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ABSTRACT

The properties of a field theory in
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in detail. A compact coperator, which is
not the Hamiltcnian , is diagonalized and
used to solve the problem of motion, pro-
viding & discrete spectrum and normaliz-
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cal parameters present 1n the model 1is
discussed , mainly in connection with =a

semiclassical approximation.
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LNTRODUCTION

Mozt guantum field theories, which are at present being used, contain
only dimensionless coupling constants so that dilatation invariance is only
broken by mass terms. This has led to much attention to limits in whieh -
such mass terms also tend to zero, either in terms of massless field theo-

ries or as specisl asymptotic limits of Feynman diagrams.

4 special feature cof massless field theories is that they exhibit an

invariance group which is larger than Poincaré and which also contains the

A
'

dilatation D and the conformal operator KM .

The simplest massless dilatation invariant Iagrangian for a scalar

field ¢ has the general form
o 2.
t_ = :g: a%bt*ﬂa 4b - 1&- C# d-1 (1.1)

where d 1s the total number of space-time dimensions.

A general study of the Lagrangian (1.1) for any value of the dimensicn

2)

number d has been carried out by means of a semi-classical approximation .

1t is, however, Important to fix our attention to the simplest, but far
from trivial, example d=71 which corresponds to a single physical operator
Q(t) depending only upon time. In this case an exact solution is available

and many of the general features can be precisely tested.

The cone-dimensional Lagrangian is:

4 T 3‘__
L = = & (S?’L {1.2)

and represents the prototype of several singular wave equations leading to

ancmalous dimensions 3).

In this paper we shall investigate the conseguences of the invariance
of a system described by the Lagrangian (1.2) under the full conformal group.
In this case we have to deal with three generators, H, D, ¥ (H is the

Hamiltonian,} which obey the algebra

L#/D]
[H ]

{l

1 H Tk =K

2iD (1.3)

n
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These operators leave the action invariant and are hence constants of the
motion; as a consequence, the problem of motion bvecomes purely group-
theoretical and the problem is exactly soluble, both classically and guantum

mechanically.

It is to be noted that any combination

G:A(H-fU'_D-—f‘-U h’ (1.31)

of the three fundamenital operators is a constant of the motion, not in the
sense that it commutes with H [see Egs. (1.3)] but in the more general

sense

:i + L'[H,.CD] = O (1.2)

Equation (1.4) expresses the fact that the transformation generated by G

leaves the action {but not the Lagrangian) invariant. This means that any
of the operators G can be employed to situdy the time evolution of the
state vector. Although the use of any of these operators is, in prineciple,
on the same footing, there are strong differences on the practical side.
Indeed only some of our conformal group operators have normalizable eigen-

vectors and can therefore be safely used.

In order to understand this classification of operators, we refer to

the isomorphism of the conformal group with the 0(2,1) group of non-

compact rotations 4). If we define

R = -,g-(g—-h’+a+/)

(1.5)
5'—‘ %(é‘k"aH) )

where a is any constant with dimension of length, we have from Egs. (1.3)
the explicit ¢(2,1) algebra:

[ D,R]

[s,R] =-¢
[s,p] =-R.

3]
N

(1.6)

i
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We note that R 1is the generator of g compact rotation, whereas § and D
correspond to hyperbolic non-compact transformations. We shall see that the
general operator G corresponds to a compact transformation if the deter-

minant
A = ¢ 44 w >0 (1.61)

It will be shown that only compact operators of the kind of R can be
safely used to solve the problem of motion. Their eigenstates are normal-
izable and their spectrum is discrete. T% will also be seen that only these
compact operstors lead to time evolution laws which are acceptable in the

full - w<ct<+ @ interval.

At this point a natural.question is where the Hamiltonian stands in
this classification. TFronm Egs. (1.5) one sees that X stands at the border
between R and S and it can be obtained from either of them in the limit
@~ ® . In the framework of our conformsl invariant theory, the spectrum of
H 1is continuous and bounded from below and its lowest eigenstate is not
normalizable. This circumstance is, of coursge, a reflecition in our elemen-

tary framework of the well-known infra-red problem.

If we wish to use eigenstates of Hy, an elegant way of handling the
infra-red problem is first to use eigensiates of R, and then set a-— .
On the other hand, an exciting possibility is that the operator R will
have an important rocle of its own (see the preceding paper and the develop-
ments in the present cne). TFor example, the form of its eigenfunctions will
be the same at all times (apart from an over-all dilatation) and, if we
start from appropriate initial conditions, the system remains for all times
an eigenstate of R; then the constant = will acquire a fundamental

meaning.

Leaving those delicate questions aside, we notice the important, par-
ticular role of the coupling constant g appearing in the Lagrangian (1.2).
Whereas the kind of group is simply determined by the absence of any mass
term or dimensionsal constant, the value of g will determine to what
representation of the group the physical states belong. 4s a consequence
we shall see that all important gquantities, spectrum, transition matrix
elements, will be determined by purely group thecretical formulse in which

g€ appears only through the Casimir operator of the physical representation.
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CONPORMAL TRANSFORMATION

As discussed in the Introduction, our considerations start from =

single Hermitian field Q(t) and a Lagrangian

IR~ S S i (2.1

The equation of motion is

ot %

C? - _d? . (2.2)
The coupling constant g is dimensionless (ordinary dimensicns are
[L]::[t_1], [Q] =[t1/2]) and for reasons which will appear clearer in the
following we shall consider only the case g>0.

The sbsence of dimensional constants implies that the action integral,
A-_-_f L (a,&)dt (o5

has larger invariance properties than just the usuzl time translation
invariance. Indeed such a thecory is invariant under translations, dilata-
tions and special conformal transformations. All these can be embodied in

the single projective transformation defined as

sl X B (o0

rt+ 9

where formally the real numbers o, B, vy, & can be considered the elements

of a real unimcdular matrix

t
W
R
©1

-pPy 4. (2.5)
The transformation properties of the field Q(t) are simply

Q)(t')-(aft-Fg)_i Qlt) . (2.6)



Correspondingly, we can define a unitary operator U{w) [a representation

of the group of the real unimodular matrices (2.6)] such that

QIt') = Ulw) pLe) U w] . (2.7)

EBoguations (2.6) and (2.?) can bte combined in a single reiation

U™ w) @) Ulw)s(gt+d) L) o
Finally, we have for the state vector

| w (> = Ulw) | %le) >

Combined use of Egs. (2.1), (2.3), (2.4) and (2.6) allows us to check
that A is invariant. Iet us stress that, while the zction remains in-
variant, these transformations in general do not leave the Lagrangian in-
variant since the differentizl element dt changes. This point will be

relevant %o the future developments.

To keep in contact with the familiar field thecretical formeslism, let
us recall the transformations corresponding to particular one-parameter sub-

groups of w.

Translaticns. The subgroup is that of the triangular matrices, =0,

o=y §=-w

= & (2.9)

We have

Q'(t) = QL)

and introducing the infinitesimal generator X through the definition

- Ko
UC(—") = € (2.10)



one has the known formulae

_5:_92__ = i[ X_) Q]z (_::e (2.11)

ol - .
Slwy - (X 1¢>=-1%>.
0w

One cen thus identify X_  with the Hamiltonian H:

TS

Dilatations. We consider now the subgroup of the diagonal matrices,

B=y=0, a=1/6=e"32;
_ws/z
e °© 1
- e-?w303
C\) x 6‘33/2. - . (2.12)
o e
Then //
~s /e
Q’(t")a = Q[t) (2.13)

If we introduce the infinitesimal generator X

3
l.wsxs

U(w)= A | (2.14)

i%ts action on operators and state vectors is

.._.—-EL[AG,Q] [tdt_'l)Q)

2
_ of (2.15)
Sy aley =t %),

YR

We finally identify X, with the dilatation generator D:

3

X3 = D (2.16)
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Conformal transformations. The last example 1s again a case of a triangular

matrix, @=&=1, =0, y=w *

Z o oy 74
6&) = - e (2_17)
o 1

Q’(t'}= (4'“")*&)”1@('6) (2.18)

and putting

We have

fCAD4.)(4.

Ultw) = € (2.19)

it follows that

o & __7(:[)(_,.}@]*—' (tif_%_. -t) Q ) (2.20)

2

A

L X4

&
m)’%>

ul

. - Zfé_ (2.21)
4y = tL ),

X, can be identified with the conformal generator K:

X+ = K.

{2.22)

Looking at the simple represemtations (2.9), (2.12) and (2.17) we see
that H, D and ¥ wverify the algebra of the matrices io , 1/2(03), -io,,

i1.e.y

[H,p]=<H, [KDpl=-cK, [H'K]"'Z‘:D*) (2.25)

*) Tt should be recalled that the algebra (2.2%) is only valid for conformal



Since H, K and D are Hermitian operators [see next formulse (2.30)]
1% is easy to check that the group in question is isomorphic to the 0(2,1)
group of "rotations" in a three-dimensional space with metric Ty=71,-1. If

we choose the axes so that the metric is = =1, the genera-

835712 8y =8y

tors of "rotations" in the planes 23, %7 and 12 indicated by L1, L2 and

L are given by

3
Lzr-"g: '{'(la' ""CLH)
L,= D (2.24)
Ly=R=4(Lk+aH)

The constant a, with dimension of time, is needed because physically H
and K have different dimensions. The constant = must be given, once
and for all, and plays a fundamental role. OF course, any value can be
chosen, but once it is chosen it will determine a number of things as we

shall see in the rest of this investigation. The algebra is

ED,RJ: L.S, {:S, QJ:»tID} ES}, Dj: K

(2.25)

The subgroup generated by R is hence compact {rotation group in = plane),
while those generated by & and D are not, being of the "boost" type

(see the Lorentz group).

Let us now consider the general form of the generator

G = uHauvDd rw K (2.26)
From the commutators (2.23) it is easy to see that the determinant

| U e W

-
4 = [ 2w U (2'2_7)

*) Footnote contd.
invariant theories. In the general case for instance, the first rela-
tion is substituted by a{
= D

[H,b] = ¢H - ‘T

and analogous relations hold for the remaining ones.
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is invariant with respect to the most general transformation

6 —_— Uﬁi (- . (2.28)

From this it follows that the operator G generates a ftrue rotation for
A<0 (generator R), whereas for A>0 {(generator §) i% gives rise to

a hyperbolic transformation (analogous to a boost).

A final class is given by those generators whose discriminant vanishes,
as 1t 1s the case for H and X. These "border" or "parzbolic' operators

generate "rotations! around the "light-like' axes.

Let us finally give the explicit expressions of the generators H, K
and D in terms of the field operators Q(t), G(%). These formulse can be
cbtained expressing the variation 8§A of the azction as the time derivative

of the relevant generator, i.e.,

J;;ffdt‘“Hv f@t

il
i\

. (2.29)

It is then straightforward to find for the conserved generators the expres-

sions

H

(&°+5),

4
)

) ..
tH-Z(®@+QQ)) (5.50)

i

D
k= tiH-1t(@0+0@)+5R5,

(we have adcpted gquanium symmetrization).

i

We can carry on the canodonical guantization introducing the conjugate

momentum P,

P22 -
.

(2.31)

and establishing the equal time commutator

[@(t),P(&)]:d (2.32)
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Using the representations (2.30) and the commutation relations {(2.32)
one can check again the correctness of the algebra (2.2%7). It is also con-
venlent to give explicitly the expression of H, D and X at +=0: with
QO=:Q(O), PO==P(O), one has

H=2(8% 3),

2 (pa+qr), (259
1

K= 1207 .

We next notice the existence among the generators of the following

D= -

relation:

4 N
L(Hk+KH) =D -

A ' (2.34)

Sueh a consiraint eliminates the apparent problem of having too many con-
stants of the motion (three) for a system with a two-dimensional phase

space. The importance of the relation (2.%4) and its group theoretical

meaning will be discussed later.

Finally, Egs. (2.30) can be used to get the formal sclution of the
equation of motion (2.2). TFrom the above explicit expression for H, D,

K, one easily obtains
QUt) = 2tH - ¢t D + 2

(Q+P;t)?+ %ta/Qz )

(2.35)

.

which is the sclution of moticon since H, D and X are constants of the

motion [connected by Eg. (2.34)].

It may be worth mentioning that by treating Eq. (2.35) classically,

the discriminant of the equation Q2(t)::0 is
¥
D -HK = - %/4 - (2.386)

and the positivity requirement g>=0 prevents the classical particle from

going through the origin, as is obvious for the repulsive potential g/xg.

T TP MPNN 19 41N 0] Y T SO PR g Y g plauiiubaad gl R EUTL RS R DAL L LU TR TU R R Ly T e R I R TR R LRI L] RN RN A as
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EQUATIONS OF MOTION

We are dealing with a group of invariance of a system given by =a
general projective transformation over the time. It is almost evident that
this fact opens the way to a very general description of the evolution of
the system in time. It is the object of the present chapter to establish a

general formalism displaying this very interesting unusual situation.

Tet us consider the generator G iniroduced previously,

G = wul+rD +w K. (3.1)

Tts action on the field operator and cn the state vector is given by

i [e @] = 4lt) 42 - 2 i’%.%‘.ﬂ @)

ot z
(3.2)
Glan)y=i( £1t) & |wlt]>,
(3.3)

where

gaft) = A—L‘t-U't +Wtz.

Equationsg (3.2) and (3.3) are greatly simplified if we introduce a new

time variable by

R
dr& 2 (%.4)
wivrltrwt

and a new (rationalized) field q(T), defined by

&t)
ﬁu+vt+w¢{]

With these definitions, Egs. (3.2) and (3.3) now read

. ol
L[GJ'QC‘C):[ = D_FZ-_/ (3.6)

g(t) =

12 (3.5)
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Gl(c)y = ¢ ;j_c | ¥ () (5.7)
)

These equations can be formally integrated, yielding

¢ G{T-To ) e (T-To)

qlz)=¢€ 9(z.) € (5.8)

- 1%66 E'?ﬁ)

[t (e)) = € [ tize) > .9)

In particular, the state can he chosen to be an eigenstate of ¢ at time

T=T
o

Gl ¥lte)> = & [%(1a) > (5.10)

so that

-—;r.'é} (-C“TO)

| 4 (2)> = e [ ¥(zo) 5o11)

is the analogue of the staticnary state, now "stationary" with respect to

the new wvariable.

What we have developed up to this poin<* has been rather formal and, in
particular, we do not know whether Egs. (3.8) and {3.9) are able to desecribe
the evelution in time from -® to +® 88 one could wish., We must perform

a closer examination of the variable = Just introduced. We have from (3.4)

&
o ¢’
< = ———— .+ To (3.12)
€ 2+t sl
o

*) Bguations (3.6) and (3.7) can be regarded as the analogue of the equations
of motion in the Heisenberg and in the Schrtdinger piceture. We shall see
in the Appendix that, as a consequence, the time dependent Schridinger
equation separates in + and q(7) {apart from a phase factor).

QLU LR U ERTL TN RURT (T PR T N T ) L LN DV UL TR R TUET S0 L TR e UUITPUEAIURE PP PO R IR R TRE A 0 G VIR W T 17 R e 1 p
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The form of the integral depends on the zercs of the denominator which
are conirolled by the discriminant A::vz—-4uw. The three separate cases
>
A—E O correspond to the classification of generators of the previous

chapter.

a) Non-compact operators with A>0. Then the roots t1 o of sz:O
ls

are real and one has [normalizing, e.g., to 7(0}=0]

4. E-ts e
C = = ) (3.13)
Vo t-¢, b,
In this case 7+t cannot be defined over the whole time interval
-w<t<+®; such physically unacceptable characteristics are connect-

ed to the fact that the spectrum of these operators, as it will be seen,
has unpleasant characterisitics. This is the case for 8 and D (in the

case of D one of the roots goes to o ).

b) Compact operators with A <O. Then the roots cof fG(t)= G are complex

conjugate and one has [again normalizing +(C)=0].

gt £
< c/ﬁ - ane (%.14)
wal (A ¢ ar IAl

One sees that the physical interval -®@ <t ® can be swept without
any singularity in the variable t. Such pleasant characteristics are
connecited to the fact that operators of this class generate a compact
rotation and %o the fact, as we ghall see, that the spectrum of these
operators has rather appealing features. R is an operator of this

class.

¢) Parabolic operators. In this case the rocts are coincident and we

have

i

(3.15)

t"fTo f‘o ’
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While + sweeps the physical region we have - <T< +®, but there
is one singular point in 7 at finite t 1in general. X and H

belong to this class. The spectrum will also reflect this situation.

We give hereafter a table of the variable T relevant tc the most

important operators.

Operator H D X R S

T 4 in t 174 2 arctg(t/a) In{1-t/a)/(1+%/a)

The next step in the reformulation of the theory is to build up a com-
plete Lagrangian scheme in the new basis, expressing then the dynamical
quantities in terms of the new lagrangian. A4 simple calculation, based on

Eq. (5.5), shows that the action takes the form

e A= for {41 X v (gewt)’ atelreet) 4if=

sfar (4B Lt e L[ Fawt)a?] |

where, of course,
. Aq

ql

Since a total 7T derivative is irrelevant in the definition, the zction

can finally be rewritten as

A =fot-cG LG[qcv),é[‘L‘)] (3.16)

with

?

o

‘\—
O
u
~la
™~
~O.

ya) 2_ %
+q. Q = ) (3.17)

LT 0 B T LR R N T T TN L AT Tl T T R A Ty e T L R R LA e R R T
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If we take LG as the new Lagrangian and calculate the Hamiltonian,

we have

V)

G- te s
- e g 4.
’-‘-'{(‘7*;:-‘*‘7‘)‘

We can check, using the previous results, that the foreseeable result

14

HG (QC‘CLC?("C))

(3.18)

D O

G(Q,q.’):Ha(‘?,‘?) (3.19)

holds.

Tet us also remark that the equal time commutation relations for Q, Q

[?Cr)/éﬁt)j:":. (5.20)

We now proceed to solve the equations of motion. Since the field
depends only on time, it is possible to develop a wave formalism introducing
a Schrodinger picture, by comsidering formally our original problem as that
of & particle in a cne-dimensional space x with repulsive potential g/xz.
While we are not too interested in the interpretation of Q(t) as a co-
ordinate of a partiecle, we are very much interested in the wave formalism
which makes things much simpler. In such a framework, which will be
develcped in Appendix A, the possibility of writing the equation of meotion
in the form (3.6), (%.7) will correspond to the separation of the time-
dependent Schrodinger equation in the wvariables 71, g (apart from a phase
factor), as a consequence of invariance of the systen under conformal trans-

formations.

As further steps we therefore determine the time evolution of the wave
function and the form of the eigenfunctions of G at a certain time. We
therefore rescort to the znalcgue of the Schrodinger picture and represent
q(0} and d(0) by

B L L L
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. .
7(0J -4 quJ"M) —LZ_& ‘ (3.21)

Introducing the wave function

“F[%)T) - ((&’4’(,'5)> (3.22)

and recalling Eg. (3.11), one gets ilmmediately

oY o H (e - Jaly 2 (5.25)
b'-()“(: G Ué'J 9"1) ‘a )

The relaticn between the wave function (3.22) and the usual solution of the

tempeoral Schridinger eguation

2t
is discussed in detail in Appendix A.

Finally, choosing the wave function to be an eigenfuncticn of ¢

(i.e., HG) one writes:
T
4/6_1 (t«'t‘a) = C q/(’.' ((ﬁ) . (3.24)

The eigenvalue equation

te) ’ e/
& ¢ 4= 6 ¢ Ty (5.25)

[using the canonical form (3.18)] becomes

At % _a4 ¢e) ) o) o
(G5 -yl o

We stress that the above equation, which formally looks like a Schrddinger

2 .
time-independent equation with a "potential” W(y}::(g/yz)-—ﬁ/4(y ), is
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actually the eigenvalue equation for the opérator G(O) characterized by a
certain Aj; ¥y and —i(d/dy) are the Schrbdinger picture realizations of

the relevant g(t) and §(t) commutator algebra at t=0.

A glance at Eg. (5.23) shows that the spectrum of eigenvalues and the

normalizability of eigenfunctions are determined by:
2) the behaviour a% y— 0 which depends on g;
b) the behaviour at y— @ which depends on A.

The problem at the origin is, of course, not new and the sign of g
plays a crucial role. Negative values of g correspond to infinite altrac-
tion into the corigin and lead to solutions which are unacceptable on physi-

cal grounds.

The limiting case g=0 describes the usual no-interacting case and
the wave function can be defined in the range -® < ¥ < @ without any singu-

larity at the origin.

Finally, for g=>0 we have an infinite repulsive well which keeps the
particle confined in the interval O<x<o® , leading to wave functions
vanishing outside of this interval. This indicates, as shown in more detail
in the next Section, the radical difference between the g=0 and g>0

cases.

Let us now come to the new exciting feature of the large distance
behaviour which depends on the sign of A, d1.e., on the form of the opera-
tor G which is being disgonalized. If  A=0 the potential, monotonically
decreasing, approaches a constant (zerc) for large ¥, thus producing a
continuous spectrum of eigenvalues limited below * . If A>»0 the "poien-

tial", also monotonically decreasing, is unbounded from below.

On the contrary, if 4<0 {and g>0), <the "potential™ W(y) has a
minimum a% y::yOEEJﬁ(g/|A1)1/4 and tends to +® both for y— 0 and for
vy~ @ . Intuitively the eigenfunctions will bg finite in norm and the eigen-
values discrete. Tt is not hard to obiain both these results explicitly by
reducing Eq. (3.2%) with A<O to a hydrogen aftom type wave eguation.

The three curves of Fig. 1 show the typlcal behaviour of the funciion W(y)

for the cases o = +1, 0.

*) This is, of course, the case of the familiar staticnary Schrddinger
eguation with energy eigenfunchtions

iy

G X = comnl. x V2 j—;_;{o_.,, (N2 E )

normalized in the continuum.
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All this is not new from the mathematical point of view, and the above
propertics of the spectrum of the various operators are a consequence of
werking with the non-compact 0(2,1) group. What is new, however, is the
message following from this discussion. In the framework of conformally
invariant theories the spectrum and normalization properiies naturally sug-
gest the consideration of the physical states as eigenstates ¢cf R rather
than of H (or D); in doing so, simple localization properties arise

which are related %o the presence of the fundamental constant a.

To conclude this Secticn, let us observe that Eq. (3.23), which is the
main results of this Section, is indeed very well known in the framework of
non-relativistic quantum mechanics where it is usually considered as the
eigenvalue equation for a generalized harmonic oscillator problem. We stress
that the physical meaning of Eg. (3.23) is very different in our framework.
It follows from the diagonalization of an operator {which is not the
Hamiltonian) in the framework of z conformal invariant Lagrangian which con-

tains no length parameter.

Usually the confinemens is due tc¢ a force whose origin is in a Lagrangian
with dimensional constants. Here, on the contrary, it is generated by the
choice of the operator to be taken diagonal, which contains a length and
determines a different time evolution. Looszely speaking, the confinement
usually depends on the Légrangian, here it depends on the initial conditions
(choice of eigenstates of R). Of course, the time evolution is quite dif-

ferent from a stationary cne.

Although the mathematics assovciated with the solution of Eq. (3.23) is

hardly new, we reprcduce it in the next Section for sake of completeness.

4. THE SPECTRUM OF R

We shall be concerned here with the exercise of determining the eigen-
values and eigenstates of the operator R 5). It will be useful to remem-
ber the explicit expression of the various operators using their expressions

at t=0;

(4.1)
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We have put a=1 here and in the following, in order to simply the formu-

lae.

We define the rising and lowering operators

L,= $£iD

(4.2)

for which

[}Q,Ltj il_: >
[t.,L.]=-2R .

We further introduce the Casimir operator which turns out to have the par-

(4.3)

ticularly simple ¢ number expression of Eq. (2.3%8):

T% RZ-52-0°%= R%aR-L_L,=
1 kK - D°* (4.4)
2(HK+ H)-D 4ot

H

2 3
= - R e [
4 le
Putting J2=:r0(r0- 1) one finds

Za=%(1i‘/%+4/q) (4.5)

and a further discussion will lead us to select the positive sign for the

square root. It then follows from the algebra (4.3) that

L:!: l'zo,{> =C= [“0,‘3) ,"’-o,ﬁ :‘.":L> (4.6)

implying thet successive eigenvalues differ by unity. Using Eq. (4.4) one
has further that ‘

[Calrot)|tm 2(22a)-T°

H

(4.7)

= 2(2t4)-2e(2=1) >0
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namely

£ -20

2% 2

We thus obtain the series of positive eigenvalues:
—— =21, 2, -. -
“244 = 2o *-6421 (> VI (4.8)

which reproduces one of the discrete dimensional representations of 0(2,1)

bounded below by the wvalue T,

Tet us now discuss how discrimination between the two possible values
for r, can be obtained by looking at the small distance behaviour of the
wave function. Its explieit form will be obtained soon, but for the present
considerations a glance at the differentisl equation is sufficient and we

find that the lowest eigenfunciion behaves as

tro-T/2

Yo lp) ~ 4% , e (4.9)

The limitations on T depend, of course, on the reguirements we want
to impose on the wave function. If we take into account the quantum mecha-
nical nature of the problem, the presence of the infinitely repulsive
im?enetrable potential barrier at the origin and the ensuing confinement
property of the wave function of being non-vanishing only on the positive
®x axis, imply the vanishing of bvoth ¢O(y) and its first derivative as
y— 0. This requires rO>>3/4 which is only verified by the positive root

choice, leading to the eigenvalue series (4.9).

For the zero coupling value g=0, however, both solutions are accept-
able and have to be retained as a consegquence of the changed physical situa-
tion. Correspondingly, the two series of eigenvalues combine at g=90 to

%)‘

form a single spectrum with spzeing & =%

*) The case g=90 can also be worked out directly, and it is interesting
to mention that R can be put in the familiar form

R=%(dov) Lo, @]=1,

The eigenvalues of the number operator z'a  are n=0,1,2, ... , ihe
over-all spectrum is simply rnzzé(n—k%), and I, are squares:

2
L.+ = é% ‘ir Y, z__ :rgE ‘tF
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We further notice that for the lowest eigenvalue one has

1_... "Zg, Qo> =Q (4.10)

and the higher eigenstates Iro,rO4An:> are built by successive applications
of the operatcr L+. Using Egs. (4.7) and (4.8) we can now write, with the

simplest choice of the phase factor,

L.:t IJI‘);)ZAﬂ.>' = C::t ,)Ltb 4141:> —

/e
- [QM (20 24) =20 (R0 =1) [\ 2g, 2,245 (o)

Prom this relation we can evaluate the metrix elements of the generators I,

D and K. It is convenient to express them as

H=R-S=R-7 (L++Ll_),
D=;%(L+'L‘)) (4.72)

k = R+s = R+%(L++L-)-

One then finds, for instance,

5 %2
H 120> = s 1) = £ [ f2ar) 20 120=1]] [ 2080)

/2
L Pon(rart) 2o (201 1278

(4.132)

and analogous expressions for the other generators.

We finally %$urn to the explicit determination of the eigenfunctions
¢n(x) gsolution of Eq. (3.23) for R. Working in the {X} representation

and using the form {(4.71) of the various operators, we find that

Li-‘:gi‘:D:K—\?iiD:K‘JLiCD-—-:

(4.14)

4 L1 4 o q _
— o X - X e —
2 ?""z[atx'}"?-) |
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(since L:t acts on eigenstates of R, there is the obvious replacement

B—r). The lowest eigenfunction is determined by the regquirement

$, (X) =0 (4.75)

il.e.,

{x%{- + x"—(zqe--—)j G lx) =0, (118

The goluticn is

“xR ane-%
‘-l’o(‘X) = C, € X °Tz 5 x%o) (4.17)

and one immediately determines C0 by the normalization condition
[-CD |1If (x)|2 dx=1
1o 0

_ ~%2.
[?" (2-’?.0)] . (4.18)

Repeated application of the "creation'" operator can now be used 4o
generate the successive wave functions. The result is, taking into account

the normalization and keeping track of the constant 2,

" {x):[ r{m+1) 1?"/"(_5_")2" C—X%a. LZ-'tv-‘f( ".Lz')
" 2 M(m+22) @ m ta)y

(4.19)
where L§r°'1 is the associated Laguerre polynomial ) (n is integer) *)..

*) The derivation is based on the simple identity

(m 3 -2
L+ W*) / "”"“" ;i,_ e ”"‘“"- G (¥)

where wn is the nth eigenfunction and

(w) ol 4 x?
L+ =.{x&-;+'t +-; T Q%.*:Qo-l-%‘
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These formulse give a first illustration about the way in which the
two free parameters of the theory, a and g, act to give a respectable
wave function. The role of a is to provide the large distance cut-off,
while the coupling constant g which determines the small distance beha-

viour always appears through r i.e., through the Casimir operator.

O,
This coneludes cur discussion on the eigenvalues and eigenfunctions
of the operator R. Once more we can remark how these nice properties,
discrete spectrum and normalizability, point out the relevance of R ﬁogé
description of the physical world. In particular, physical states should
be considered as eigenstates of R, which immediately leads to the obvious
question of the connection of such a description with the familiar language
based on energy eigenfunctions. We shall examine this point in the nexi
Section. It is important to notice that these properties are, of course,
common to all compact operators G&. Indeed, using the invariandge Qroperties
of the quantity A=v° - duw [see Eqs. (3.32) and (2.33)], it is easy %o see

that the eigenvalues of & are given by:

!

G = lm |ﬂ] _ (2.20)

To conclude we devote & few lines to an approximate treatment of ihe
eigenvalue equation for R which i1g familiar fto physicists. The eigenvalue
equation is obtained from (3.23) with u=28/2, v=0, w=1/2a, A=-1,

q(0) =a(0) /272 so that, writing y =278, we have

ot A T |
G R P

Footnote contd.

Defining then (apart from an over-all constant)

-1} {(mwt 0
¢, (%) = L‘f: =1L, g L” g (x)

M-

one is finally led to the result (4.22) via the Rodrigueégrepresentaticn
for Laguerre polynomials

) = & e A T )

ol X%

2Rl +M

e emens WA e R U R TSR PERY | SRS U7
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Since the "potential" W{x)=( /xz)-f(xg/az) has a unigue =minimum at
P g

4/4

we can expand

Wex)= Wixo ) %—(k-xojzw"faj =

e \ +
2 Y4{x-xo) , (4.22)

Introducing the variable §:=V§7§ (x-—xo), the equation becomes then

$US)- £ ee) 4 (-9 )qeg) =0 L

which is of harmonic oscillator type, with a spectrum

2 1.1 g"" (4.24)
- — — .2
%_m+2+1 % . 4.24

Using the "semi-classical" approximation (4.21), we clearly poorly
represent the small distance behaviocur of the exact theory. This means that
the approximate expression (4.21) is reliable as long as xoéz(ga2)1/4 is
far enough from the origin, which corresponds to a strong coupling limit
g = 1. Indeed the eigzenvalue law (4.23) follows directly from the exact
expression (4.8) as g7 ® . A more general semi-classical treatment in the

framework cf the Heisenberg representation will be presented in Section 8.

5. THE ENERGY REPRESENTATION

(1) In order to establish the energy content cf the eigenfunctions of
R, the direct way is to expand the relevant state in stationary eigenstates

of H, namely

[2m > = fdg CmlE) 1€ G

Con (e )"-—'=- <E,2M>=_{dx “PE*CX} YJ;M( X) . (5.2)

R e L R L T e P O
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Explicit wave function calculations of Cn(E} will be performed in
Appendix A using the explicit form of the wave functions given in the pre-
vious Section. It is fruitful, however, to establish a general group
theoretical framéwork where this, and similar problems, can be discussed

avoiding the Schrtdinger piciure.

We first lock for another simple realization of the 0(2,1) algebra and
of the abstract basis of eigenvectors of the Casimir operator and of R,
in the space of one-parameter functions. In the previous Section this has
peen done in the x space, which is guite natural when studying the
stationary problem at % =0 from the point of view of quantum mechanics.
On the other hand, since the actusl parameter of our field theoretical
model is the time +t, 1t is preferablz to use this variable in developing

the formalism.

We thus look for a particular rezlization of the abstract operators

(o)

valldlty of the familiar realization

H=X_— =< d (5.3)

€ dt

e acting on time-dependent functions Flt). We first demand the

W

As far as the other generators are concerned, it is not hard to check
that the requirements of verifying the 0(2,1) algebra and of reproducing
the form of the Casimir operator %(HK-+KH)-—D2::rO(rO-1) lead to the

following simple representations

D= Xa — zc;) = ':“i“!é‘*"")

(5.4)

ﬂ

KE X.|. — Lf:j (t it ""zq-o{:)

Let us notice the presence of the T, term in this realization of the
algebra. One might, in particular, think of -r_  as of a scale dimension,

interestingly bearing a dependence on the coupling constant g-.

The basis functions R{t) are then the eigenfunciions of the opera-
n

tor R, d.e.,

({8 lsm[t) = ';%‘ {.'”’tt)d +2°2 t}P l£)="mn ﬁ’“(t) (5.5)



and their form turns cut to be

m if2. . 4
(&)= (-1) f‘("“%lj NECLIR S (55
BM ) { rim+!) ( 1+t L ) (H_t"*}‘?-a o8

The over-all constant has been fixed, at least as far as the n

dependence is concerned, by requiring the validity of the recurrence
relations (4.11) and (4.13).

Thus the action of the abstract generators X@’ o=+,-,5 on the
states f11>- and of the generators %£a> on the states Bn(t) can be

summarized in the compact form

Xalmy =y In'>

1:(:) 3,,‘“7) = 3,,:;, p,n:(t)

The coefficients yg

(5.7)

gt are glven by

- l
&Mn: = }?'41 é\m m! =7 C+ (QOI’Q*“") JM;Q?-H-%C—(Q?JQ")(S!G.;%-]

1
J:n' = 2, §Mm; + z C+ (’za,é,.) SM,’M“ + %— c_(ze.,,«..,.‘)g,%_,

A (5.8)

1
a:hou = 5; C+ ('Z‘UQ‘“) gmﬂm-ﬂﬂ 2i C"l%’)“"‘) éﬂ':*\-i

where
| 1/
Cs (oynu) = [ (ay 24)~20(20=1) ] . (5.9)

It is useful to remark that the matrix ya is Hermitian, so that one has
from (5.7)
) ¥ | * * A | ‘
= B, [t
rt‘ ]3“1“:) lma[ )3’%'01. - (5.10)

The fundamental recurrence relations {5.7), (5.8) can be re-expressed in

& more convenient form by introducing the following combination of the

bbbl L Ul Wl it WU LD UG Tt S L T TR T TR e e TIUTUTINET Lo 0O R SOMITO D AR AR IR 3000050 00 SO LA 9 B 4 Py
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eigenstates [n:>;
>
't> = ;n PMUT) lm> (5.11)
so that

BM(t) = <t’%> . (5.12)

For it one can easily establish the property

X,,(“;> = )Ct.:)*’t>. (5.13)

The continuous set of kets ] t> 4, Dbesides from being the basis for the

realization (5.4) of the algebra, can very simply be connected to the
eigenstates of all the operators relevani tc the theory, and therefore con-
stitute a powerful task for computation. The conneciion with elgenstates
of R, Bq. (5.11), is used for its definition; in what follows we shall

discuss the fundamental connection with eigenstates of fthe Hamiltonian.

Before doing this, it is important to notice that the functions Bt)
Il

satisfy the following addition formula easily obitalned by direct computation

-0

¥
Zm. &M (t.,) )301,(6?' ) = ]-[Z’Q")[:z’: (t-,'t‘!.)] ) (5.14)
More generglly, one can view (5.14) as the scalar product

~2%
(talte)y =Tl [ailta-ta)] (5.141)

This result has actually a deeper origin and could be derived as a
direct conseguence of the conformal transformation properties (5.13). I%

is indeed easy to check that <t1 Ité> obeys the set of the differential

equations

£f +X5 f ekt =o
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Similar relations will be considered in full detail for more complicated

cases in Section 6.

(ii) Our next aim is to build energy eigenstates in terms of the

basis kets [Il> sy what we expect to be accomplished by Fourier transform-
ing the guantity ‘1:> . Actually, 1t is more convenient toc introduce the
gquantity

4 tEt
Cw (8)= 7—%Eiﬂto,( dt < ﬁ“(t). (5.15)

In corder to moftivate the extra enmergy factor let us evaluate the complete-
*
ness sum I Cu(E)Cu(E'). A simple calculation based on Egs. (5.714) and

(5.15) shows that the normalimation condition
-
z’h CM (-E) CM, ('E}) = S(E-E') {(5.16)

1s fulfilled.

It is now easy to establish the analogue of Egq. (5.7), namely
(<) “ . C,lE)
)C.E_ CM(E) = a'mm..’ m’ ( . (5.17)

In this basis the rezmlizations of the generators take on the form

H— x; =E, D xi— =—¢(E"' +1)

{5.1a8)

e 2
KesxP= gt _ & 1) 2L
E TP + (2, ,L) =

To conclude these preliminaries we have to evaluate the Fourier itrans-
form {5.15). This can be done @irectly, but it is perhaps mores instruciive

to determine Cn(E) from the eigenvalue eguation

ol ?
R Cote)= T vl F - -ES5 ] Cle)-

=2m CM(E)_ (5.19)
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Putting
4

1 _E
CM (E)-"‘-‘ ’2.}20 EQO t e ‘-PM'(E) (5.20)

one finds that mn(E) is a solution of the differential equation for

Laguerre polynomisls {n integer),

,'lc?h:’li-(‘?.JZo"‘zl)CP;L-bMLPM:O ) 42:2E) (5.21)

sc that
2 _aBE 271
C (g)= 27 Tl Mak)® &5 “l1aE)
M r{m+in,) L2 m (5.22)
E>O

where the constant has been adjusted by the orthonormality condition

oG
CMCE)C:,(E') odE = SMM’ (5.23)
O

and we have explicitly inserted the dependence on =2 in order itoc have a

clearer understanding of its role.

The final step is the definition of the energy eigenstates: the

natural definition is

2 2 oo (Et
2 —_—— -
| E > =2E * fdt e It (5.24)
e
Egquation (5.24) shows that one can extract from ]'t> the eigenstates cof

the Hamiltoniar once the content in R is known. One can thus obtain
through (5.15) the relation

,E> = 'Zm C::(E') |m> (5.25)

The formalism developed above indeed guarantees that

Hie>=E |e) (5.0



o0
<E'1E}=5(€-E') dE |E>CE] =1L | (5.27)
’ 0

Finally, € (E)=< E|ln > , completely determined by Bg. {5.21), is the
n

quantity we were looking for, =and !CH(E)Isz has the usual meaning of
probability of measuring for the state ‘11> the energy in the interval E,
E + dE.

(iii) We now perform a short discussion of the features of the
1Y

quantity
2
€, (€)= '\'CM(-EJ\ (5.28)

whose functional form, incidentally, is fairly similar to the space probabi-
lity cdistribution of the hydrogen atom. As an orientation we first consider

the case n=0. The function pO(E) is shown in Fig. 2 for a couple of

values, rO=-§ and ro::B. In general, pO(E) has a mazximum at

Eo"- ("lo--%)

A4
a (5.29)

*
whoge effective width ) is

_ 1J_Eo/q, = ":_,: l)'zo“‘i (5.30)

Expectation values can also be easily computed, and one finds

Y

< H > = :?"9' 7 *(5.31)

e a.

g3
HY) - éH -(aEz :;.,_ (5.32)

*) i -,y defining it as for the cla551cal resonance curve by

8/[-'2' - PQ(E)
£ () '

EzEy
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4 few words of comment are appropriate. In ovder to have a non-trivial
behaviour and to be confined in time, the system cannot be in an energy
eigenstate. However, the probability distribution in energy, although con-
tinuous and nowhere vanishing, exhibits a clear maximum at Eo and, because
of the exponential decrease, it is unlikely to have energies very far from
the maximum. So the emerging picture is that the system practically behaves
like & resonsnt state whose charscteristics, positiom of the maximum, and
width, depend both on a and on the coupling constant g (actually the

latter dependence comes through Tos i.e., the Casimir operator).

Looking at the role of the parameters, 1t is interesting to mention
the two limits =a-0,® ., For a—0, B=X, 4BE—® and the energy distri-
bution is no longer pesked anywhere; for a—wo, R—H, AE—~C, E0—°O and
\CO(E)|2 behaves as in the case of a stationary E=0 eigenstate.

Similar features are exhibited by the higher distribution functions.
‘Clearly the presence of a nth order polynomial gives now rise to a series
of peaks whose intensity increases * with the position, i.e., the one loca-
ted 2t the highest energy is the most important. In order to have a Tirst
indication on the position of the highest peak, one can use for large E
the simple recipe of just retaining the highest power in the Laguerre poly-

nomial, This gives
\ 4 4)_4 4
~ - (M el R -
(E"”j,,_,,'V a..( H A Ry (Q’"' '1-) ' (5.33)

Thus the follewing general trend emerges from this discussion: the
energy content of an eigenstate of R is represented by a finite set of

resonant-iike states.

We do not push further any more deitailed analysis. One can easily
compute expectation values which for some quantity can be done on a purely

algebraic basis: for instance, for the Hamiltonian one finds [use Eq. (4.16)]

<H >M - ’%{k . (5.34)

*) This can be understood by noticing that C (E} has practically the same
form as the hydrogen atom wave function in"co-crdinate space
[g(ﬂ-kﬂ)**ro(ro— 1), 2aEf’pV:E]. Then a lock at the radial density curves
plotted in a book of guantum mechanics provides the hint T,
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Similarly, combining Egqs. (2.35) and (4.15), one can evaluate at once the

expectaition value of Q2(t), namely

<Ml QS MM = Uaurm, (A+g2) (5.55)

It is interesting to interpret this relation, from the point of view of
the (configuration) X space representatlion, as a formula for the square
radius for the state n, pointing the way g and "a" Jetermine a confi-

guration space confinement,

If, interpreting for a moment this work as an elementary fieid theore
tical toy model, we give %o the lowest state the role of the vazcuum, we are
in the rather unconventional situation of having non-time translation inva-

riant vacuum expectation values.

A spontaneous way out from this unpleasant situation which could induce
energy non-conservation has been advanced in Ref. 2), Section 6. It is sug-
gested that we are in presence of a statistical ensemble of an infinite number
of "vacuum" states obtainable from each other by appropriate applications of
the operator generating finite time translations. The fundamental gquantity

ig the "energy spread" of the ground state wave function, whiech in this case

is

Co(E) = ('9-""') 'E,to 72 e ok ~ (5.36)

{ Tara)] 2

If we apply a time translation t—=t+h, then the ground state gets

transformed so that

Eh

—i
CalE)—n (C,o(E) e (5.37)

Supposing that, as pointed out in Ref. 2}, a statistical average over the

ensemble of "vacua" be required, we are led to introduce the vacuum statis-

tical matrix

wo
R = S dE l1Co LB IEDLKE] (5.38)

o
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or explicitly

PR -4 .
S(H) = F%‘fl;s (20) - H1"-° < ZQH’@(H\) (5.39)

It is amusing tc note that this is approximately equivalent to a

canonical distribution with 1/2a as the temperature.

TRANSITION MATRIX ETEMENTS

This Section is devoted to the evaluation of the mairix elements of a
"tensor" operator B(t) corresponding to a well-defined transformation

*
under 0{2,1) , namely

LH, B)] m~ia%3(t) ,

L

[D,B®]=-i(tE-8)Bw),

i

[, B 6] =i (,tlﬁ L2t8 ) BE),

S50, let us introduce the matrix element

<m1"E) (t)|m4>= M (8) (t) ) (6.1)

MMy,

The following exercise can be regarded as the calculation of the ampli-

tude for the transition nj"ng due to the coupling c¢f the operator B(t)

to an external field. If one pursues the analogy, the observable guantity

will be finally obtained by folding the +t dependence of Mé?iz(t) with
the elwt familiar factor comin% from the external source. Thus one musi
investigate the properties of MnZi

the considerations developed for in the previous Section.

1(t), and this discussion will generalize

*) This is, of course, nothing but the Wigner-Eckart theorem for the 0(2,1)
group. We consider useful to present a derivation in ocur framework,
mainly in view of future developments.
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Let us first indicate how to dispose of the t dependence of the
matrix element (6.1). It is convenient to resort tc the right set of

variables, i.e., the evoluiticn parameter T and the reduced operator b(T):
5 =39, OJLCIQ&'t

B (&) (6.2)
(4 +12)8

One can then immediately check that

o) =

1R, b®)] = dbiw (5.3)
0%

i.e.,

1R%

Pe _
R b(_o)e_ ; b (o) --B(O) (6.4)

be)= e

Combining the various equations, one finally obtains

<My IBE)IMS = (4+t2) ( .:_‘\:_‘..%:.) T g VB (@) 1) (6.5)
41

We now have 1o determine the quantity <1%2|B(O)|n1:>. Pe this aim,
it is fruitful to work in the t Dbasis previously introduced; let us de-

fine the quantity (a "three-point function")

{(6.6)

= 2 roren [P, (IR (1) €02 | BGE) 1M, >

The advantage is that the action of the generators X% on the states
t> is particularly simple, allowing a direct determination of TF(t; tg,t1).
Once the latter is known, <n2] B(t)’n1:> is obtained without difficulties.

We start from the simple formula

ol % .
X (8) Flbjta)t) = <t |IXS, B 1t (6.7)

Expressing through Eg. (5.14) the action of Y% on the siates [t>-, one

finds the following set of conditions:
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() (=) ) .
%_ X, () "'Xt,‘ (-Ro)+)<t2_(-rr.o)§ Flo,to,t)=0 (5.8

The explicit form of these relations is

DL B 42 - = | (6.92)
(’B-E+’at1 +"51‘7.)-F(t) 2; $4) O 9

£ D D oty £ wmO  (5.00)
(b5 + te2 vt R -Brame) Flb Bt

(tl_é. + ;2 +tq1.§_ -28t +1Ro(t,+‘\‘.-;))?(‘\:)“t}, t4)=0 (6.9¢)
-3 ot ©T4

and they are cnly consequences of the properties of transformation of the

external states and of the operator B(%) under 0{2,1).

Prom Bq. (6.%a) we learn that F:f(t-t,l, t-t,, b, -tg). Making the

A A A
further ansatz F=f1(t- tq) L (t - t2) 2 (% - t3) 3, consistency with (6.9c)
or {(6.9%) allows the immediate deiermination of the exponents and the final

result turns out to be

8 ~2Rs (¢ 10

. ')
Flt by t) = £ 107%™ (tmti)x(tft Y (Be-ta)

where f 1s a real arbitrary constant. Apart from this, the solution is

*).

unigue
To proceed further it is convenient tc introduce the variables

A-1t, N e_——i'e;

Zi= A+t

(6.11)

*) The same technique can easily be applied to the quantit F(t1,t2) =
= £, B,(tq) Bn(ty) already evaluated directly in (5.14), which can
therefore be regarded as the analogue of a two-point function.
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which, after a few manipulations, allow us to rewrite Eq. (6.10) in the

form
M -y -1
S Lo 1BBIMY 2 Fr 0TS M ! %2
M. T(2Rot 3 T(2Ro +M0)
(6.12)
> 2 Y 3 -3 -2Ra
= £ 27" 2 M G2 (D) (k)

(4-1—2)7'5

We first note that the 1+ dJdependence of the matrix element
<n, 1B(t)[n1:> givern in Eq. (6.5) is correcily reproduced: putting ziﬂzzi
one indeed selects the factor

R} A-it \Me-M2 2\ D
- A+t
- ( 4+£t) ( )

m-m
1 2 2
A+

Thus from now on we can work at t=0(z=1). Furthermore, the quantity
at the left-hand side is a double Taylor series around z=0, z=a® ; the

separation of the coefficient is then immediste and we obtain

| \ | Vo
<M \B () VM = 5 % ALBEIILTE %
(@ni)* L P (Rrotm )T @Ro+t)

(_.4)“'\14-“)2 2)2-"!0 -3 % dz‘)_%) dz, (1_2‘)%(22_4 )S . (6.13)

Co C{

™% Ve T+, — 4 NG TRLY

- (24-22) Z Z2

The integration contour is built by the suitable anticlockwise circuits
CO enclosing g, = 0 and Cm enclosing Zy = e Equation (6.13) can be
transformed to a more convenient form by an appropriate change of variable.

Setting zj:=7/y, z,= 2, We obtain

1R SRALE N 1 1R 0SS0 SR PR B3 AP R e s ORI L T e L TN
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l‘[‘z
rumomy = B8 md ml g e
@ni)* L T (o . T QotMe)

2%—8 g -932 § ds . (4_-_:12)—-% —‘UID.
Co

2"’(\1_‘!"'!

RN,

(6.131}

where now both integrasils are made around anticlockwise circuits enclosing
¥y=0, z=0.

We can now conveniently express the arbitrery constant f in terms of
the lowest matrix element <Of B(0) 0> :

- -
oIB@Is> = F 2" Tt (6.1)

In our model, once B(0) is known as & function of gq, p, the calecu-
lation can be performed in the x representation using the lowest eigen-
function given in Secticn 4. The dependence on N,y N and & 1is embodied
in the double Z,1%5 integral. We remark again the interesting fact that
there is a "kinematical" dependence on the interaction through T, which

is dietated by the transformation properties of the external states.

The evaluation of the integrals in (6.13) does not offer any essential

difficulty, and a straightforward application of the Cauchy theorem produces
the formulsa

| i 2
Lo 1B (o) IS = LolBR(e)io> My, M, T (1Ro)
TQAo+m )T (ZRetm.)
W""tﬂm)m.‘]

k. -3-2he ® B .15)
2—“ (—4) - (m‘_K) e ) (6.15
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This formula takes a simple Form when one of the states is the lowest

one, [n::O >. Then

{6.16)

<ol B IM> % . i"""
LolBle) 10 - Mo --- (Morm=-1)

This ratio is remarkably independent of the dimensionality of the operator
B. This property is particularly interesting for the sirong coupling limit
g~ m: Eg. (6.16) shows that

Lol Ble) IMD ~ W %'m/“’f (6.17)
Lol Bla) 1S

We therefore see that any transition from the ground to the exeited
state is depressed, independently of the dimensionality of the cperator B.
The strong dominance of the diagonal matrix element® <C’ B(O)IO:> confirms

the validity of the semiclassical approximation in the limit g w .

In turn, the matrix element for the transition n, =, induced by an
interaction AB(t) a(t) [a(t) is an external classical field] is propor-

ticnal to the Fourier transform.

4+ oo

(8) : 1ot
Ny, ()= | db e~ <mBG)Im > =
204 ™ )
]
(ot S /4 ik \
= o A d oo 2 ('4‘“'t')
= <M BN & SM te (A+t?) yyu

= LR Im > F‘:S)(m) (6.18)

where

The evaluation of this Fourier transform can be performed either
directly or using the method of the previous section consisting in trans-

forming to the w space the t differential equation satisfied by the

UL LR GIRY T UG IR T DO VTR RS RRRE LR T U LU L T U T R R MR e T T
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integrand. The result is (w>0)

25 4+ 4 -
"F,,L&(w) _ 3 e~ -;P'(H-S-v, z(1+8)}zm)’ (6.19)
T(V-3)

where ¥ 1is the so-called Tricomi function solution of the confluent

8)
hypergeometric equation. Its behavicur is ¢,“w‘1‘5‘“ as ®w—~® and
¥ - const. as ®—0, with the restriction & <-¢ <required by the existence
of the Pcurier integral for any w. In the particular cases in which 1+6 ~ v
or -v -8 are negative integers, ¢ 1s simply related to Laguerre polynoc-

mials [as is the case for the function Cn(E) of Bag. (5.15)].

The investigation cf the properties of the matrix element N12n1(w)
embodied in (6.19) well deserves a separate detailed treatment stressing
similarities with the energy amplitudes Cn (indeed, they are both deter-
mined by the same mathematics); this will hopefully be done elsewhere and

here we 1imit ourselves to a discussion of a simple specific example.

Tet us consider the simple form of interaction B(t)==1/Q2, leoe.,

&§ =-1. Then, using Egs. (6.18), (5.19), we obtain

(-1 -
Ny, (w)= we é.ol.z‘;_l\03 4

NP

We note that the matrix element (6.20) has s maximum at w=1 (actually

{6.20)

W/a) in line with the behaviour one can expect from intuitive consideraticns.

The above results are only based on group theoretical properties and
can be established for any cperator with definite conformal transformation
properties. The only unknecwn left is the vacuum expectation value
< OJB[O > [see Eq; (6.14)]. It is an important feature that, when the
operator can be expressed in terms of powers of the field Q, this quan-
tity can be cbtained on fairly general grounds, using completeness and the

structure of the spectrum of physical states.

As a first example we consider the interesting case of the 'vacuum"
expectation value of the field itself, <« O[Q|0 >, We start from the

relation

(3.1(0)=94K= !L'R+S++ S (6.21)
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taken between the "vacuum" and evaluate the left-hand side inserting the
complete set of eigenstates of R. The relevant matrig elements can be
evaluated using (6.14) [i.e., < o0]Q]n >=< 0|q|o >(2) {{nir(ar )/
/(F(2ro+n))}?] and we obtain

Ut = |<o1IOE TR S T(m-4) N
4 N T ) T (2Rerm)

<ol @1091% 2re T2 (2%)
T2(natis)

—

{(6.22)

where the summation on the I functions has been performed uging the

Dugall's formuls 8). Hence,

[<ot@iod] = 1 (2ne+is) (6.23)
T (27)

In the specific case of B::‘I/Q2 we were studying before, i1t is

encugh to start from the identity
Lol 4 @ty =4
Q"
and 10 apply similar considerations to obtain

4
2n.-4

<ol —&1\0> = . (6.24)

7. THE SEMICDASSICAL APPROXIMATION

As we have discussed in the final part of Section 4, a semiclassiesal
approximation is sirongly suggested for the eigenvalue equation of the
operator R. While this is not particularly important since in this simple

model we are in possession of exact solutions, it will be interesting to

AR T P 0 SURE AR [IOUIB PR FURE LA TR E 4 S PRI YRR N8R TN 1t W] U PN O L[ [T USSP R SRS S I E R xS - e
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spend some more time on this semiclassical approximation by giving the

Heisenberg representation version; it can be useful in crder %o understand

cases (in higher dimensions) where exact treatment is not available.

Let us recall the form of the Lagrangian
L3 & .
L(Q- &)
= = - . . .

together with the Heisenberg equation of motion

£a | g \ (7.2
dt? R

We then introduce the general operator

G=uH+UD+ WK (7.3)
(u,v,w real) and its lowest eigenstate we shall simply indicate by [:= .
(It is tacitly assumed that such an eigenstate does indeed exist. In the

is a

following we shall see that the assumption is justified orly if &

compact generator.) Finally, we consider the expectation value of the field

Q(t) in that state

C)s <1QW> . . (7.4)

In the framework of ocur "semiclassical"” approximation, g—o 1t will
be agsumed that the off-diageonal matrix elements of Q(t) can be neglected.

In that approximation C(t) will then satisfy the classical equation of

motion

—

EEE.‘ = 3‘_ (7.5)
dt? C®

The time dependence of C(t) is, of course, completely fixed by the

form of the operator G, and 25 a consequence of the commutation relaticns

of ¢ with Q one has for C(t) the differential equation

2y dC _ 4 d t 2
(u+vbrsot )_J_E_, ,i_cat)a_fmw ruw i) 6



- 45 -

C(t). c,(u+vt+-wt"¢)%' . ‘ (7.7)

Inveriance of the theory under the conformal group guarantees that C(t),
as given in Eq. (7.7), can be a solution of the equation of motion (7.5).
Substituting the form (7-7) in (7.5), we indeed see that the time depend-

ence of both sides does perfectly match, leading to the numericsl equation

A= -4 uw= - 48 /.4 (7.8)

]

which fixes the value of the constant C.

It thus follows that if we wish the constant C {0 be real {as suggest-

ed by the Hermiticity of (), for positive values of g we have %o choose

negative values of 4, i.e., to use a compact cperator G.

It is Instructive %o quote for further use the explicit form of the
generators H, K, D, when expressed in %erms of the classical function C(4t).

One finds

= W - . CEAY = C? (7.9)
P*¢l. 'EE P ’t)dl. pz] } l<;Cl- -5:4LL

The next step is to lock for the first correction to the classical

approximation and to write

Q) = Clr) + Q'¢k)Y . (7.10)

The equation of motion for Q' (%) can be obtained in an easier and
more transparent way by resorting to the general formalism developed in
Section 3. We have seen, in particular, that in order to study the proper-
tieé of the operator G, it is convenient to express the action in the

form

A~ S\d?"’ L.c(q,9) (7.91)

where
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d% = dt (7.12)
LNl reute

Le(ad)= 4 (3)- vy, (7.53)

W (q¥) = —;_-' (‘]’"“ _‘%qz) ' (7.14)

and

al (k) (7.15)
(LNt $o0t?) Va

q() =

In terms of the new "co-ordinate" q(7)}, Eq. {7.10) then simply reads

q(%): ¢ "'Cl'(%) _ | (7.16)

Furthermore, it is easy to get convinced that the potential W(q2) has an
extremum at q(7)=C, where C is the quantity determined by Eq. (7.8).
Expanding around that point, we obtain, at the lowest significant order in

fl'('r)’

WY~ Wwi(c) + (g-¢)* L wle) =

=4[ (- 49" - san]

(7.17)

A first important point exhibited by (7.17) is that the position q{r)=¢
(i.e., q'=0) is a minimum; corresponding to a stable equilibrium configu-
ration, only when A<O. This clearly shows, once more, that we should only
use compact operators [and, according to Eq. (7.8), positive values of gl.
One can then establish, in this approximetion, the equation of motion for
the shifted field gq', which reads

AZ\'B" Q') = Aqile) (7.18)
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At the same time a comparison between Eq. (7.18) and the corresponding one

derived in the case g=0C, namely
Z
%67- qle) = “%“ qe, (7.181)

showg the fundamental difference between the two situations. In the free

case, the exact solution of the equation of motion is

i ® V14] ~ B \TA]

Qey=Cc, e * + Cae (7.19)

On the other hand, for g#0 we have the approximate semiclassical

solution

TANIYY ~iw\lat

q(a)sz C+ &,€e 4+ Qy & (7.20)

We can thus conclude that

a) for g=0 there is no constant contribution to q(T) and the fundas-
mental freguency is %J[A « In guantum terms this means that disgonal

matrix elements of gf{r) are vanishing and that the difference between

two successive levels is

¥m+“—. sz \“A! . (7.21)
A
b)) for g#0 +there is a large comstant contribution to gq{r) and the

fundamenial frequency is now LA +« In guantum terms this means that

there is & large non-vanishing diagonal matrix element of q(T); at

the same time the level difference has now doubled and has become

Frnei— R = N1AT (7.22)

It is amusing to see thaf many of the general features of the exact
solution are zlready clearly exhibited in the semiclassical approximation.
The reason for this is not hard to understand. Most of those features have

an evident group theoretical origin. Now it is well ¥nown that the semi-

classical approximation does not spoil order by order those group theoretical

PR BIA TR 1R 10 RMIBD 67N Y 710 A AR 010109008 1AL 8 PP AUALEI IR0 W0 IBER 1 SOmMES 0 0 140 00 PRI ¢ (8P U 1 1 g o e 4 v e
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properties. Only those predictions which depend, in an essential manner,
on the form of the Casimir coperator are modified in the classical limit.
Indeed in the limit g— ® wuse of the classical expressions (7.9) for the

generators provides for the Casimir operatcr the result

2 | w
I&,= KdLHQL—' 'D’z&t--*.é_s_:—; _%_ (7.23)

which differs from the exact one (2.38) by the "quantum" factor -3/16.

CONCLUSIONS

This paper has been devoied tc the simplest example of fully conformal

invariant Lagrangisn theory.

Beyond the expected result that the number of constants of the motion
is more than enough to provide a complete solution of the dynamical problem,
our solutions present a certalin number of new physical features which could
be a guidance towards the understanding of more realistic conformal invariant

field theories.

As already mentioned, part of our work can be considered as an amusing
exercise in the use of the 0(2,1) group. The three 0(2,1) constants of the
motion are not independent, and the invariant Casimir operator is & simple
function of the coupling constant, i.e., %(HK-%KH)—IDezer(rO— 1) =g/4-3/16.
In other words, the only way g appears in all expressions is through Toe
The wvalue of the coupling constant tells us which representation of 0{(2,1)

we should use.

In this group theoretical frame it is easy to isolate the time depend-
ence of the various modes, evaluate the eigenvalues of the different opera-
tors, and use the Wigner-Eckart thecrem, in order %o obtain the most general

matrix elements.

An important feature which emerges from our calculations and which is
due to the non-compact nature of 0(2,1) is that not all the constants of the

mcetion are on the same ground. We have seen that only compact operaters like
| oL 4 }()
R= F(aH+2

exhibit the pleasant features of having a discrete spectrum and fully nor-
malizable states. The familiar Hamiltonian operator is on the border-line

and shows a continuous spectrum with a non-normalizable lowest eigenfunction.
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The difference is due to the presence of the length "a" +that provides a
gort of infra-red cut-off responsible for good behaviour at large distances
and discrete spectrum. As a consequerce, a strong indication from this
work is that eigenstates of R and not of H should be used to solve the
problem of motion and to characterize physical states.

It is interesting to note that the typical time dependence of the R
eigenfunctions involves the factor einT, where T =2 arctg t/a, corre-
sponding to a finite number of oscillations which tzke place in a lapse of

time of the order of =a.

If we consider this "one-dimensional” model as a specimen of elementary
field theory, we are naturally led to the idea that the vacuum state is the
lowest (normalizable) elgenstate of the operator R. This intrcduces a
fundamental length which enters the theory not through the Lagrangian but
through the specific form of the vacuum. The investigation of more realistic
conformal invariant field thecretical models, based on %he use of semiclassi~

cal approximations, fully confirms this point of view,

In the languege of spontaneously broken symmetries, we can say that in
the framework of fully conformal invariant Langrangians, invariance under
transformations generated by I and by S:-%(%K-aH) is spontaneously
broken. Of course, the problem arises of reconciling the metion of spon-
tanecusly broken translation invariasnce with experimentally verified energy
momentum conservation. A reasonable recipe, based on a statistical inter-
pretation, is propcsed in Ref, 2). In our case the "vacuum" statistical

matrix has the beautiful form given in Bg. (5.39).

Another very important topic is the role played by the coupling constant.
From a purely group theoretical standpoint, one might argue that nothing
gignificant happens since the coupling constant enters the results only
through the value of the Casimir operator; however, a more careful analysis
shows that this is not so. From a purely formal point of view, this depends
on the non-linearity of the equation ro(ro-1)::g/4-3/16 giving the low-
est eigenvalue T, of the series in terms of the Casimir operator (and of

g). In the g=0 case it turns out that both roots

Ro= L (4+NVQ+4a )

S S———
N - 4 - ¥ )
are acceptable, whereas for g>C only the higher root is acceptable. This

shows that the level distance abruptly doubles as soon as g takes a non-

vanishing value.
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The cause for such a phenomenon can be understcod by looking at the
detailed form of the wave function ¥(q). The g dependent term gives
rise to an infinite repulsive well at the origin (q::O). This means that,
while for g=0 +the wave function is extending between -w<qgq<®, in the

g>0 case it is "confined" to positive values of g.

It is this "change of phase'" which causes for g>0 a non-vanishing

zero expectation value of fthe operator q.

Let us conclude this discussion with a few words about semiclassical
approximations. It is easy to see that for large values of the coupling
constant g all formulae simplify greatily. In particular, the diagonal
matrix elements of the relevant operators have a strong tendency to dominate
over the non-diagonal ones. This suggests that those large g results can
be directly obtained by means of a semiclassical approximaticn. This is
indeed the case: the key point in this approach is the existence of a non-
vanishing "vacuum" expectation value of the field which obeys the classical
Lagrange equations. Although one might question the usefulness c¢f a semi-
classical approach in a case where all exact answers are known, those
approximate results are a useful link to more general Lagrangians where a

semiclassical approach is the only one available.

In this paper we have mainly emphasized the fundamental and the formal
aspects of an elementary model exhibiting conformal invariance. An entirely
open problem is the investigation of the detailed physical aspects of an
elementary theory in which' the vacuum is the lowest eigenstate of R and
contains a fundamental length., In particular, this model could lead to a
first useful indication about the "observable! properties of such theories.
This and other questions will, hopefully, be the object of further investi-

gations.
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APPENDIX

SCHRODINGER PORMALISM

In this Appendix we shall treat the problem in the Schr®dinger formalism.

We introduce the representation of g and p of Egs. (2.33)

— X

? ’ (4.1)

ol

— = b e

P ax

The Hamiltonian is
H. = 4 (._ fﬂl? + _Eil
s T o x Xt . (2.2)

The operators DS and Ks are cbtained in the same way from their

. . *)
classical expressions :

[)S = [) + t L‘S

oS (4.3)
t tH
where
= ...':'— 2_{'__ 1 (A.4)
[)‘”5 2 ( )(gth + 757') .
Ko; = ';_" x* . (4.5)

In general, given an cbservable

w H & v D +wkK

G

*) Pootnote or next page.
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the operator GS is given by

G (t) = (eeevl+ wt®) Hg +
(a.6)
+ (U‘-)-*Z_Wt) DOS + W KOS

For further use, we observe that for t::to = -v/2w,

G.(to) = “c;%; H5 + L‘C/Kor)s

*) FPootnote from p. 48

The form of an operator in the Schrédinger representation can be obtained
from the operator in the Heisenberg representation introducing the unitary
transformation U such that

| (¢)>= Ult) %D

with [¥g(0)>= [¥>, i.e., U(0)=1.

The Schrddinger representation operators are given by 0,=U0 U"1. In
particular, Qg=q¢=U Q(t) U-1 and 2 =p=U P{t) U~'. "If an operator
is explicitly function of time, we have

O,(t) = VO(t,Q,R) U™ = O(t,q,p),

hence it is still a funciion of 1, with the values of Q@ and P taken
at t=0. It may ke interesting tc check the time independence of, say,

D . We have
8

where

D, = Dlt=0,@,2) .

Now D is a Heisenberg operator not explicitly depending on time. We

have
#0% _ _:[v, H|]=-H
oAt Lo, 0]
Hence

D05=_H5 M\.QL 65 "-'-'-'O.
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The faet that any operator G is a constant of the motion has the
important consequence, in the Schrddinger representation, that if ¢ is =z
solution of the time-dependent Schriddinger equation, GS¢ alsc is a solu-
tion of the same eguation. 1In particular, this ensures that ¢ can be an

eigenfunction of GS for all times. We then look for solutiocns of the

Schrédinger equation

H%(*zt}ﬂ‘_ﬁ“ ,5‘:()(){:) (A7)

that are eigenstates of the operator GS:

/
GS YG,(X,’&‘): & q.f(-’:£xzt) : (4.8)

Using Egs. (4. 7) (4.8) can be put in the form

{ (s +vT4+ u'xtz').__ .,.._._ (U‘-l-?,wt))(

(£.9)

. ) —_
+.li';(u-+2wt}+.;f’-xl-c; '}[’G’(k,t)_-o

In Bg. (4.9) the first two terms containing the partisl derivatives
correspond, as one sees ea511y, to a derivative with respect to t in
which y= x/(u-bvt-+wt )2 is kept fixed. Introducing the variable y in

place of x, we get then

(:.-.a_-.. +4 .?f: (a,z+ 1 [-.z.;;. {U'-f- Z.Wt)- G')_I /iG.I (%)t}::.'o_

»T w+vtiwt?
(8.10}
Equation (A.?O) can be sclved quite easily:
. 7
2y t-to) -G'T
o (xt)=k € . Aow
(‘“""‘rt"'wt) ()

where d'C (u' +U"t+ Wt )
dt
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and AG'(Y) iz a function of y that will be determined by the request
that U be an eigenfunction of Gs' to is a constant whose value would
simply affect the definition of AG,(y). We shall fix to to the value
to==-v/2w that will help in obtaining the simplest form for the eigenvalue
equation (A.8). Indeed, let us consider (4.8), where now we use the form
(A.2) for H,; then t is a parameter and the differential equation must
hold for any value of +t. ILet us choose t::tO. Then the eguation for

AG,(y) ensuing from (A.B) is

al? | ’
_‘z_—z -+ .%_; ......é_. 2 AG,{%):ZG AGI(%) .
a %& 4 ' (A.12)
This equation is exactly what one would get from the exprgséion.(3.18)
of the text looking =t the eigenvalue equation for the operator HGE G in
% ;
the representation ) where g(C)-y, (o)~ -1(a/dy), eand indeed i% coin-

cides with Eq. (3.23).

In particular, if @=1R, we have (with G'=r1r)
.
¢ xt . i

'\kaﬁx,'tj_-;-_k ee.autz- Q'-.c:t' A (x 2 0L |
(a4 t?)7\atit LMW P )

(4.13)

and since

r=9.azz:;6¢3-g:=%€m a+it

a- ¢t
we have
i <t |
%{ X,'t) = K (q}.}t'-)'/“ € A-’L( f—-——a.‘-l-ﬂ")

where Ar(y) obeys the equation

act

..a..t_l.a,i + %{ + :&. g&‘ AQ(?) :Q.JZ.AJ;(%)‘ {A.14)

*) Confusion must not be made between q(t=0) ana q=q{t=0). They are
proportional. .



- 52 -

The soluticns are given by

1

2‘39"% "%
Am.('?) =% =

o ~1

(11.7') (£.15)

is the Laguerre associated polyncmial of degree n in the

.

2r0-1
where L °
n

grgument. The elgenvalue T, is given by

n

QM- =Q°+’na/. 1,

i
N
A
)

Hence the general solution is given by
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(A.16)

where y=x/2a/ azﬁ-tz and the wave function has been normalized in the

usual way, nemely
SO
fa!x ¥ [x,t]'ff; (x,t) =4
o Ln “

It is inbteresting io obtain the ccefficients in the expansion of U

n
in eigenstates of the energy. We write

x -LEt |
'ff,zu(x,t)=£e£Ee Co () Y e (¥) -

Introducing the function Bn(t) defined in Eq. (5.6), we obtain

1/ |
X) = X X
f (x) Jno 4¥ZE)
has been normalized sc that

f:x GelX)f(x) = SlE-€)
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We then easily have

+o@ L
( (E') = ..c..t....t oy £€ %zﬁ_—[:r’t) . (4.19)
" 2oo 2T ‘*; (Jf)

It is particularly simple to evaluate the right-hand side by taking the

limit =x— 0. Using the explicit forms of ¢r {x,t) ana ¢E(X) one gets
ol

-ﬂl..’lM. "’f%(x;t) - liq.oa:?-o l"'{‘h.+2¢a) }”’L.
X 0 ¢ (x) rim +)
e g T
1 -0 r ,ry=e e -t
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where Bu(t) is defined according to Eqg. (5.3) of the text. We have

*

o 1-20 7o CEE
Co (€)= a)ET )" [ & B8

(&.21)

Equation (A.21) coincides with Eq. (5.15) in the text.
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FIGURE CAPTICNS

Figure 1 Plot of the function W(y) = g/y° - ay° for the cases
s = *, O.

Figure 2 Plot of the function po(E) for the values r_=3% and

r_=3. The energy is measured in units 1/a.
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