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Abstract—In this paper, we propose a novel high speed
memoryless reverse converter for the moduli set {22n+1 −
1,2n,2n − 1}. First, we simplify the traditional Chinese
Remainder Theorem in order to obtain a reverse converter
that only requires arithmetic mod-(22n+1 − 1). Second, we
further improve the resulting architecture to obtain a purely
adder based reverse converter. The proposed converter has
a critical path delay of (7n+7) Full Adders (FA) while the
best state of the art converter for this moduli set requires
(10n+5) FA on the critical path. To validate these results,
the converters are implemented in a Standard Cell 0.18-µm
CMOS technology and the results assert that, on average,
the proposed converter achieves about 19% delay reduction
at the expense of less than 3% area increase.

I. INTRODUCTION

Residue Number Systems (RNS) have significant ad-
vantages over conventional binary number systems. This
is due to their inherent features, such as carry free
operations, parallelism, modularity, and fault tolerance.
RNS have been widely applied in Digital Signal Pro-
cessing (DSP) applications [5]. However, despite all
these advantages, RNS have not found a widespread
usage in general purpose processors since sign detection,
magnitude comparison, overflow detection, and division
are rather difficult to perform. Several solutions for
these problems, which rely heavily on RNS to binary
conversion, have been proposed [5]. This is one of the
major reasons why building efficient RNS to binary
converters has become an important research topic.

For a successful RNS utilization, moduli set choice
and data conversion are critical, in particular the RNS
to binary conversion (reverse conversion). Moduli set
choice is an important issue since the complexity and
the speed of the resulting conversion algorithm depend
on the chosen moduli set. Several structures have been
proposed to perform the reverse conversion for different
moduli sets, e.g., {2n,2n − 1,2n + 1} [1], {2n,2n+1 −

1,2n−1} [3], [2].In [3], the moduli set {2n+1−1,2n,2n−
1} was proposed, by the elimination of the modulus
(2n +1) from the 4-moduli set {2n−1,2n,2n +1,2n+1−
1} proposed in [6]. The motivation for this is related to
the fact that the modulo (2n +1)-type arithmetic is more
complex and degrades the entire RNS performance, both
in terms of area cost and conversion delay. However,
the moduli set {2n+1 − 1,2n,2n − 1}, which is able to
utilize fast modulo operations, is insufficient for appli-
cations requiring larger dynamic ranges. Consequently,
the moduli set {22n+1−1,2n,2n−1} was proposed in [4]
together with a reverse converter based on Mixed Radix
Conversion (MRC).

In this paper, a novel and more efficient reverse
converter for the {22n+1 − 1,2n,2n − 1} moduli set is
proposed. First, we simplify the traditional Chinese
Remainder Theorem (CRT) and obtain a new converter
that only requires mod-(22n+1 − 1) operations. Further
simplifications result in a simple and more efficient
hardware structure, composed of only Carry Save Adders
(CSAs) with end-around carries (EACs) and two Carry
Propagate Adders (CPAs).

II. PROPOSED ALGORITHM

The proposed algorithm is described using the follow-
ing theorems:

Theorem 1: Given the moduli set {m1,m2,m3} with
m1 = 22n+1−1,m2 = 2n,m3 = 2n−1, the following holds
true:

|(m1m2)−1|m3 = 1, (1)

|(m1m3)−1|m2 = 1, (2)

|(m2m3)−1|m1 = 22n+1 −2n+2 −3. (3)

Proof: It can be easily shown that
|1 × (m1m2)|m3 = 1, |1 × (m1m3)|m2 = 1, and∣∣(22n+1 −2n+2 −3)× (m2m3)

∣∣
m1

= 1.
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The following important relations are used in the subse-
quent theorem: Given the moduli set {m1,m2,m3} with
m1 = 22n+1−1,m2 = 2n,m3 = 2n−1, the following holds
true:

m1 = 2m2m2 −1, (4)

m2 = m3 +1. (5)

Theorem 2: The decimal equivalent of the residues
(x1,x2,x3) with respect to the moduli set {m1,m2,m3}
in the form {22n+1 − 1,2n,2n − 1}, assuming X ∈
[0,∏3

i=1 mi −m2
3), can be computed as follows:

X = m2

⌊
X
m2

⌋
+ x2, (6)⌊

X
m2

⌋
= x3 − x2 +m3

∣∣(−2n+2 −2)x1+

2m2x2 +2m2x3 +2x3|m1
(7)

Proof: Since (6) follows the basic integer division
definition in RNS, which is always true, we only need
to show the correctness of (7).

The traditional CRT [8] is given by:

X =

∣∣∣∣∣ k

∑
i=1

Mi
∣∣M−1

i xi
∣∣
mi

∣∣∣∣∣
M

, (8)

where M = ∏k
i=1 mi, Mi = M

mi
, and M−1

i is the multiplica-
tive inverse of Mi with respect to mi. For k = 3 in (8)
and by substituting (1), (2), and (3) into (8) we obtain
the following:

X =
∣∣m2m3(22n+1 −2n+2 −3)x1+
m1m3x2 +m1m2x3|M , (9)

and by substituting (4) and (5) in the above equation, we
obtain:

X =
∣∣(m2m3)(22n+1 −2n+2 −3)x1+
2m2m2m3x2 −m3x2+
2m2m2(m3 +1)x3 −m2x3|M . (10)

(10) can be further simplified by using the following
lemma, presented in [8]:

|am1|m1m2
= m1 |a|m2

(11)

Applying (11) and (5), (10) becomes:

X =
∣∣m2x3 −m3x2 +m2m3

∣∣(22n+1 −2n+2 −3)x1+

2m2x2 +2m2x3 +2x3|m1

∣∣∣
M

(12)

If (5) is applied to simplify even further in (12), we have:

X = |m2x3 −m2x2 + x2+
m2m3

∣∣(22n+1 −2n+2 −3)x1+

2m2x2 +2m2x3 +2x3|m1

∣∣∣
M

(13)

Dividing both sides of the above equation by m2 and
taking the floor, we have:⌊

X
m2

⌋
=

∣∣x3 − x2 +m3
∣∣−2n+2x1 −2x1+

2m2x2 +2m2x3 +2x3|m1

∣∣∣
m1m3

(14)

From (7), it can be seen easily that (14) is the same as∣∣∣⌊ X
m2

⌋∣∣∣
m1m3

. The next stage of the proof is to demonstrate

that the corrective addition required for the calculation of
the mod-m1m3 can be avoided in most of the cases. We
demonstrate that by considering the two extreme cases,
i.e., the most positive and most negative value one may
get in (14).

• Most positive value: in order to get the most positive
value in (14), the mod-m1m3 operation is maxi-
mized. To achieve this, x3 is maximized while x2 is
minimized. Thus, x3 = 2n − 2, x2 = 0 and because
of this, mod-m1 operand becomes 22n+1 − 2n+1 −
4. Therefore, the mod-m1 operation result cannot
assume the maximum value of 22n+1 − 2. Sub-
stituting the values

∣∣2n+1(2n −2)+2(2n −2)
∣∣
m1

=
22n+1 − 2n+1 − 4, x2 = 0, and x3 = 2n − 2 in (14),
we obtain:

∣∣23n+1 −22n+2 −2n +2
∣∣
m1m3

. However,
m1m3 equals 23n+1−22n+1−2n +1, which is always
greater than the value in

∣∣23n+1 −22n+1 −2n
∣∣
m1m3

.
No corrective addition of m1m3 is required in order
to obtain the desired result and therefore (7) holds
true.

• Most negative value: in order to get the most
negative value in (14), the following must hold
true: x3 = 0, x2 = 2n −1, and∣∣−2n+2x1 −2x1 +2m2x2 +2m2x3 +2x3

∣∣
m1

= 0.
Substituting these values in (14), we obtain
|− 2n + 1|m1m3 . The value −2n + 1 is negative and
its absolute value is always less than m1m3, thus
only one corrective addition is needed.

From (6), the minimum X value that needs a corrective
addition of m1m3 occurs when

⌊
X
m2

⌋
has the lowest

value, since m2

⌊
X
m2

⌋
grows faster than x2. By using the

minimum values in (14), specifically
⌊

X
m2

⌋
= (−m3 +

m1m3), and x2 = m3, the minimum value of X can be
computed as:

Xmin = m2(−m3 +m1m3)+m3

= M−m3(m2 −1) = M− (m3)2 (15)

On the other hand, the maximum value of X that needs
a corrective addition is given by:

Xmax = m2(−1+m1m3)+m3

= M− (m3 +1)+m3 = M−1 (16)
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Therefore, the numbers within the interval [0,M−(m3)2)
require no corrective addition and thus, (7) holds true.

We can further reduce the hardware complexity of the
reverse converter by simplifying (7) using the following
two properties:

Property 1: Modulo (2s−1) multiplication of a residue
number by 2t , where s and t are positive integers, is
equivalent to t bit circular left shifting.

Property 2: Modulo (2s −1) of a negative number is
equivalent to the one’s complement of the number, which
is obtained by subtracting the number from (2s −1).

Suppose that (7) is written as:⌊
X
m2

⌋
= x3 − x2 +2nA−A, (17)

A = |u0 +u1 +u2 +u3 +u4|22n+1−1 . (18)

For simplicity sake, let us represent (17) as:⌊
X
m2

⌋
= B1 +B2 +B3, (19)

B1 = −x2,B2 = 2nA+ x3,B3 = −A. (20)

Let the binary representations of the residues be:

x1 = (x1,2nx1,2n−1...x1,1x1,0), (21)

x2 = (x2,n−1x2,n−2...x2,1x2,0), (22)

x3 = (x3,n−1x3,n−2...x3,1x3,0). (23)

In (18), u0, u1, u2, u3, and u4 are represented as follows:

u0 =
∣∣−2n+2x1

∣∣
22n+1−1

=(x1,n−2x1,n−3...x1,0︸ ︷︷ ︸
n−1

x1,2nx1,2n−1...x1,n−1︸ ︷︷ ︸
n+2

),(24)

u1 = |−2x1|22n+1−1

= (x1,2n−1 · · ·x1,0x1,2n︸ ︷︷ ︸
2n+1

), (25)

ui,i=2,3 =
∣∣2n+1xi

∣∣
22n+1−1

= (xi,nxi,n−1 · · ·xi,0︸ ︷︷ ︸
n

00 · · ·0︸ ︷︷ ︸
n+1

), (26)

u4 = |2x3|22n+1−1

= (00 · · ·0︸ ︷︷ ︸
n

x2,n−1x2,n−2 · · ·x2,0︸ ︷︷ ︸
n

0︸︷︷︸
1

). (27)

Given the binary representation:

A = (a2na2n−1 · · ·a1a0︸ ︷︷ ︸
2n+1

), (28)

B2 can be written as:

B2 = (a2na2n−1 · · ·a0x3,n−1x3,n−2 · · ·x3,0︸ ︷︷ ︸
3n+1

). (29)

In (19), in order to carry out the summation, B1 and B3
must have equal number of bits, i.e., (3n+1)-bits, as B2.
They are represented as:

B1 = −x2 = (111 · · ·11︸ ︷︷ ︸
2n+1

x2,n−1x2,n−2 · · ·x2,0︸ ︷︷ ︸
n

), (30)

B3 = −A = (111 · · ·11︸ ︷︷ ︸
n

anan−1 · · ·a0︸ ︷︷ ︸
2n+1

). (31)

III. HARDWARE REALIZATION

The hardware structure of the proposed reverse con-
verter is based on (18) and (19). In Figure 1, u0, u1, u2,
u3, and u4 are added by CSAs with end-around carries
(EACs) producing the values s3 and c3. These values
must be added modulo 22n+1 − 1 in order to obtain A,
i.e., with a one’s complement adder, namely a CPA with
EAC. B2 is easily obtained by concatenating the operand
x3 with the n-bit left shift of A. The three operands B1,
B2, and B3 are added using a CSA with EAC. It should
be noted that in order to make B1 and B3 (3n + 1)-bit
numbers, 1’s are appended to the result of complementa-
tions, as given in (30) and (31). Thus, the addition of the
most significant (2n+1)-bits performed in this CSA can
be performed by Half Adders (HA). In addition, since
these HA have two inputs equal to 1, the final one’s
complement adder will always generate an EAC. Taking
this into consideration the one’s complement adder can
be reduced to a normal CPA with a constant carry-in
of equals to 1. The final result, computed from (6) is
obtained simply by a shift and a concatenation operation
not requiring any additional hardware. 

u4 
B1 

1 

c2 
A 

s1 
c3 s3 s2 c1 

s4 

(2n+1)-bit CSA1 with EAC (2n+1)-bit CSA2 with EAC (2n+1)-bit CSA3 with EAC (2n+1)-bit CPA with EAC 
u0 u1 u2 u3 

(3n+1) MSB of X c4 
B3 B2 (3n+1)-bit CSA4 with EAC (3n+1)-bit standard CPA 

Bit Organization 
n LSB of X x2 

Figure 1. Proposed Reverse Converter
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IV. PERFORMANCE EVALUATION

The performance of the proposed converter is evalu-
ated by both performing a theoretical analysis and exper-
imentally by implementing it on an Application Specific
Integrated Circuit (ASIC). The results of theoretical
analysis is presented in Table I. This table suggests that,
in terms of area, the reverse converter in [4] is slightly
better than the herein proposed one since our proposal
requires (5n+4)HA against 2HA, 2n XNOR and 2n OR
gates required by the one in [4]. However, in terms of
delay, the proposed converter is (3n− 2)tFA faster than
the reverse converter in [4].

Table I
AREA AND DELAY COMPARISONS

Components Converter in [4] Proposed Converter
FA 9n+2 9n+2
HA 2 5n+4

XNOR 2n −
OR 2n −

Delay (10n+5)tFA (7n+7)tFA

For the experimental assessment, the converters were
described in VHDL and implemented on a 0.18µm
Standard Cell technology from UMC [7]. The experi-
mental results, presented in Table II, suggest that, on
average, the proposed structure is capable of performing
the reverse conversion 19% faster, with an extra area
cost of 3%.To compare both conversion structures, the
Area-Time (AT) efficiency metric was used. This metric
suggests that the proposed reverse converter is 16% more
efficient than the one in [4].

V. CONCLUSIONS

In this paper, a novel high speed memoryless residue
to binary converter for {22n+1−1,2n,2n−1} moduli set
is proposed. First, we simplified the traditional CRT to
obtain a reverse converter that requires mod-(2n+1 − 1)
instead of both of mod-(22n+1 − 1) and mod-(2n − 1)
required by the reverse converter in [4]. We further
simplified the resulting architecture in order to obtain a

Table II
IMPLEMENTATION RESULTS

n Our Area MRC Area Our Delay (ns) MRC Delay (ns)
4 1301 1270 7.34 9.73
5 1633 1609 8.31 10.47
6 1994 1852 9.42 11.25
8 2623 2555 11.05 12.47
16 5261 5071 13.07 16.01
24 7794 7962 18.84 20.54
32 10517 10038 15.15 22.23

pure adder-based memoryless converter, which is made
up of only CSAs and CPAs. This leads to a structure
that is amenable to efficient VLSI chip realization.

The performance of the proposed reverse converter is
evaluated both theoretically and experimentally. Exper-
imental results suggest that the proposed structure is,
on average, 19% faster, with an additional area cost of
3%.Moreover, the AT metric indicates that the proposed
reverse converter is 16% more efficient than the one in
[4].
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