In string cosmology models such an initial curvatu
scale is at most of the order of the string mass scale,
H1 &M s;1017 GeV.

The Kalb-Ramond axion has gravitational coupling
photons and to the QCD topological current but it is n
necessarily identified with the invisible axion@33# usually
invoked in the explanation of the strongCP problem via an
initial misalignment of the QCD vacuum angleq @34#. The
potential of Kalb-Ramond axion is, strictly speaking, pe
odic. The periodicity of the potential occurs whenever
Peccei-Quinn symmetry is spontaneously broken down
discrete symmetry corresponding to shifting theq angle by
multiples of 2p ~see, for instance,@35#!. However, close to
the minimum of the potential~i.e. sufficiently late in the
process of relaxation! the potential can be assumed to
quadratic. Such an approximation is expected to be real
for values ofs that are small compared to its periodicit
Unfortunately, translating periodicity inq into periodicity in
s involves a normalization factor that is unknown in th
strong-coupling region where the dilaton is supposed to
frozen at late times. For this reason, we shall keep the in
displacement in Planck units,s i , as a free parameter.

We start our study of the background and perturbat
evolution at an initial curvature scaleH i<H1, when the en-
ergy density of the background is mainly stored in the rad
tion fluid, while the energy density of the axion is dominat
by the potential:

r r~h i!@rs~h i!.V~h i!. ~3.1!

During the first stages of the evolutions remains approxi-
mately fixed at the initial values i up to correctionsO(V,s).
In the course of such a ‘‘slow-roll’’ phase, the curvature sc
of the background decreases, until it becomes compar
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with the curvature of the potential. The axion backgrou
will then start oscillating, at a typical scale

Hosc;m ~3.2!

~note that, as already mentioned, we are assuming that
potential is quadratic!. At the curvature scale

Hs;ms~ t !, ~3.3!

the axion field will dominate the background. The speci
value of the scaleHs depends upons i and also upon the
evolution afterh i . In fact, during the oscillatory phase th
axionic energy density decreases, on the average, asa23, i.e.
slower than the energy of the radiation background,r r
.a24. From Eqs.~3.2! and ~3.3! it is then clear that, de-
pending on the initial value ofs, the oscillations of the
axionic background may arise either before or after the ph
of s dominance.

Irrespectively of its initial value, the coupling ofs to
photons is gravitational, i.e. suppressed by the Planck m
The decay takes place when the curvature scale is of
same order as the decay rate, namely when

H;Hd;
m3

MP
2

. ~3.4!

The late decay ofs is in general associated to a significa
entropy release, which has to be carefully constrained@36–
38# not to spoil the light nuclei abundances and the bary
asymmetry generated, respectively, by primordial nucleos
thesis and baryogenesis.

In our context, for typical values ofH1, and for a realistic
scenario, the decay ofs is constrained to occur prior to
nucleosynthesis, i.e. at a scaleHd.HN;(1 MeV)2/MP,
which impliesm *10 TeV. The lower bound on the axio
mass is even larger if we require that the decay occurs p
to baryogenesis at the electroweak scale~characterized by a
temperature of the cosmological plasma of order 0.1 Te!,
which impliesm *104 TeV. If, on the contrary, baryogen
esis occurs at a large enough scale preceding the phas
axion dominance and decay, then the minimal value ofm
allowed by the entropy constraints@36–38# is, in general,s i
dependent. In that case, however, the resulting lower bo
is strongly dependent on the given model of baryogene
and can be somewhat relaxed by various mechanisms. In
rest of this paper we will thus adopt a conservative approa
by taking the nucleosynthesis boundm *10214MP as a typi-
cal reference value.

A. Late dominance of the axion:s iË1

If s(h i)5s i,1, then the axionic background first exp
riences a phase of radiation-dominated oscillations, fr
Hosc down toHs . The duration of this phase depends up
s i , since (aosc/as);s i

2 , and it may be rather long, ifs i

!1. During this phase the axion potential energy decrea
asa23. Consequently, the typical scale of axion dominan
is, from Eq.~3.3!,
4-5
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Hs.ms i
4. ~3.5!

From Hs down to Hd , i.e. inside the regime of axion
dominated oscillations, the effective equation of state of
gravitational sources, averaged over one oscillation, mim
that of dusty matter, witĥps&50. During this regime the
scale factor and the Hubble parameter also have oscilla
corrections, which vanish on the average, and decay a
for large times. It should be stressed, however, that the
fective equation of state of the axion background, for cur
ture scales smaller thanHs , depends upon the curvature
the potential around the minimum. If, for instance, the p
tential is not quadratic, but quartic, the coherent oscillatio
will lead to an effective equation of state that simulates
radiation fluid, i.e. 3̂ps&5^rs& @39#.

The occurrence of the axion-dominated phase require

Hd,Hs , ~3.6!

which imposes a lower bound on the initial axionic amp
tude, namely

1.s i.Am/M P[s̄. ~3.7!

This constraint, however, is not so demanding, given
generous lower bound onm ~in Planck units! allowed by
nucleosynthesis and baryogenesis. Finally, after the axion
cay, the Universe enters a subsequent radiation-domin
epoch. From this moment on, the evolution of the ba
ground fields is standard.

B. Early dominance of the axion:s iÌ1

If s(h i)5s i.1, then the axion, right after the onset
the radiation-dominated epoch, starts again rolling down
potential. This initial part of the evolution is complete
analogous to that of thes i,1 case. However, fors i.1, the
axion dominance will occur before the onset of the ax
oscillating phase, i.e.

Hosc,Hs , ~3.8!

where, for a generic potential,

Hs;AV~s i! ~3.9!

~since the kinetic energy of the axion is negligible during t
slow-roll evolution!. At H5Hs the Universe enters a phas
of accelerated expansion~slow-roll inflation! whose dura-
tion, for a quadratic potential, is given by

Zs5
afinal

ainitial
5expF1

8
~s initial

2 2sfinal
2 !G . ~3.10!

This inflationary phase will last untilH5Hosc;m, sfinal
.1 ~if we assume, again, that close to its minimum the p
tential is quadratic!. For H,Hosc the background will be
dominated by the coherent oscillations of the axion, wh
decay will eventually produce a second radiation-domina
phase~in full analogy with the cases i,1).

This scenario requires, for consistency, that
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Hs,H i<H1<M s, ~3.11!

which, in the case of a quadratic potential, amounts to req
ing

H1 /m>H i /m *s i.1. ~3.12!

As in the case of Eq.~3.7!, this bound is not so restrictive
given the limits on the axion mass. Indeed, in the cases i
.1, the most stringent constraints are coming not from
evolution of the background geometry but, as we shall s
from the evolution of the fluctuations that forbid too larg
values ofs i . One is then left with a situation wheres i.1
andHs.Hosc. In such a case, the phase of axion-domina
oscillations will take place right after the radiation
dominated period of slow roll, without a long intermedia
epoch of inflation.

C. Initial conditions for the fluctuations

Given the coupled system of gauge-invariant perturbat
equations, the initial conditions for the Bardeen potential,
the perturbed radiation density and for the radiation veloc
field, will be imposed as follows:

Fk~h i!50, d r~h i ,k!50, v r~h i ,k!50, ~3.13!

assuming that no appreciable amount of adiabatic metric
turbations has been directly generated~on large scales! by
the pre-big-bang dynamics. The only nonvanishing init
fluctuations are the~isocurvature! axionic seeds, amplified
from the vacuum during the pre-big-bang evolution:

xk~h i!5x i~k!Þ0, ~3.14!

so that, from Eq.~2.18!, ds(h i ,xW )Þ0.
In the present analysis we shall assume that the ampli

of the initial axion fluctuations is smaller~for all modes! than
s i , i.e.

k3/2ux i~k!u,s i . ~3.15!

In the opposite case,k3/2ux i(k)u.s i , we are led to the case
already analyzed in@17–19,21# wheres i was assumed to be
zero, and the obtained large-scale fluctuations are of
isocurvature type, and strongly non-Gaussian. Ifs i.s̄, the
non-Gaussianity is rather small, but can be enhanced if
axion does not dominate at decay (s i,s̄) @23,40#.

IV. BACKGROUND AND PERTURBATION EVOLUTION
FOR s ıË1

In view of the forthcoming phenomenological applic
tions, the main quantity that we need to compute is the sp
tral amplitude of the Bardeen potential after axion dec
during the subsequent radiation-dominated evolution, a
function of the spectral amplitude of the axion fluctuatio
amplified by the phase of pre-big-bang inflation. It is impo
tant, for this purpose, to have a reasonably accurate con
on the evolution of the background and of the fluctuatio
Using different approximations, motivated by the hierarc
4-6
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of scales discussed in the previous section, we will first a
lytically determine the evolution of the system through t
different cosmological stages. Numerical integrations w
then be used in order to check the analytical results in
cross-over regimes connecting the different phases of
background evolution.

A. The radiation-dominated slow-roll regime

During the first stage of evolution,r r(h i)@V(h i) . In this
limit, Eqs. ~2.6!–~2.8! and ~2.10! simplify to

H 25
a2

6
r r , ~4.1!

r r814Hr r50, ~4.2!

s912Hs81a2
]V

]s
50. ~4.3!

Equations~4.1! and~4.2! imply thatHa is constant. Further-
more, since the kinetic energy ofs is subleading with re-
spect to the potential, the axionic field slowly rolls down t
potential. In such a situation a systematic expansion in
gradient of the potential,V,s , can be developed, and th
background evolution is adequately described by the follo
ing approximate equation

s852
1

5

a2

H V,s , ~4.4!

which can be integrated to give

s.s i2
1

20S V,s

H2
2

V,s

H2 U iD , ~4.5!

i.e. s is approximately constant up to corrections that dep
upon the specific form of the potential, and which induce
slight decrease of the axion background.

In order to solve the Hamiltonian constraint~2.20! it is
now convenient to work in terms of the Fourier compone
of the perturbation variables,Fk ,d r(k), and so on. Since we
are interested in large scale inhomogeneities we first obt
from Eq. ~2.25!,

d r~k!.4Fk , ~4.6!

where the integration constants vanish because of Eq.~3.13!.
Consequently, using Eq.~2.18!, the Hamiltonian constrain
~2.20! can be written as

23H~HFk1Fk8!2FkFa2r r2
s82

4 G5
1

4
@s8xk81V,sa2xk#,

~4.7!

where the spatial gradients have been consistently negle
Using Eq.~4.1!,

Fk813HFk.2
1

12H Fs8xk81
]V

]s
a2xkG . ~4.8!
06351
a-

l
e
e

e

-

d
a

s

in,

ed.

On the other hand, from Eq.~2.24!, the evolution ofxk is
approximately given by

xk8.2
1

5
V,ss

a2

H xk . ~4.9!

The first term on the right-hand side~RHS! of Eq. ~4.8! thus
contains three derivatives of the potential, and it is suble
ing with respect to the second term. Direct integration of E
~4.8! then gives

Fk~h!52
1

84

a2

H 2
V,sxk1O~V,s

2 !

.2
1

14 r r
V,sxk1O~V,s

2 !. ~4.10!

As a consequence, from Eqs.~2.25! and~2.26! we can deter-
mine d r andv r as

d r~k,h!52
1

21

a2

H 2
V,sxk1O~V,s

2 !,

v r~k,h!52
1

210

a2

H 3
V,sxk1O~V,s

2 !. ~4.11!

Inserting now the obtained solutions in the remaining eq
tions ~2.21! and ~2.23! ~not used for the above derivation!,
we can see that they are satisfied with the same accurac

The time evolution ofzk in the radiation-dominated
slow-roll regime can finally be determined from Eq.~2.34!:

zk~h!.
1

4r r

]V

]s
xk1O~V,s

2 !, ~4.12!

so thatFk andzk obey the following simple relation:

Fk~h!.2~2/7!zk~h!1O~V,s
2 !. ~4.13!

It should be appreciated that Eq.~4.12! can also be ob-
tained by direct integration of Eq.~2.35!. In the limit (ps

1rs)!r r , Eq. ~2.33! implies indeed

cs
2.

1

3
1

1

2r r

s8

H V,s . ~4.14!

On the other hand, from Eqs.~2.40! and ~4.6!, the approxi-
mate form ofdpnad(k) is

dpnad~k!.2
4

3
V,sxk1O~V,s

2 ! ~4.15!

~again, terms with more than one derivative of the poten
have been neglected!. By inserting this result into Eq.~2.35!
we are led to the equation

dzk

d ln a
5

V,sxk

r r
, ~4.16!
4-7



k
se

-

e
ica

in

ial

d
e
io
wo

,
n
e-
th

o

na-
l
the

a-

nc-

or-

ra-
in

l so-

rs
ana-

BOZZA et al. PHYSICAL REVIEW D 67, 063514 ~2003!
whose direct integration~recall thatr r;a24) leads, as ex-
pected, to Eq.~4.12!.

The above approximate results forFk and zk hold for a
generic~flat enough! potential. However, in order to chec
the correctness of our approximations numerically, it is u
ful to consider the simple case of a quadratic potential:

V~s!5
m2

2
s2. ~4.17!

In that case, Eqs.~4.4!, ~4.9!, ~4.10!, ~4.12! lead to

s~t!.s iF12
m2

20
~t421!1O~m4t8!G , ~4.18!

xk~t!.x i~k!F12
m2

20
~t421!1O~m4t8!G , ~4.19!

Fk~t!.2
s ix i~k!

84
@m2~t421!1O~m4t8!#, ~4.20!

z~t!.
s ix i~k!

24
@m2~t421!1O~m4t8!#, ~4.21!

where x i(k) is the initial spectrum of the axionic fluctua
tions, and we have defined the~dimensionless! rescaled mass
and conformal time coordinate:

t5
h

h i
, m5mh iai5m/H i . ~4.22!

The timeh i is the initial integration time andai the initial
normalization of the scale factor. These rescalings are us
in order to compare the numerical results with the analyt
calculations.

We have performed a numerical integration by choos
initial conditions at sub-Planckian curvature scales: i.e.,

H i5
Hi

ai
!1, h i@1, ~4.23!

~in Planck units!, and settingai51. Given a value ofs i
compatible, for a given mass, with Eq.~3.7!, the constraint
~2.10! fixes the initial radiation backgroundr r(h i) to a value
much larger than the axionic potential. Similarly, the init
values of the derivatives ofFk and xk are obtained by im-
posing, on the initial data~3.13!–~3.15!, the Hamiltonian and
momentum constraints of Eqs.~2.20! and~2.21!. It has been
checked that all the constraints~both for the background an
for the fluctuations! are satisfied at every time all along th
numerical integration. The system describing the evolut
of the fluctuations, in particular, can be integrated in t
different ~and complementary! ways. We could either use
Eqs.~2.23!–~2.26! and follow the evolution of all variables
or use Eqs.~2.24!–~2.29! and integrate the system only i
terms ofFk andxk . We have performed the numerical int
gration in both ways, and checked that the results are
same.

In Figs. 1, 2 and 3 we report, as full curves, the results
06351
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the numerical integration for a quadratic potential. The a
lytical results of Eqs.~4.18!–~4.21!, based on the slow-rol
approximation, are also illustrated, for comparison, by
dashed curves.

B. Radiation-dominated oscillations

During the radiation-dominated regime, and for a qu
dratic potential, the axion evolution equation~2.7! can be
written as

d2g

dt2
1m2t2g50, g5sa, ~4.24!

and its exact solution can be given in terms of Bessel fu
tions @41# as

g~t!5AtC1/4S mt2

2 D , ~4.25!

where C1/4 is a linear combination~with constant coeffi-
cients! of Bessel functions of order 1/4 andmt2/2;m(t
2t i) . By imposing the correct boundary conditions and n
malization, in such a way thats(t)→s i for t→1, we obtain

FIG. 1. The full curve shows the result of a numerical integ
tion for the caseHi50.01, and for the set of parameters reported
the figure. The dashed curve shows the approximate analytica
lution based on Eqs.~4.10! and ~4.20!.

FIG. 2. Evolution ofxk , reported for the same set of paramete
as in Fig. 1. The dashed curve corresponds to the approximate
lytical result of Eq.~4.19!.
4-8
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s~t!5
s i

At

1

J1/4~m/2!
J1/4S m

2
t2D , h i,h,hs ,

~4.26!

whereJ1/4 is the first-kind Bessel function. Notice that th
small argument limit of this equation, form!1 andt→1,
exactly gives the result~4.18!, obtained in the slow-roll ap-
proximation. This exact analytical solution can also be u
as a consistency check of the quadratic approximations w
the potential, during slow roll, has a more complicated a
lytical form.

The onset of the axion oscillations can be determin
from the first zero ofJ1/4(mt2/2), which occurs for

mt2

2
.2.78, ~4.27!

namely for

tm5
e1

Am
, e1.2.35. ~4.28!

Different definitions of the oscillation starting time, for in
stance related to the breakdown of the slow-roll approxim
tion, would lead to similar numerical values, i.e. to E
~4.28! with e1.(12)1/4. In the large argument limit (m/2t2

@1) of Eq. ~4.26! the solution finally describes the oscilla
ing regime,

s~t!.
2s i

t3/2ApmJ1/4~m/2!
cosS mt2

2
2

3

8
p D ,

hosc,h,hs , ~4.29!

where the phase and amplitude of oscillations are fixed
the initial conditions.

An approximate solution of Eq.~2.24!, similar to Eq.
~4.26!, holds for the axion fluctuations: namely,

xk~t!.
x i~k!

At

1

J1/4~m/2!
J1/4S m

2
t2D , h i,h,hs ,

~4.30!

FIG. 3. Evolution ofzk , for the same set of parameters as
Figs. 1 and 2. The numerical result~full curve! is compared with the
approximate analytical result of Eq.~4.21! ~dashed curve!.
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whose small and large argument limits lead, respectively

xk~t!.x i~k!F12
m2

20
~t421!G , ~4.31!

xk~t!.
2x i~k!

t3/2ApmJ1/4~m/2!
cosS mt2

2
2

3

8
p D . ~4.32!

We notice that Eq.~4.30! is obtained by solving theapproxi-
mateevolution equation

xk912Hxk81m2a2xk.0, ~4.33!

i.e. neglecting the terms containing the Bardeen potential
Eq. ~2.24!. In the slow-roll approximation, as previousl
stressed, these terms can be neglected for agenericpotential
term. However, they can also be neglected in the oscilla
phase, provided the potential is well approximated by a q
dratic form. We have explicitly checked that the exact an
lytical solutions~4.26! and ~4.30! are in perfect agreemen
with the results of a numerical integration performed with
quadratic potential.

Thus, for a potential which is generic during the slow-ro
phase~but still quadratic during the oscillating regime! it will
be sufficient to work out the slow-roll solutions specific
that potential, from Eqs.~4.4!, ~4.9!, and match them~with
their first derivative! to the WKB solutions of Eqs.~4.24! and
~4.33!: namely,

s~t!.
s2

A2ai
2mt3

cosS mt2

2
1b D , ~4.34!

xk~t!.
x2~k!

A2ai
2mt3

cosS mt2

2
1g D . ~4.35!

The matching will allow a determination of the precise a
plitudes and phases ofs ~andxk) in terms ofs i @andx i(k)].

As an application of this technique let us consider t
example of the quadratic potential, using the slow-roll so
tions fort,tm. The result of this exercise is reported in Fi
4 where, with the full curves, we illustrate the numeric
results ~coinciding exactly with the analytical solutions!.
With the dashed curves we show the interpolating soluti
obtained by matching Eqs.~4.18! and~4.19! ~obtained in the
slow-roll approximation! with the WKB solutions~4.34! and
~4.35!, valid in the oscillating regime.

The time evolution ofs(h) andxk(h) explains why, for
t>tm @i.e. after the slow-roll regime whereFk;a4 accord-
ing to Eq. ~4.10!#, the Bardeen potential enters a phase
linear evolution~in conformal time!. This feature is illus-
trated in Fig. 5, where we report the numerical results for
evolution of the Bardeen potential, computed for differe
values of the axion mass.

An analytical estimate of the slope of the linear regress
for Fk , after the end of the radiation-dominated slow ro
can be obtained from the Hamiltonian constraint~2.20!,
which can be recast in the following form:
4-9
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]

]t
~t3Fk!52

t4

12F]s

]t

]xk

]t
1m2t2sxkG , ~4.36!

where we only assumed a quadratic form for the axion
tential. By using the WKB solutions~4.34! and ~4.35! we
obtain

Fk52
s2x2~k!

96ai
2

mt2
s2x2~k!

384ai
2mt3 F212 cos~2g1mt2!

118Emt2/2dx

x
cos~x1g!G , ~4.37!

where the integral can be expressed in terms of Ci(w)5
2*w

`(cosx/x)dx and Si(w)5*0
w(sinx/x)dx, and we have as

sumedb5g. The oscillating terms are suppressed byt23

and can be neglected~in agreement with the numerical re
sults of Fig. 5!, since we are considering the regimet.tm
@1. On top of the oscillating terms, the amplitude of t
term responsible for the linear growth can be extracted fr
the numerical solutions by fitting their asymptotic behav
with the line

FIG. 4. The exact, numerical evolution ofs andxk ~full curves!
is compared with the interpolating solution~dashed curves! ob-
tained by matching the slow-roll solutions~4.18! and ~4.19! with
the WKB approximated solutions~4.34! and~4.35!, valid during the
radiation-dominated oscillations of the axion.

FIG. 5. The results of the numerical integrations for the Bard
potential are illustrated by the full curves for a quadratic poten
and for different values of the mass. The dashed lines represen
linear fit of Eq.~4.38!.
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Fk~h!5s ix i@2e22e3Amt#, t.tm. ~4.38!

In the case of a quadratic potential we obtain

e2.0.001, e3.0.0437. ~4.39!

The accuracy of this result can be appreciated from Fig
where the dashed lines~barely distinguishable from the nu
merical solutions! are plotted according to Eqs.~4.38!,
~4.39!. A different form of the potential will not affect the
angular coefficient of the regression~which is determined by
the phase of the radiation-dominated oscillations!, but only
the constante2.

It may be interesting to look also at the analytical estim
of e3, for a quadratic potential. The initial amplitudess2 and
x2(k) of Eq. ~4.37! are determined by the large argume
limit of the exact solutions, Eqs.~4.29! and ~4.32!. In this
case we get

e3
th5

G2~5/4!

6p
50.0435, ~4.40!

in excellent agreement with Eq.~4.39!. For a generic poten-
tial, we could also determinee3 by adopting an approximate
procedure, i.e. by taking the slow-roll solutions forxk ands
from Eqs.~4.4! and ~4.9!, and matching them intm to the
WKB solutions~4.34! and~4.35!, in order to determine am
plitude and phase.

The linear growth of the Bardeen potential continues u
rs , decreasing asa23, equalsr r . This happens at a timets

such that

12H 2.a2m2s2. ~4.41!

The expansion of Eq.~4.29! for m!1 then gives

ts5
e4

s i
2 Am

, e45
3p

2G2~5/4!
.5.74. ~4.42!

From Eq.~4.38! we can then finally obtain the value of th
Bardeen potential, at the onset of the phase ofs-dominated
oscillations. By using the value ofts given by Eq.~4.42!, the
result is

Fk~hs!.e5

x i~k!

s i
, e55e4e3.0.25. ~4.43!

C. The axion-dominated oscillations

Using standard techniques suitable for the oscillating
gime @39,27#, Eqs.~2.10! and~2.7! can be solved and, in the
case of a quadratic potential, the oscillating terms lead t
geometry that reproduces~but only on the average! a matter-
dominated universe. The oscillating corrections will be su
pressed for large~cosmic or conformal! times, and can be
easily computed in the cosmic-time gauge, where

Ḣ52
1

4
ṡ2,

n
l

the
4-10
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H25
1

12
@ṡ21m2s2#,

s̈13Hṡ1m2s50. ~4.44!

Using the auxiliary variableZ5ds/d ln a, which satisfies

dZ

ds
523S 12

Z2

12D S 114
Z

s D , ~4.45!

and defining two angular variables (r ,u),

Z5A12 sinu, s5r cosu, ~4.46!

~such thatH5mr/A12), the following two equations are ob
tained:

u̇52
A3

4
mr sin 2u2m, ṙ 52

A3

2
mr2sin2u. ~4.47!

They can be solved, and the solutions expanded for la
times at any order in 1/t.

A similar procedure can be carried out in conformal tim
Equations~2.7!–~2.10! are equivalent to the following set o
equations:

r 852
A3

2
mafh

2r 2sin2S mafh
3

3 D , s5r cosS mafh
3

3 D
~4.48!

~where af is an appropriate dimensionful integration co
stant!, and their solution leads to the expansion

a~h!.afFh22
3

2af
2m2h4

cosS 2 mafh
3

3 D1OS 1

h5D G ,

H~h!.F 2

h
1

3

mafh
4

sinS 2 mafh
3

3 D1OS 1

h5D G ,

s~h!.
4A3

mafh
3

cosS mafh
3

3 D1OS 1

h5D . ~4.49!

A posteriori, as a cross-check, Eqs.~4.49! can be inserted
into Eqs.~2.6!–~2.10!, to see that all terms up toO(1/h5)
cancel, as expected.

In the phase dominated by the oscillating axion the eff
tive gravitational source is pressureless, on the average
inserting the condition̂ps&50 into the background and pe
turbation equations, we get

^ds~k!&;22^Fk&, ^d r~k!&;22^ds~k!&, ~4.50!

which can be inserted into Eq.~2.39!, obtaining

^zk&.
5

6
^ds~k!&.2

5

3
^Fk& ~4.51!

when ^ps&;0 andrs@r r .
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Since ps vanishes only on the average, more accur
solutions have to be supplemented by oscillating correctio
Using Eqs.~4.49! an approximate form of the perturbation
in the oscillating regime can be obtained. One finds t
ds(k) andFk are almost constant~up to oscillations!, i.e.

ds~h!.2
1

2
F0~k!F12cosS 2afmh3

3 D G , ~4.52!

Fk~h!.F0~k!F12
1

mafh
3

sinS 2

3
mafh

3D
2

4

~mafh
3!2

cosS 2
mafh

3

3 D G , ~4.53!

xk~h!.x0~k!FsinS mafh
3

3 D1
3

mafh
3

cosS mafh
3

3 D G ,

~4.54!

where

F0~k!5^Fk~h!&, hs,h,hd , ~4.55!

and

x0~k!52
4

A3
F0~k!. ~4.56!

The above solutions satisfy the evolution equations of
fluctuations up toO(h25).

D. The axion decay and the subsequent
radiation-dominated phase

When the decay rate of the axion equals the cosmolog
expansion rate, energy is transferred from the coherent o
lations of s to the radiation produced by the axion deca
The radiation produced thanks to the decay of the axion
quickly dominate the expansion and the second radiat
dominated phase will take place.

The Bardeen potential prior to decay is given by E
~4.53! while, after the decay, its evolution equation~2.29!
reduces to

F914HF812~H 21H8!F2
1

3
¹2F50, h.hd ,

~4.57!

and the corresponding exact solution can be expresse
@27#

Fk~h!5
1

h3
@B1~k!~vh cosvh2sinvh!1B2~k!

3~vh sinvh1cosvh!#, h.hd , ~4.58!

wherev5k/A3. In the sudden approximation, the two~di-
mensional! arbitrary constantsB1(k) and B2(k) can be
uniquely fixed by matching, at the decay timehd , the solu-
4-11
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tions ~4.53! and ~4.58! together with their first derivatives
The terms containing (khd) are small and negligible fo
modes that are outside the horizon at the time of the ax
decay, i.e. for the ones relevant to the physics of the obse
CMBR anisotropies. Furthermore, terms proportional to
verse powers ofm/Hd;MP

2/m2 are also small and can b
consistently neglected. Hence, up to subleading terms,
final value of the Bardeen potential can be written as

Fk~h!5F0~k!F2 cosS 2b

3 D23GFcosvh

~vh!2
2

sinvh

~vh!3G ,

~4.59!

where b5mhda(hd);m/Hd;MP
2/m2. The b-dependent

prefactor is a consequence of the approximation of sud
decay where the axion field is assumed to decay at a spe
time hd . This sudden approximation also neglects the p
sible ~exponential! damping of the oscillations inFk arising
in Eq. ~4.53!.

It will now be shown that theb-dependent prefactor is a
artifact of the sudden approximation. In a realistic model
decay, in fact, the energy-momentum tensors of the radia
fluid and of the axion will not be separately conserved,
cause of their relative coupling induced by the friction te
G(s8/a)2, which leads, in cosmic time, to the generaliz
conservation equations:

ṙs1~3H1G!~rs1ps!50,

ṙ r14Hr r2G~rs1ps!50. ~4.60!

The fluctuationsxk will experience a similar damping,

x91~2H1Ga!x82¹2x1
]2V

]s2
a2x24s8F8

12
]V

]s
a2F50, ~4.61!

while theFk evolution will still be described by Eq.~2.29!.
This treatment of the damping of the fluctuations was s
gested in@8# ~see also@42#!. The effect ofG is, primarily, to
induce a damping in the oscillations of the background a
of the axion fluctuations according to Eqs.~4.60! and~4.61!.
Moreover, the~damped! fluctuations of the axionic field will
also influence the dynamics ofFk according to Eq.~2.29!.
The time-dependent oscillations of Eq.~4.53! ~occurring in
the absence of friction! will then be further suppressed ifG
Þ0 ~more details will be given in the following section!. As
a consequence, theb-dependent correction tends to disa
pear from Eq.~4.59!, leading to the final result

Fk~h!53F0~k!Fsinvh

~vh!3
2

cosvh

~vh!2 G . ~4.62!
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In the equation forFk the effect of the finite durationG21 is
then equivalent to averaging over the decay time. At the
of the following section, numerical examples of the dec
will be discussed in detail.

V. BACKGROUND AND PERTURBATION EQUATIONS
FOR s ıÌ1

If s i.1, the epoch of axion domination precedes the
cillation epoch. The previous solutions for the slow-roll r
gime are still valid, and the axion starts dominating when

r ra
256H 2.Va2, ~5.1!

i.e., for a quadratic potential, when

t5ts.
~12!1/4

Ams i

. ~5.2!

If s i.1, then

tm.ts , ~5.3!

the axion oscillates almost immediately after becom
dominant, and the amplitude of the Bardeen potential at
onset of the oscillatory phase is obtained from Eq.~4.20! as

Fk~hm!.2
m2

84
x i~k!s itm

4 52
1

7

x i~k!

s i
.2

1

7
x i~k!.

~5.4!

If the initial values i is larger than 1, but not too large, the
Eqs. ~5.3! and ~4.20! are still valid, but Eq.~5.4! is to be
multiplied by the factors i

2 , arising from a short period o
axion dominance toward the end of the slow-roll evoluti
~see below!. This effect, for moderate values ofs i , is illus-
trated in Fig. 6 where, for the given parameters of the p
the final amplitude of the Bardeen potential is estimated

Fk~hm!.2e6x i~k!s i , e650.143 ~5.5!

still in good agreement with the approximate value 1/7 of E
~5.4!.

If s i@1, thentm@ts , and a phase of inflationary expan
sion dominated by the axion potential will take place b
tweents andtm. During this phase the axion slowly rolls
the radiation energy density is quickly diluted asr r;a24,
and the time evolution of the fluctuations is correspondin
modified. The Hamiltonian and momentum constraints~2.20!
and ~2.21! can now be combined to give

4¹2Fk53Hs8xk2Fks821s8xk81V,sa2xk , ~5.6!

and the speed of sound of Eq.~2.33! becomes

cs
2.11

2a2

3Hs8
V,s , ~5.7!

from which, using Eq.~2.40!,
4-12
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dpnad5
2Vs

3Hs8
@Fks821s8xk823Hs8xk2a2V,sxk#.

~5.8!

The combination of Eqs.~5.6! and ~5.8! leads to

dpnad5
8V,s

3Hs8
¹2Fk . ~5.9!

Hence, from Eq.~2.35!, we get thatzk8;0 at large scales.
According to its definition, on the other hand, the co

stancy ofzk implies, in cosmic time, that

FkS 21a1

11a1
D1

Ḟk

H

1

11a1
~5.10!

is also a constant, where

a152Ḣ/H2. ~5.11!

It follows that, during inflation, we can parametrize the ev
lution of Fk , to lowest order, as

Fk5A~Ḣ/H2!, ~5.12!

whereA is a constant controlled by the value of the Barde
potential at the beginning of inflation. Assuming a quadra
potential for t,ts we have, from Eq. ~5.4!, A.
2(1/7)„x i(k)/s i…(H

2/Ḣ)ts
. By using the dynamics of slow

roll inflation,

H2.
m2

12
s2, ~5.13!

ṡ.2
m2

3H
s, ~5.14!

we can deduce that

Ḣ

H2
.2

4

s2
. ~5.15!

FIG. 6. The full curves are the results of numerical integratio
for the cases i.1. The dashed curves correspond to the appro
mated results of Eqs.~4.20! and ~5.5!.
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Using Eq.~5.15! we finally obtain the Bardeen potential a
the onset of the phase ofs-dominated oscillations:

Fk~tm!;s ix i~k!, ~5.16!

where we used the expression forA given above and the fac
that s(ts)5s i and s(tm);1O(1). For t.tm the axion
eventually oscillates, and the subsequent evolution has
same features as already discussed in the previous sec
for the cases i,1.

In the following, the dynamics of the decay will be inve
tigated numerically, and Eq.~2.29! will be solved together
with Eqs.~4.60! and ~4.61!. In order to illustrate the results
let us recall that, in the absence of friction@G50 in Eqs.
~4.61!#, the evolution of xk and Fk , during the axion-
dominated oscillations, is given by Eqs.~4.53! and~4.54!. In
particular,

Fk~h!.F0~k!1dFk~h!, ~5.17!

wheredFk(h) is an oscillating function3 decaying ash23

;t21. The frequency of oscillation ofdFk is controlled by
the axion mass. In analogy with Eq.~5.17! we can also de-
fine dxk which, for G50, corresponds to the oscillatin
function appearing in Eq.~4.54!. The evolution oftdFk and
of dxk , for G50, is represented by the full bold curves
Figs. 7 and 8. Notice thatdFk and dxk oscillate very fast
and that, for our illustrative purpose, we have plotted th
amplitudes calculated as the average of the semidiffere
between the maximum and the minimum of each oscillati
and the semidifference between the successive maxim
and the same minimum.

If the oscillations ofdFk are only suppressed by a powe
law function of time, we have seen that there are ma
dependent terms that appear in the amplitude of the Bard
potential after the decay. The integration of Eqs.~2.29! and
of ~4.60! and ~4.61! shows however that, with the inclusio
of the appropriate friction terms~due to the decay! into the
energy-momentum conservation equations, the oscillation
dFk and dxk are exponentially suppressed and, in such
case, no mass-dependent correction is left in the amplitud

3In order to avoid confusion we note thatdFk and, in the follow-
ing, dxk , are not the power spectra ofF andx.

s
i-

FIG. 7. Time evolution of the amplitude of thedFk oscillations
~multiplied by t in cosmic time!, with and without the damping term
due to the axion decay.
4-13
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the Bardeen potential~the asymptotic, constant value ofFk
is however unaffected by such a damping mechanism!. The
damping of the oscillations, on a time scale of orderG21, is
illustrated by the dashed curves of Figs. 7 and 8.

If we compare the sudden-decay approximation, d
cussed in the previous section, with the numerical result
Figs. 7 and 8, we see that the finite duration of the de
process can be physically represented as a dynamical ave
to zero of the oscillatory terms in the evolution ofFk . In
view of these results, when matchingFk to the post-decay
phase, we should take into account the fact that all the
rivatives ofFk are exponentially suppressed with respect
Fk /td , and thus can be safely neglected. This leads to
result reported in Eq.~4.62!.

VI. LARGE-SCALE ADIABATIC FLUCTUATIONS

In order to discuss the direct impact of our results on
possible generation of the observed CMBR anisotropies,
evolution of the large-scale metric fluctuations should be
lowed down to the matter-dominated phase, for all timesh
.heq. In particular, the phase and the amplitude of t
Bardeen potential prior toheq will fix the initial conditions
for the subsequent evolution of the inhomogeneities, and
be crucial to determine whether they are of adiabatic
isocurvature nature.

We recall that, after the axion decay, the amplitude of
Bardeen potential has been computed as

Fk~h!53F0~k!Fsinvh

~vh!3
2

cosvh

~vh!2 G , h<heq, ~6.1!

where, as in the previous section,v5k/A3. For h.heq,
matter domination sets in, the background satisfies 2H8
1H 250, so that the evolution of the Bardeen potent
~outside the horizon! is described by

Fk913HFk850, H5
2

h
, ~6.2!

whose solution can be written as

Fk~h!5A~k!1
B~k!

h5
, h>heq. ~6.3!

FIG. 8. Time evolution of the amplitude of thedxk oscillations,
with and without the damping term due to the axion decay.
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Imposing the continuity of the solutions~6.1! and ~6.3! and
of their first derivatives ath5heq one obtains

A~k!5
3F0~k!

5xeq
3 @22xeqcosxeq1~xeq

2 12!sinxeq#,

~6.4!

B~k!5
3F0~k!heq

5

5xeq
3 @3xeqcosxeq1~xeq

2 23!sinxeq#,

~6.5!

wherexeq5vheq[kheq/A3. For scales that are outside th
horizon prior to decoupling,xeq!1, and Eq.~6.3! becomes

Fk~h!5F0~k!F11
~kheq!

2

75 S heq

h D 5G , h.heq. ~6.6!

For h.heq the decaying mode is highly suppressed, a
we are then in the situation of constant Bardeen poten
right after equality, with an amplitudeF0(k), which @recall-
ing the previous results~4.43!, ~5.4!, ~5.16!# is completely
determined by the axion spectrum and by the initial con
tions of the axion background. More precisely, the final a
plitude can be parametrized as follows:

F0~k![Fk~hd![2 f ~s i!x i~k!, ~6.7!

where

f ~s i!5c1s i1
c2

s i
2c3 , ~6.8!

and

c1.0.13, c2.0.25, c3.0.01. ~6.9!

The above coefficientsci have been obtained by integratin
numerically the evolution equations of the background a
of the fluctuations for different values ofs i ~both larger and
smaller than 1!. Then, following the hint of the analytica
results obtained by solving the evolution piecewise, the fi
value ofFk(h) has been fitted with Eq.~6.8!, and the values
reported in Eq.~6.9! have been determined.

The value~6.8! of the Bardeen potential provides the in
tial condition for the subsequent hydrodynamical evolutio
Such evolution will allow us to determine, in turn, the pr
cise value of the temperature fluctuations through the Sa
Wolfe effect. In particular, the modes that are outside
horizon forheq,h,hdecwill determine the large-scale tem
perature fluctuations relevant to the COBE observations.

By perturbing the corresponding conservation equati
on a matter-dominated background, we obtain

d r82
4

3
¹2v r24F850, ~6.10!

v r82
1

4
d r2F50, ~6.11!
4-14
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dm8 2¹2vm23F850, ~6.12!

vm8 1Hvm2F50, ~6.13!

wheredm5drm/rm and vm, following the notation of the
previous sections, are the gauge-invariant density con
and velocity potential of the matter fluctuations. Also, in t
above equations,

H5
2

h
, rma25

24

h2
. ~6.14!

As already stressed at the beginning of this section,F is
constant during the matter-dominated phase. Using this p
erty we can now work out the specific relations between
different fluid variables, for modes that are outside the ho
zon right after equality, so as to explicitly check the adiab
ticity of the fluid perturbations.

The system of Eqs.~6.10!–~6.13! can be easily solved by
going to Fourier space. Forvm we have

kvm~k!.
kh

3
F0~k!, kh!1. ~6.15!

Since ¹W vm ~evaluated outside the horizon! contributes di-
rectly to the Sachs-Wolfe effect, it is important to notice th
this term is subleading with respect to the other contributi
arising in the case of adiabatic fluctuations. We will inde
show that, unlike¹W vm, which is suppressed, the contrastd r
is instead constant outside the horizon, and proportiona
F0(k).

Insertingv r from Eq. ~6.10! into Eq. ~6.11! we get a de-
coupled equation ford r , namely,

d r91
k2

3
d r52

4

3
k2F0~k!. ~6.16!

The general solution is

d r~kh!5A1cosvh1B1sinvh14F0~k!@cosvh21#,

~6.17!

and the constantsA1 and B1 can be determined by consis
tency with the other equations and with the Hamiltonian c
straint ~2.20! written in the case of a matter-radiation flui
The final result is

d r~k,h!5
4

3
F0~k!@cosvh23# ~6.18!

kv r~k,h!5
F0~k!

A3
sinvh, ~6.19!

dm~k,h!522F0~k!2
F0~k!

6
~kh!2, ~6.20!

kvm~k,h!5
~kh!

3
F0~k!. ~6.21!
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Notice that, outside the horizon,kvm[kv r as required by
local thermodynamical equilibrium. Furthermore, forkh
!1, the velocities of the two fluids are proportional to (kh).
When the modes are outside the horizon, Eqs.~6.18! and
~6.20! imply that the density contrastsd r and dm are both
constant and proportional according to

d r.~4/3!dm. ~6.22!

This result has a simple physical interpretation, and imp
the adiabaticity of the fluid perturbations. The entropy p
matter particle is indeed proportional toS5T3/nm, where
nm is the number density of matter particles andT is the
radiation temperature. The associated entropy fluctuat
dS, satisfies

dS

S
5

3

4
d r2dm, ~6.23!

where we used the fact thatr r;T4 and thatrm5mnm,
where m is the typical mass of the particles in the matt
fluid. Equation~6.22! thus impliesdS/S50, in agreement
with the adiabaticity of the fluctuations.

A. Sachs-Wolfe effect and COBE scales

The fluctuations of the Bardeen potential and of the rad
tion density contrast are sources of a slight temperature
ference between photons coming from different sky dir
tions. This is the essence of the Sachs-Wolfe effect@43#. In
terms of the gauge-invariant variables introduced in
present analysis, the various contributions to the Sac
Wolfe effect, along thenW direction, can be written as@27,30#

DT

T
~nW ,h0 ,x0!5Fd r

4
1nW •¹W vb1FG„hdec,xW~hdec!…

2E
h0

hdec
~F81C8!„h,xW~h!…dh,

~6.24!

whereh0 is the present time, andxW (h)5xW02nW (h2h0) is
the unperturbed photon position at the timeh for an observer
in xW0. The termvW b is the peculiar velocity of the baryoni
matter component. We are preliminarily interested in the
fects of scales still outside the horizon at the time of t
matter-radiation equality, which are the scales relevant to
observations of the COBE-DMR experiment@14,44#. In or-
der to correctly take into account the constraints imposed
the COBE normalization on the spectral amplitude of t
Bardeen potential, let us compare the relative weight of
different terms appearing in the Sachs-Wolfe formula~6.24!.

From Eq.~6.19! we can see that, for our adiabatic initia
conditions, the fluctuation in the matter velocity potential
subleading for superhorizon scales, suppressed by the
kh!1 with respect to the constant values ofd r and Fk .
Furthermore, sinceF8.0 andC5F, the integrated Sachs
4-15
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Wolfe effect can also be neglected. By inserting Eq.~6.18!
into Eq. ~6.24! we thus obtain the usual result for adiaba
fluctuations, namely

DT

T
~nW ,h0 ,x0!5

1

3
F„hdec,xW~hdec!…, ~6.25!

to be used for the comparison of our theoretical predicti
with the COBE normalization.

On the other hand, by taking the Legendre transform
the present timeh0, the temperature fluctuations of E
~6.24! can be generally expanded into spherical harmo
functions,Y,m , as

DT

T
~xW0 ,nW ,h0!5(

,,m
a,m~xW0!Y,m~nW !, ~6.26!

where the coefficientsa,m define the angular power spe
trum C, by

^a,m•a,8m8
* &5d,,8dmm8C, , ~6.27!

and determine the two-point correlation function of the te
perature fluctuations, namely

K dT

T
~nW !

dT

T
~nW 8!L

(nW •nW 85cosq)

5 (
,,8mm8

^a,ma,8m8
* &Y,m~nW !Y,8m8

* ~n8W !

5
1

4p (
,

~2,11!C,P,~cosq!.

~6.28!

These coefficientsC, , in turn, are related through Eq.~6.25!,
to the power spectrum ofF0(k), and for 2<,!100 they
can be expressed as@45#

C,.
2

9pE0

`dk

k
^uF0~k!u2&k3 j ,

2@k~h02hdec!#. ~6.29!

As already stressed, the spectrum of the Bardeen pote
is fully determined, in our context, by the initial spectrum
axionic fluctuations amplified by the pre-big-bang dynami
A self-contained derivation of such a spectrum, including
mass contribution, is presented in Appendix A. Consider fi
the case of minimal pre-big-bang models, whose rela
spectrum is reported in Eq.~A14!. The spectrum of curvature
perturbations will then be, at large scales,

k3uF0~k!u25 f 2~s i!k
3uxku25 f 2~s i!S H1

MP
D 2S k

k1
D n21

,

k,k1 , ~6.30!

wherek1 is the maximal amplified comoving frequency, i.e
in our conventions, the frequency at which only one ax
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per cell of phase space is produced. Fromk1, a typical cur-
vature scaleH1 ~which can be, at most, of the order of th
string mass! can be obtained:

H15
k1

a1
<M s. ~6.31!

The particular value of the scaleH1 may be regarded as
phenomenological parameter of the chosen model of pre-
bang evolution. Even assuming, according to the stand
lore @46#, thatM s;1021 MP, still the exact relation ofH1 to
M s depends on the detailed dynamics of a highly curved
strongly coupled background. The approach of the pres
investigation has been to include all the theoretical inde
mination intoH1, trying to have a reasonable control of a
the other numerical factors associated with the post-big-b
evolution. In Eq.~6.30! the particular value ofn depends
upon the specific model of pre-big-bang evolution@15,21#. In
the case of a ten-dimensional model with an isotropic s
dimensional internal space, the line element can be writte

ds25dt22a2~ t !g i j dxidxj2b2~ t !gabdyadyb, ~6.32!

where i , j run over the three external spacelike dimensio
anda,b run over the six internal dimensions. Defining as

r 5
V̇6V3

2V6V̇3

~6.33!

the relative rate of variation of the externalV35a3 and in-
ternalV65b6 volumes, the spectral indexn can be expressed
as @21#

n5
416r 222A316r 2

113r 2
. ~6.34!

The case of flat spectrum~i.e. n51) corresponds to the cas
r 561. If internal dimensions are static~i.e. r 50), thenn
5422A3.0.53. Blue spectra are allowed when the rate
variation of the external volume is much smaller than t
internal one. The maximaln achievable in this case isn
52, corresponding to the case of static external manif
(r→`).

Bearing in mind Eqs.~6.31! and ~6.34!, we can use Eq.
~6.30! and perform the integral of Eq.~6.29!. For 23,n
,3 the integral appearing in Eq.~6.29! can be done analyti-
cally @45# and the result is

C,
(SW)5

2n

72
f 2~s i!S H1

M P
D 2S v0

v1
D n21

3

G~32n!GS ,2
1

2
1

n

2D
G2S 22

n

2DGS ,1
5

2
2

n

2D . ~6.35!

Herev0.10218 Hz andv1(t0)5H1a1 /a0 are, respectively,
the proper frequencies corresponding to the present hor
scale and to the present value of the cutoff scalek1:
4-16
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v1~ t0!5~H1Heq!
1/2S G

mD 1/6

s i
22/3zeq

21, s i,1, ~6.36!

v1~ t0!5~H1Heq!
1/2S G

mD 1/6

s i
1/2Zs

21zeq
21 , s i.1 ~6.37!

~we have rescaledv1 taking into account the kinematics o
the various cosmological phases fromt1 down to t0). The
factor Zs5(aosc/as) denotes the amplification of the sca
factor during the phase of axion-dominated, slow-roll infl
tion, for the cases i.1. Notice thatv1(t0) depends on the
mass, on the initial amplitude of the axion background a
on the axion decay rate. If the axion decays at a typical s
fixed by Eq.~3.4!, Eqs.~6.36! and ~6.37! lead to

v1~ t0!.1029v0S H1

MP
D 1/2S m

s i
2MP

D 1/3

, s i,1, ~6.38!

.1029v0S s iH1

MP
D 1/2S m

MP
D 1/3

Zs
21 , s i.1 ~6.39!

~we have usedH0.1026Heq.10260MP). Hence, in spite of
the fact that the initial axionic spectrum does not have a
mass dependence, the mass appears again when comp
the amplitude of the spectrum at the present horizon s
v0.

The amplitude of the Bardeen potential, on the oth
hand, is constrained by the COBE normalization of the qu
rupole coefficientC2, which in our case is given by

C25an
2f 2~s i!S H1

MP
D 2S v0

v1
D n21

, ~6.40!

where

an
25

2n

72

G~32n!GS 31n

2 D
G2S 42n

2 DGS 92n

2 D . ~6.41!

Using the experimental result@47#

C25~1.960.23!310210, ~6.42!

we are thus led to the bounds

an
2f 2~s i!s i

2(n21)/3S H1

MP
D (52n)/2S m

MP
D 2(n21)/3

10229(n21)

.1.9310210, s i,1, ~6.43!

an
2f 2~s i!Zs

n21s i
(12n)/2S H1

MP
D (52n)/2S m

MP
D 2(n21)/3

10229(n21)

.1.9310210, s i.1. ~6.44!

These constraints, imposed by the COBE normalization,
be discussed at the end of the present section, and comb
06351
-

d
le

y
ting
le

r
-

ll
ed

with other theoretical constraints pertaining to the vario
models of background evolution.

B. Acoustic peak region

In the previous discussion of the modes that are outs
the horizon before decoupling, we have completely n
glected the possible scattering of radiation with baryons
fact, if we move to smaller angular scales~i.e. typically to
, *100), the main contribution to the CMBR temperatu
fluctuations comes from the oscillations of the vario
plasma quantities, the so-called Sakharov oscillations@48#. A
correct approach to this problem is then to perturb con
tently the Boltzmann equations for the different species
the plasma@49–51#. Furthermore it can be relevant to dis
cuss the case of a smooth transition between radiation
matter dominated epochs. In such a context it becomes
ficult to provide an analytical description of the system an
in order to compute the patterns of the acoustic oscillatio
we will indeed present some numerical examples in the th
part of the present section.

It is however useful to emphasize that the phases of
Bardeen potential for the adiabatic mode of Eq.~6.1! deter-
mine not only the relative weight of the Sachs-Wolfe cont
butions, but also the specific phase of the oscillatory patte
at small scales in the temperature fluctuations. For sc
, *100 the contribution to the temperature perturbatio
given in Eq. ~6.24! is dominated by acoustic oscillations
This aspect can be appreciated by looking at Eqs.~6.18!–
~6.21! in the limit kh.1, where the peculiar velocity o
baryonic matter does not oscillate. Instead, from Eq.~6.18!,
we find that the termsd r/4 andF, appearing in Eq.~6.24!,
combine to give a single term oscillating like a cosine:

DT

T
~k,h0 ,hdec!.

1

4
d r~k,hdec!1F0~k!;

F0~k!

3
cosvhdec.

~6.45!

In this argument the interactions of baryons with the rad
tion fluid have been neglected. The dynamics of (DT/T)k
can be obtained from an exact Boltzmann equation w
source term provided by Compton scattering coupled to
continuity and Euler equations for the fluid variables. Befo
recombination, Compton scattering is very rapid and the
fore the Boltzmann, Euler and continuity equations for t
photon-baryon system can be expanded in powers of
Compton scattering time@50,51#. Within this approximation
the baryon velocity field is damped and (DT/T)k oscillates
as a cosine for adiabatic initial conditions. In the approxim
tion of @50,51#, the oscillations in (DT/T)k have an ampli-
tude proportional to (11R)21/4 where R(h)53rb /(4r r).
This result simply tells that the baryonic content of t
plasma determines the height of the first peak. Notice t
this is in sharp contrast with what happens in the case
light axions@17,18#, where the Bardeen potential is quadra
in the axion fluctuations, and the initial conditions for th
hydrodynamical evolution are of the isocurvature type. T
implies, in particular, that the oscillatory patterns of t
4-17
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CMBR anisotropies will be shifted byp/2 if compared with
the case discussed in the present paper.

C. Constraints on pre-big-bang models

In this subsection we will discuss the bounds imposed
the COBE normalization, together with other constraints f
lowing from the evolution of the background geometry. L
us start with the axion spectrum of minimal pre-big-ba
models, Eq.~6.30!. In such a case, and for a flat Harriso
Zeldovich spectrum~i.e. n51), the COBE normalization is
inconsistent with a cutoffH1 at the standard valueM s
;1021 MP of the string mass scale@46#. By usingn51, and
taking for s i the value minimizingf (s i) ,

s i
min5Ac2

c1
.1.38, f ~s i

min!.0.34, ~6.46!

we have indeed, from Eqs.~6.40!–~6.42!,

H1.5.231024 MP. ~6.47!

However, the precise value ofH1 is one of the main uncer
tainties of pre-big-bang models. As we shall see in a m
ment, the valueH15M s ~or H15MGUT) may become con-
sistent with the COBE normalization for nonflat~blue!
spectra, and even for a strictly flat spectrum in the case
nonminimal implementations of the pre-big-bang scenari

Let us first recall the various constraints to be imposed
the spectrum. The condition~6.43! is to be combined with
the constraint~3.7!, the condition~6.44! with the constraint
~3.12!, which are required for the consistency of the cor
sponding classes of background evolution. Both conditi
are to be intersected with the experimentally allowed ra
of the spectral index. We will use~as a reference value! the
generous upper bound@1#, n &1.4. Also, for our illustrative
purpose, we will take the maximally extended range of
lowed values of the axion mass, satisfying the nucleosyn
sis constraintm *10 TeV.

We will assume, finally, that in the cases i.1 the axion-
driven inflation is short enough, to avoid a possible con
bution to C, arising from the metric fluctuations directl
amplified from the vacuum during such a phase of axio
inflation. This requires that the smallest amplified frequen
modevs , crossing the horizon at the beginning of inflatio
at decoupling be still larger than the Hubble horizon at
corresponding epoch. This imposes the conditionvs(t0)
5Hs(as /a0).vdec(t0)5Hdec(adec/a0), namely

Zs &1027s iS m

MP
D 5/6

, ~6.48!

to be added to the constraint~3.12! for s i.1.
The allowed region in the plane$ logsi , log(m/MP)% is

illustrated in Fig. 9 forH151022MP, using for the inflation
factor the parametrizationZs5exp„(s i

221)/8…. Along the
thin full curves the parameters satisfy the COBE normali
tion, for fixed values ofn, ranging from 1.1 to 1.4@the con-
dition ~6.48!, in this case, is always automatically satisfie#.
A growing ~‘‘blue’’ ! spectrum is thus allowed even ifH1
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;Ms, for a wide range of axion masses, and for a~narrower!
range of values ofs i . In particular, for the caseH1
51022MP, we find 1 *s i *1024, for s i,1. For s i.1
the results are complementary for the spectral index,
there are much more stringent bounds ons i , because the
inflationary redshift factorZs grows exponentially withs i

2 .
As a consequence, the allowed region fors i.1 is distorted
and compressed, as illustrated in Fig. 9.

The allowed region may be further extended if the infl
tion scaleH1 is lowered~see for instance@52#!, and a flat
(n51) or almost flat spectrum may become possible
c2a1H1 &1025MPs i , for s i,1, and if c1a1H1
&1025MP/s i , for s i.1 @see Eqs.~6.43!, ~6.44!#. The cor-
responding allowed values ofH1 and s i are illustrated in
Fig. 10 form51029MP, and for three different values ofn
around 1.

However, a flat spectrum may be allowed even keep
pre-big-bang inflation at the string scale (H1;M s), provided
we consider a nonminimal pre-big-bang scenario. In t
context, in fact, the high-frequency branch of the axion
spectrum may be modified, getting steeper enough to m
the string-scale normalization at the end point of the sp
trum, while the low-frequency branch remains flat~or quas-
iflat, see Appendix!, to agree with large-scale observation
Examples of realistic pre-big-bang backgrounds produc
such an axion spectrum have been presented alread
@19,53–55#.

A nonminimal spectrum can be parametrized by the B
goliubov coefficients@which will be given in Eq.~A16!#, in
terms of a generic break scaleks and of the high-frequency
slope parameterd. In that case, for a long and/or stee
enough high-frequency branch of the spectrum, the lar
scale amplitude may be suppressed sufficiently to allow
~or even red! spectra at the COBE scale. In fact, for th
nonminimal spectrum~A16!, the normalization condition
~6.40! becomes

C25an
2f 2~s i!S H1

MP
D 2S v0

v1
D n21S vs

v1
D d

. ~6.49!

FIG. 9. Allowed values ofs i andm ~in Planck units! according
to Eqs. ~6.43!, ~6.44!, with H151022MP. The allowed region
~within the thick lines! is bounded by the conditionn,1.4 ~left and
right bold lines!, by the nuclesosynthesis constraintm.10 TeV
~lower bold line!, and by the conditions~3.7! ~upper left bold line!
and ~3.12! ~upper right bold line!.
4-18
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Flat or red spectra (n<1) are thus possible even forH1
*1022MP, provided

a1
2f 2~s i!S vs

v1
D d

&1026. ~6.50!

In order to illustrate this possibility we will choose a sp
cific model of background by identifyingks with the equi-
librium scalekeq, in such a way thatn corresponds to the
spectral index of all scales relevant to the CMBR anisot
pies, whilen1d provides the average spectral index for
other scales, up tok1. We will also assume for the axio
background the ‘‘natural’’ initial values i51, so that

v1

vs
5

v1

veq
.1027S H1

MP
D 1/2S m

MP
D 1/3

. ~6.51!

The COBE normalization can then be written explicitly a

C25an
2f 2~1!

3S H1

M P
D (52n2d)/2S m

M P
D 2(n211d)/3

102[27d129(n21)].

~6.52!

By using the experimental value ofC2 given in Eq.~6.42!
we can now obtain a relation between the high-freque
slope parameterd and the spectral indexn at the COBE
scale, for any given value ofH1 andm. In Fig. 11 we illus-
trate such a relation for different~realistic! values ofH1, and
for a typical axion massm51029MP. It should be stressed
that, for n.1, ands i of order 1@i.e. near the minimum of
f (s i) ], the curves at constantH1 are almost insensitive to
the values ofm, and remain stable even if we changem by
various orders of magnitude, as illustrated in Fig. 12.

We have also reported, in Fig. 11, the~present! most strin-
gent bounds onn, obtained by a recent analysis of th
CMBR anisotropies and large-scale structures@56,57#, i.e.
0.87<n<1.06. They are all compatible withH1.M s, pro-
vided we allow for a small break of the minimal spectru
with d.0.2– 0.3. On the other hand, as already stressed
break at all is needed~i.e. d50) if, for some dynamical

FIG. 10. Allowed values ofH1 as a function ofs i for different
values of the spectral index and form51029MP.
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mechanism~see for instance@52#! the string mass is lowered
down to the grand unified theory~GUT! scale, i.e.H1
.1023MP.

In Fig. 12 we have plotted the same curves of Fig. 11
two, very different values of the axion mass, 1029MP ~bold
curves! and 10214MP ~thin dashed curves!. As clearly illus-
trated by the figure, the dependence on the mass is very m
and it becomes practically inappreciable~for the given range
of parameters! whenH1 approachesMGUT.

Having discussed the constraints imposed by the CO
normalization the~scalar! angular power spectrum can b
computed and compared to the available experimental
provided by COBE@1,2#, BOOMERANG @4#, DASI @5#,
MAXIMA @6# and ARCHEOPS@7#. This exercise has bee
done and here the main results will be summarized.

We have selected particular combinations of the para
etersH1 ,m,d ands i , chosen in such a way as to satisfy th
COBE normalization, Eq.~6.49!. In particular we took the
case of strictly scale-invariant spectrum with theH1 satisfy-
ing Eq. ~6.47!. We also analyzed the case whenH1;M s,
taking, as an example,s i51 andm51029MP. Following
our previous discussion, in this case a slightly blue spectr
can be achieved if the high frequency break,d, is of order of
0.18. This case would then lead to a scalar spectral inden
51.02. Finally, as an example of red spectrum withn50.9
we tookH1;1022MP with a break of the order of 0.22 an
with the same values ofs i and m used in the case of blue
spectrum.

In order to obtain the angular power spectra it is necess

FIG. 11. Relation betweend andn for different values ofH1 ~in
Planck units!, for m51029MP, and fors i51. The vertical dashed
lines denote the experimentally allowed range 0.87<n<1.06.

FIG. 12. Stability of the curves of Fig. 10 for two differen
choices of the axion mass, 1029MP ~bold curves! and 10214MP

~thin dashed curves!.
4-19
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to specify a number of parameters characterizing the fl
evolution after equality. In this respect, the following fiduc
set of cosmological parameters has been used@57#: h0

50.65, VL50.7, andh0
2Vb50.02. The selected value o

h0
2Vb is rather robust, even if no final consensus has b

reached on the second significant figure beyond 0.02.
have also assumed the simplest scenario for the late-
cosmological evolution, with no significant effects of reio
ization.

The agreement of the experimental data with the theo
ical predictions of pre-big-bang models for the height a
position of the peak distribution in theC, spectrum of Eq.
~6.27! is generally good. An interesting indication stemmi
from this preliminary analysis is that the relaxation of t
strict COBE normalization allows a better general agreem
of the fit with the other data at higher,. Since the data
reported in@7# fill the ‘‘gap’’ between the last COBE points
and the points of the first peak@4–6#, we are led to argue tha
a much more accurate normalization of our spectra could
achieved by adopting, as large scale normalization, dire
the ARCHEOPS points.

Hence, in view of the accuracy of the forthcoming MA
data, it will be important to confront more systematically t
pre-big-bang parameter space with these qualitatively n
satellite measurements. The encouraging preliminary res
already obtained will then be extended to a full scan of
pre-big-bang parameter space and presented elsewhere

VII. CONCLUDING REMARKS

In the present paper the possible conversion of isocu
ture, primordial axionic fluctuations into adiabatic, larg
scale metric perturbations has been discussed in the co
of the pre-big-bang scenario. Depending upon the spe
relaxation of the axionic background toward the minimum
the potential, a constant~and large enough! mode in the
Bardeen potential can be generated, for scales that are
outside the horizon right after matter-radiation equality.

After analyzing the dynamics of the background and of
fluctuations, the final amplitude and spectrum of the Bard
potential has been related to the initial axion spectrum
rectly arising from the vacuum fluctuations amplified duri
the pre-big-bang epoch. Our goal has been to include, w
reasonable accuracy, the details of the post-big-bang ev
tion, in such a way that the pre-big-bang parameters coul
directly constrained by the COBE normalization, and by
analysis of the Doppler-peak structure. All the theoreti
uncertainty reflects in our lack of knowledge ofH1 which
determines the end point of the primordal axion spectrum

The main conclusion of this work is that a phenomen
logically appealing spectrum of adiabatic scalar pertur
tions can naturally emerge from the simplest pre-big-ba
scenario through a conversion of the initial isocurvature p
turbations of the Kalb-Ramond axion. Since, at the la
scales tested by CMBR experiments, the above conver
preserves the scale dependence of the original spectrum
important for the latter to be quasi-scale-invariant at la
scales. This can be achieved, for instance, if the very e
stages of pre-big-bang cosmology at weak coupling invo
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a symmetric evolution of all 9 spatial dimensions~moduloT
duality!. Since the constant mode of the curvature fluctu
tions leads to adiabatic initial conditions for the fluid evol
tion after matter-radiation equality, the location of the Do
pler peak is correctly reproduced.

On the other hand, the absolute normalization of fluct
tions at large scales~say those relevant for COBE! depend on
several details of the model. Indeed, the axion spectrum
naturally normalized at its end point, given by our parame
H1. If one takes, naively,H1;M s;1017 GeV and assumes
flat spectrum one finds values ofDT/T that are a couple of
orders of magnitude too large when compared with COB
data. However, one can think of many~individual or com-
bined! effects that can bring down our normalization to agr
with the data, e.g.

A slight ~blue! tilt to the spectrum;
A blue spectrum just at high frequency~i.e. for scales that

exit late, during the strongly coupled regime!;
A lower H1 /M s ratio;
A lower M s/MP ratio.
In the near future we hope to extend the present disc

sion to forthcoming CMBR anisotropy data at even sma
angular scales. It would be interesting to see if a combin
analysis of the experimental data may give further use
hints on the parameter space of the scenario explored in
present investigation.
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APPENDIX: AXIONIC SPECTRA

During the pre-big-bang phase the quantum mechan
fluctuations of the axionic field will be amplified from th
initial vacuum state. The obtained spectrum provides the
tial condition for the evolution of the axion fluctuations
the post-big-bang phase. At very large scales, such a s
trum will not depend so much upon the details of the p
big-bang evolution. At smaller scales, however, it can
strongly affected by specific dynamics of the strong coupl
and high-curvature regime. In spite of the fact that the sp
tral slope at large scales is not affected by high energy c
rections, the large scale amplitude is affected and, in part
lar, a steeper slope at small scales has impor
consequences for the normalization of the low-frequen
branch of the spectrum. In this appendix we will consid
separately, the axion spectrum obtained in the case of m
mal and nonminimal pre-big-bang models.

1. Minimal pre-big-bang models

The linearized evolution of massive axion inhomogen
ities xk , neglecting their coupling to scalar metric perturb
4-20
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tions, in a spatially flat cosmological background, is d
scribed in general by the equation

ck91Fk21m2a22
z9

z Gck50, ~A1!

where

z5aew/2, ck5zxk . ~A2!

In the pre-big-bang phase (h,h1) the axion is massless. I
the post-big-bang, radiation-dominated phase, taking p
for h.h1, the gauge coupling freezes (w5const) and the
axion acquires a mass. The produced axion spectrum
principle, has a relativistic and a nonrelativistic branch: t
is because, in the radiation era, the proper momentum
red-shifted with respect to the rest mass, and the whole s
trum, mode by mode, tends to become nonrelativistic. T
spectral slope of the relativistic and nonrelativistic branc
of the spectrum are in general different. However, if the
ion modes, as in the present case, become nonrelativ
when they are still outside the horizon, the solution is th
exactly the same as in the relativistic limit.

Consider first the relativistic branch of the spectrum. F
h,h1 the solution of Eq.~A1! can be expressed in terms
the second-kind Hankel functions@41# as

ck~h!5h1/2Hm
(2)~kh!, ~A3!

wherem depends on the parameters controlling the kinem
ics of the pre-big-bang background@a specific example will
be given below, see Eqs.~A7! and ~6.34!#. In the radiation
era,h.h1, one hasz9/z50, and the evolution equation o
ck acquires a massive correction:

ck91~k21m2a2!ck50. ~A4!

Assuming that the axion mass is negligible at the transit
epochh1, the solution~A3! can be matched to the plane
wave solution

ck5
1

Ak
@c1~k!e2 ikh1c2~k!eikh#, ~A5!

and the final result forxk is

xk~h!5
c~k!

aAk
sin~kh!, ~A6!

where

c~k!.S k

k1
D (n25)/2

, ~A7!

with n5422umu . Note that the expression of the Bogoliu
bov coefficientc(k) and of the mean number of produce
axions, n̄k5uc(k)u2, contains different numerical factors o
order 1. At the same time the maximal amplified moment
k1 can be defined in different ways, all equivalent up
numerical factors. In the present analysis we will define
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maximal scalek1 as the energy scale where one axion
produced per unit volume of phase space.

Consider now the nonrelativistic spectrum in the ca
when the mode becomes non-relativistic while it is stillout-
side the horizon. Defining askm the limiting comoving fre-
quency of a mode that becomes nonrelativistic (km5mam) at
the time it reenters the horizon (km5Hmam), we find, in the
radiation era@18,19#,

km5k1S m

H1
D 1/2

. ~A8!

We are thus considering modes withk!km . In order to es-
timate the spectrum, in this limit, let us write Eq.~A4! in a
form suitable for comparison with known results of parabo
cylinder equations:

d2ck

dx2 1S x2

4
2bDck50, x5h~2a!1/2, 2b5k2/2a,

~A9!

where

m2a25a2h2, a5mH1a1
2 , ~A10!

and wherea;h has been assumed. The corresponding g
eral solution can be written as

c5Ay1~b,x!1By2~b,x!, ~A11!

wherey1 andy2 are the even and odd parts of the parabo
cylinder functions@41#. The normalization to Eq.~A6! in the
relativistic limit ~i.e. x→0) givesA50 and

ck.c~k!S k

2a D 1/2

y2~b,x!. ~A12!

Outside the horizon,kh!1, and for nonrelativistic modes
k!ma, we take~respectively! the limits 2bx2!1 and2b
!x2, the solution can be expanded asy2;x;hA2a, so that
the mass disappears from the amplitude:

uxku.
uc~k!uk1/2

a1h1
. ~A13!

The insertion of the spectrum~A7!, usingk15a1H1, leads to
the final result

k3/2uxku.H1S k

k1
D (n21)/2

. ~A14!

2. Nonminimal pre-big-bang evolution and spectral breaks

Equation~A14! holds in the case of minimal pre-big-ban
models, where the dynamical evolution of the dilaton field
dictated by the solution of the low-energy equations of m
tion. However, when the dilaton enters the strong coupl
regime, different types of scenarios may emerge. In part
lar, relation~A2! defining the form of the axion pump field
may change in the infinite bare string-coupling limit, as su
gested by the arguments recently developed in@52#. In the
4-21
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framework of@52# the axion coupling function, as well as th
other coupling functions pertaining to fields of different sp
may have a finite limit for infinite bare string coupling
Hence, toward the end of the pre-big-bang phase~i.e. when
strong coupling is presumably reached!,

z;a@cz1O~e2w/2!#, ~A15!

where cz is a constant. Since the axionic pump field no
depends only on the scale factor, it will naturally be stee
for small length scales. A complementary possibility, d
cussed in@19#, is the presence of an intermediate high-ene
phase, which precedes the standard radiation era, and w
is still part of the accelerated pre-big-bang regime, but
which the kinematics of the~usual! canonical pump field is
significantly different from its low-energy behavior.

In all these cases the obtained spectra, at small scales
possibly steeper than in the case of minimal pre-big-b
models. In the simplest case the spectrum will have only
o,

d

no

no

s.
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break, at a momentum scale that will be conventionally
noted byks , and the Bogoliubov coefficients can be writte
in the form

ucku25S k

k1
D n251d

, ks,k,k1 ,

5S ks

k1
D n251dS k

ks
D n25

, k,ks .

~A16!

Here d.0 parametrizes the slope of the break at high f
quency, whilen is the usual spectral index appearing at lar
scales and computed on the basis of the perturbative ev
tion of the dilaton field. From Eq.~A16! it can be argued tha
the steeper and/or the longer the high-frequency branch
the spectrum, the larger the suppression at low-freque
scales.
ys.
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