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Abstract 
In this paper, we first propose three centralized learning automata-based heuristic 
algorithms for approximating a near optimal solution to the minimum weight Steiner 
connected dominating set (WSCDS) problem. Finding the Steiner connected 
dominating set of the network graph is a promising approach for multicast routing in 
wireless ad-hoc networks. Therefore, we present a distributed implementation of the 
last approximation algorithm proposed in this paper (Algorithm III) for multicast 
routing in wireless mobile ad-hoc networks. The proposed WSCDS algorithms are 
compared with the well-known existing algorithms and the obtained results show that 
Algorithm III outperforms the others both in terms of the dominating set size and 
running time. Our simulation experiments also show the superiority of the proposed 
multicast routing algorithm over the best previous methods in terms of the packet 
delivery ratio, multicast route lifetime, and end-to-end delay. 
 
Keyword: Steiner connected dominating set, multicast routing, learning automata, ad-
hoc networks  

  
1. Introduction 

Dynamic network topology changes, resource constraints (e.g., bandwidth and power limitations), lack 
of fixed infrastructures and centralized administrations result in the optimal multicast routing becomes one of 
the most challenging problems in wireless mobile ad hoc networks. A wireless mobile ad-hoc network 
(MANET) is a self-organizing and self-configuring multi hop wireless communication network supporting a 
collection of the mobile hosts. There is neither a fixed infrastructure nor a central administration in these 
networks, and mobiles can temporarily form a network infrastructure in an ad-hoc fashion. In ad hoc 
networks, two hosts can directly communicate when they are within transmission range of each other, and 
indirectly through relaying by the intermediate hosts. In such environments, each host assumes the role of a 
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router to relay the packets toward the final destinations, and so the messages are forwarded through the multi 
hop communications, if the source and destination are not within the transmission range of each other. In 
addition to the multi-hop nature of the wireless ad-hoc networks and the lack of a fixed infrastructure, these 
networks inherit the traditional problems of the wireless and mobile communications. Frequent and hard to 
predict topology changes are the most important issues that must be taken into consideration in mobile 
networking. 

Multicast routing is an effective way to facilitate the group communications in which the messages need 
to be sent from a transmitting node to multiple receivers. Due to the broadcast nature of the wireless channels, 
a single transmission can be received by all neighbors of the transmitting node [1]. Therefore, the multicast 
routing in wireless ad-hoc networks significantly differs from the traditional multicasting in wired networks. 
In wired networks, the multicast packets are forwarded along the tree edges, and so the multicast routing 
problem can be defined as a Steiner tree problem (ST), where the multicast group members are the terminals 
(leaf nodes) in the Steiner tree. While in wireless networks, owing to the broadcast nature of the 
omnidirectional antennae, the Steiner connected dominating set (SCDS) problem [2] is a promising approach 
for modeling the multicast routing problem, where the only multicast group members need to be dominated. 
Due to the fundamental natural differences, the protocols designed for multicast routing in traditional wired 
networks can not be applied to the wireless mobile ad-hoc networks. 

The minimum Steiner connected dominating set problem was first proposed by Guha and Khuller [2], as 
the generalization of the well-known minimum connected dominating set problem, where only a specified 
subset of the nodes should be dominated. Using the Steiner connected dominating set for modeling the 
multicast routing in ad-hoc networks was also proposed by Wu et al. [3] for the first time. They proposed a 
method in which taking advantage of the Steiner connected dominating set a virtual multicast backbone 
(VMB) is formed along which the multicast messages can be sent. The proposed method aims at minimizing 
the number of nodes which are responsible for relaying the multicast packets. In SCDS-based multicast 
routing protocols, a subset of the nodes is chosen as dominators to construct a route from the multicast source 
to each of the multicast receivers. That is, the Steiner connected dominating set forms a virtual backbone by 
which not only all the multicast group members are dominated but also the number of hosts responsible for 
broadcasting is reduced to the number of hosts in the backbone. Nevertheless, a few SCDS-based algorithms 
have been designed for wireless ad-hoc networks, and the notorious global flooding method [4], in which all 
hosts broadcast the multicast messages, is still a common approach in most of the multicast routing protocols. 

In this paper, three centralized approximation algorithms are first proposed for solving the minimum 
weight Steiner connected dominating set problem proposed by Guha and Khuller. In these algorithms, it is 
assumed that a random weight is associated with each node. Each proposed algorithm consists of a number of 
stages, and at each stage, a subset of the nodes is randomly chosen as a Steiner connected dominating set. The 
weight of the selected Steiner connected dominating set is evaluated through the random environment, and 
depending on the response received from the environment, the selected Steiner connected dominating set is 
rewarded or penalized. After a number of iterations, the algorithm learns how to find the Steiner connected 
dominating set with the minimum weight. The proposed centralized algorithms are compared with each other, 
and the obtained results show that the third proposed algorithm outperforms the others both in terms of the 
Steiner connected dominating set size and running time of algorithm. Then, this algorithm is compared with 
the well-known previous algorithms and the results show its superiority over the others. Due to the lack of the 
central administration in mobile ad-hoc networks, the proposed centralized algorithms are not applicable to 
such environments. Therefore, in this paper, a distributed version of the last proposed centralized algorithm 
(Algorithm III) is presented for multicast routing in wireless mobile ad-hoc networks. The proposed multicast 
routing algorithm is also compared with the best multicasting methods, and the simulation experiments show 
that the proposed multicast routing algorithm is superior to the existing methods in terms of the packet 
delivery ratio, multicast route lifetime, and end-to-end delay. 

   The rest of the paper is organized as follows. The next section describes related work on Steiner 
connected dominating set, multicast routing in wireless mobile ad-hoc networks, and learning automata. 
Section 3 summarizes some preliminaries on the dominating set and learning automata. The centralized 
Steiner connected dominating set algorithms are proposed in section 4, and the proposed multicast routing 
algorithm is presented in section 5. Section 6 shows the efficiency of the proposed algorithms through the 
simulation experiments, and section 7 concludes the paper. 
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2. Related Work 
In this section, we give a brief overview of the existing literature on the Steiner connected dominating 

problem, mobility-based multicast routing algorithms in ad-hoc networks, and applications of learning 
automata in a variety of network environments. 

 
2.1. Steiner Connected Dominating Set 

Guha and Khuller [2] first introduced the Steiner connected dominating set problem as a generalization 
of the CDS problem, where only a specified subset of the nodes, VR ⊆ , should be dominated. They also 
showed that the SCDS is an NP-hard problem in general graphs and even in unit disk graphs (UDG). The 
centralized algorithm proposed by Guha and Khuller [2] is a polynomial time greedy algorithm with 
approximation ratio [ ] OPT1)()1( ⋅−+⋅+ cHc δ , where c  is the Steiner approximation ratio for graphs 

(currently, 55.1≈c [5]), H is the harmonic function, ),min( R∆≤δ is the size of the largest subset of R , 

adjacent to a vertex in the graph, ∆  is the maximum node degree, and OPT denotes the optimal solution to 
the Steiner connected dominating set problem. The time complexity of the proposed algorithm is at most 

)( 2VO , where V denotes the number of vertices in the graph. Wu et al. [3] proposed two approximation 
algorithms based on maximal independent set (MIS) for solving the minimum SCDS (MSCDS) problem. 
Their former algorithm is a one-hop method for approximating the MSCDS of a unit disk graph with a 
constant approximation ratio at most 10. This algorithm exploits the properties of the MIS and minimum ST 
to form the MSCDS. The proposed algorithm first finds the MIS of the graph induced by only the vertices in 
R . Then, the Steiner tree algorithm proposed in [6] is applied to connect the vertices of the constructed MIS. 
The size of the SCDS constructed by the proposed one-hop algorithm is at most 1OPT10 +× . The time 
complexity of this algorithm is )( VDO ⋅ , where D  denotes the graph diameter. They also proposed a d -

hop algorithm in which a d -hop graph is initially constructed, where the terminals form the vertex-set of the 
graph. In this method, every two vertices of the graph are connected by an edge, if they are d -hop neighbors. 
Now, like the one-hop algorithm, an MIS of the d -hop graph is computed, and than a Steiner tree algorithm 
[6] is applied to connect the vertices of MIS. The d-hop algorithm computes a SCDS of subset R , whose size 
is at most 1OPT)4288( 2 −⋅+++ ddd , if d  is even, and 

)12/(]3244OPT)641616[( 2323 −+−++⋅+++ ddddddd , if is d odd. The d -hop algorithm can be 
implemented in a fully distributed manner, and the message and time complexity of the distributed d -hop 
algorithm are )( 2VO and )( VDO ⋅ , respectively. They showed the distributed d -hop algorithm can be 
effectively used for multicast routing in ad-hoc networks by constructing a VMB with a small number of 
forwarding nodes. Muhammad [7, 8] also proposed a distributed MIS-based Steiner connected dominating set 
algorithm for multicast routing in wireless ad-hoc networks. The first step of this algorithm constructs a 
maximal independent set in )(VO time, whose size is at most 1OPT4 +×=MIS . The second step uses a 

distributed Steiner tree with message complexity )2( VO and time complexity ( )VEVO log)1( ⋅⋅−  for 
connecting the MIS members. The total size of the SCDS constructed by Muhammad's algorithm is smaller 
than 1)1OPT(2 +−+MIS , and the message and time complexity of this algorithm are )2( VO  and 

( )VEVO log)1( ⋅⋅− , respectively. Aggarwal et al. [9] proposed an algorithm for approximating the MSCDS 

in a dominating pair graph. The time complexity of the proposed algorithm is )( 8 RVO ⋅ , where V and 

R denotes the cardinality of the vertex set and terminal-set, respectively. The authors show that the proposed 

algorithm computes the Steiner connected dominating set in )( 4 RVO ⋅ time, if the distance between the 
dominating pair vertices is greater than 8. The cardinality of the Steiner connected dominating set constructed 
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by Aggarwal et al.'s algorithm is smaller than )(2OPT Gdt+  , where )(Gdt is the dominating target 
number of graph G . 

 
2.2. Multicast Routing in Ad-Hoc Networks 

ODMRP [10] applies on-demand routing techniques to avoid channel overhead and improve scalability. 
It uses the concept of forwarding group [11], a set of nodes which is responsible for forwarding multicast data 
on the shortest paths between any member pairs to build a forwarding mesh for each multicast group. By 
maintaining and using a mesh, ODMRP avoids drawbacks of multicast trees in mobile wireless networks (for 
example, intermittent connectivity, traffic concentration, frequent tree reconfiguration, non-shortest path in a 
shared tree). ODMRP is a reactive (on-demand) protocol that delivers packets to destination(s) on a mesh 
topology using scoped flooding of data. ODMRP takes a soft-state approach to maintain multicast group 
members. No explicit control message transmission is required to leave the group. ODMRP establishes and 
maintains group membership and multicast routes by the source on demand. The major strengths of ODMRP 
are its simplicity and scalability. Su et al. [12] proposed two mobility prediction mechanisms for mobile ad-
hoc networks. The former mobility prediction method utilizes the location and mobility information provided 
by the global positioning system (GPS) to estimate the link expiration time. In this method, the time interval 
during which two neighboring hosts remain within the transmission range of each other, is determined based 
on their mobility information (speed and direction) and radio range transmission. Since GPS may not work 
properly in certain situations, we may not always be able to accurately predict the link expiration time for a 
particular link. Therefore, Su et al. [12] proposed an alternative method to predict the link expiration time 
based on a more realistic propagation model. In this method, the transmission power samples are measured 
periodically from packets received from a neighboring host. Based on this information, the mobile can 
compute the rate of change for a particular neighbor’s transmission power level. Therefore, the time that the 
transmission power level drops below the acceptable value can be computed. They applied the proposed 
mobility prediction method to ODMRP and showed it superiorities over ODMRP. An and Papavassiliou [13] 
proposed a mobility-based hybrid multicast routing protocol for mobile ad-hoc wireless networks. In mobile 
ad-hoc networks, communications are often among teams that tend to coordinate their movements. Therefore, 
the relative mobility of each host with respect to its peers is the mobility metric upon which the proposed 
multicast routing algorithm is based. In this method, the network is dynamically and adaptively partitioned 
into several groups, each with its own mobility behaviors. Then, a group-based hierarchical multicast routing 
is supported in each group. Guo and Yang [14] proposed two distributed multicast routing algorithms for 
achieving the maximum-lifetime in mobile ad-hoc networks. The former algorithm is a basic energy efficient 
multicast routing algorithm called BEEM which can construct and maintain a multicast tree in a distributed 
manner. It uses beaconing to allow periodical transmission power adjustment to the minimal level at each 
transmitting node in the tree such that it could significantly save energy compared to those multicast 
algorithms for mobile ad-hoc networks which only apply single level of transmission power. They also 
proposed a distributed maximum lifetime multicast routing algorithm called DMLM, in which an extra 
localized operation called lifetime enhancement operation is used to prolong the tree lifetime. In this method, 
the hosts make decisions based solely on the mobility information of and distances to its neighbors. 

 
2.3. Learning Automata Applications 

Learning automata have been found to be useful in systems where incomplete information about the 
environment, in which those systems operate, exists. Learning automata are also proved to perform well in 
dynamic environment of the wireless, ad-hoc and sensor networks. Haleem and Chandramouli [15] used 
learning automata to address a cross-layer design for joint user scheduling and adaptive rate control for 
downlink wireless transmission. The proposed method tends to ensure that user defined rate requests are 
satisfied by the right combination of transmission schedules and rate selections. Nicopolitidis et al. [16] 
proposed a bit rate control mechanism based on learning automata for broadcasting data items in wireless 
networks. A learning automaton is used in the server which learns the demand of wireless clients for each 
data item. As a result of this learning, the server is able to transmit more demanded data items by the network 
more frequently. The same authors [17] proposed a learning automata based polling protocol for wireless 
LANs in which the access point uses a learning automaton to assign to each station a portion of the bandwidth 
proportional to the station's need. Nicopolitidis et al. [18] proposed an ad-hoc learning automata-based 
protocol for wireless LANs. In this protocol, the data transmission permission is granted by means of the 
learning automata to the stations. The proposed protocol is capable of operating efficiently under the bursty 
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traffic conditions. They showed the proposed protocol outperforms TDMA in all cases. Nicopolitidis et al. 
[19] also proposed a carrier-sense-assisted adaptive learning MAC protocol for wireless LANs, in bursty 
traffic wireless networks with unreliable channel feedback. The self adaptive proposed protocol utilizes 
carrier sensing in order to reduce the collisions that are caused by different decisions at the various mobile 
stations due to the unreliable channel feedback. Ravana and Morthy [20] proposed Learning-TCP, a novel 
learning automata based reliable transport protocol for wireless networks, which efficiently adjusts the 
congestion window size and thus reduces the packet losses. 

Learning automata are also used in cellular radio networks [21-24]. Beigy and Meybodi [21] proposed 
two learning automata based decentralized dynamic guard channel algorithms for cellular mobile networks. 
The proposed algorithms use learning automata to adjust the number of guard channels to be assigned to the 
cells in the network. In [21] they also introduced a new model for non-stationary environments under which 
the proposed algorithms work. They [22] also introduced a multi-threshold guard channel policy, and 
proposed a prioritized channel assignment algorithm for multi-cells cellular networks to minimize the 
probability of blocking the calls with lowest level of QoS subject to constraints on the blocking probabilities 
of other calls. The same authors [23] also proposed an adaptive and autonomous call admission algorithm for 
cellular mobile networks in which a new continuous action-set learning automaton is used to minimize the 
blocking probability of the new calls. 

Learning automata have been found to be useful in systems where incomplete information about the 
environment, in which those systems operate, exists. Learning automata are also proved to perform well in 
dynamic environments. It has been shown in [36, 45, 46] that the learning automata are capable of solving the 
NP-hard problems. Recently, several learning automata-based protocols have been also designed for 
improving the performance of the wireless ad hoc networks [25-27, 45]. For instance in [45], Akbari 
Torkestani and Meybodi proposed a learning automata-based cluster formation algorithm for ad hoc 
networks. In comparison with the best existing clustering methods, the proposed algorithm reduces the 
number of cluster-heads as well as the message overhead. In [25], the same authors proposed a 
CDMA/TDMA channel assignment scheme for mobile ad hoc networks. In the proposed channel assignment 
scheme, each host is assigned a fraction of TDMA frame proportional to its needs (traffic load). In [26], 
Akbari Torkestani and Meybodi also proposed a backbone formation algorithm based on distributed learning 
automata. By the proposed algorithm, the overheads of the multicast routing and broadcasting in wireless ad 
hoc networks can be significantly reduced. This is due to the fact that the proposed algorithm decreases the 
number of hosts which are responsible for relaying the message to the number of hosts in backbone.       

 
3. Preliminaries 

In this section, to provide a sufficient background for the remainder of the paper, we present a brief 
overview of the dominating set problems and their applications in communication networks, as well as some 
preliminaries on learning automata theory and variations of learning automata. 

 
3.1. Dominating Set 

The dominating set problems are a class of the combinatorial optimization problems in graph theory 
which are widely used in wireless ad-hoc networks [28-32]. In wireless networks, message broadcasting, 
network clustering, multicast routing, and network backbone formation are some networking issues in which 
the dominating set plays an important role. In what follows, the different optimization problems dealing with 
the domination sets, and their applications in wireless ad-hoc networks are summarized.  

A dominating set S of graph ),( EVG =  is a subset of V , such that every vertex Vv∈ is either in 
S  or adjacent to a vertex of S . A vertex of S is said to dominate itself and all adjacent vertices. Finding the 
dominating set is a well-known approach, proposed for clustering the wireless ad-hoc networks [32]. A 
minimum DS (MDS) is a DS with the minimum cardinality. A dominating set is also an independent 
dominating set, if no two vertices in the set are adjacent. 

A connected dominating set S  of a given graph G is a dominating set whose induced sub-graph, 
denoted by >< S , is connected, and a minimum CDS (MCDS) is a CDS with the minimum cardinality. A 
MCDS forms a virtual backbone in the network graph by which the routing overhead can be significantly 
reduced, where the number of hosts responsible for the route discovery and data transmission can be reduced 
to the number of vertices in the MCDS of the network topology graph. Finding the MCDS is a promising 
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approach to send the broadcast messages [28, 30]. The MDS and MCDS problems have been shown to be 
NP-Hard [33, 34], and even for a unit disk graph, the problem of finding a MCDS is still NP-Hard [34]. 

A weakly connected dominating set (WCDS) S  of a given graph G is a dominating set of G , where 
the graph ))][(],[( SSNESNS W ×∩=>< is a connected sub-graph of G . The closed neighborhood of 

a given host v , ][vNG , consists of the hosts adjacent to v  and host v  itself, and closed neighborhood of set 

S , ][SNG , is the unionU Sv G vN
∈

][ . That is, the weakly induced sub-graph WS >< contains the hosts of 

S , their neighbors, and all edges with at least one endpoint in S . Finding the WCDS was first suggested for 
clustering the wireless networks by Chen and Listman [35]. 

The Steiner connected dominating set S of a given graph G  is a connected dominating set by which 
only a given subset VR ⊆ (hereafter referred to as terminal-set) must be dominated. Each member of this 
subset is referred to as a terminal. Indeed, in SCDS problem, a specified subset, R , of the vertices has to be 
dominated by the a connected dominating set. Finding the SCDS of the network graph is a well-known 
approach proposed for solving the multicast routing problem in wireless ad-hoc networks [2-3, 6-9], where 
subset R comprises the multicast source and the multicast receivers. In this method, the SCDS includes the 
intermediate nodes by which the massage sent out by the multicast source is relayed. 

In most of the multicast routing protocols, it is assumed that all the nodes have the same weights, and so 
these protocols try to minimize the number of forwarding nodes for optimizing the multicast routes. In these 
methods, the multicast routing problem is defined as finding the connected dominating set with the minimum 
cardinality. However, in many applications of the wireless ad-hoc networks, the assumption above can not 
hold true, and reducing the number of forwarding nodes is not sufficient. In such networks, due to the host 
heterogeneity, host mobility, and strict resource limitations, each wireless host may have a different cost in 
the multicast tree. Therefore, in the following, we present the concept of the weighted Steiner connected 
dominating set. The (node)-weighted Steiner connected dominating set problem (WSCDS) is the 
generalization of the Steiner connected dominating set problem to the case where the vertices have weight, 
and the minimum WSCDS problem aims at finding the Steiner connected dominating set with a minimum 
weight. The weight of a set is assumed to be sum of the weight of the elements contained in it. 

 
3.2. Learning Automata 

A learning automaton [36-43] is an adaptive decision-making unit that improves its performance by 
learning how to choose the optimal action from a finite set of allowed actions through repeated interactions 
with a random environment. The action is chosen at random based on a probability distribution kept over the 
action-set and at each instant the given action is served as the input to the random environment. The 
environment responds the taken action in turn with a reinforcement signal. The action probability vector is 
updated based on the reinforcement feedback from the environment. The objective of a learning automaton is 
to find the optimal action from the action-set so that the average penalty received from the environment is 
minimized. 

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents 
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the 

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the 

element ic is associated with the given action iα . If the penalty probabilities are constant, the random 
environment is said to be a stationary random environment, and if they vary with time, the environment is 
called a non stationary environment. The environments depending on the nature of the reinforcement signal 
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement 

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of the 
environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement 
signal. Such an environment is referred to as Q -model environment. In S -model environments, the 
reinforcement signal lies in the interval ],[ ba .  

  Learning automata can be classified into two main families [37]: fixed structure learning automata and 
variable structure learning automata. Variable structure learning automata are represented by a triple
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>< T,,αβ , where β is the set of inputs, α is the set of actions, and T  is learning algorithm. The 

learning algorithm is a recurrence relation which is used to modify the action probability vector. Let )(kα
and )(kp denote the action chosen at instant k and the action probability vector on which the chosen action is 
based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by which the 
action probability vector p is updated. Let )(kiα  be the action chosen by the automaton at instant k . 
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When the taken action is penalized by the environment (i.e. 1)( =nβ ). r is the number of actions 

which can be chosen by the automaton, )(ka and )(kb  denote the reward and penalty parameters and 
determine the amount of increases and decreases of the action probabilities, respectively. If )()( kbka = , the 

recurrence equations (1) and (2) are called linear reward-penalty ( PRL − ) algorithm, if )()( kbka >> the 

given equations are called linear reward-ε penalty ( PRL ε− ), and finally if 0)( =kb  they are called linear 

reward-inaction ( IRL − ). In the latter case, the action probability vectors remain unchanged when the taken 
action is penalized by the environment. In the multicast routing algorithm presented in this paper, each 
learning automaton uses a linear reward-inaction learning algorithm to update its action probability vector.  

 
3.3. Distributed Learning Automata 

A learning automaton is by design a simple unit by which simple things can be done. The full potential 
of the learning automata will be realized when a cooperative effort is made by a set of interconnected learning 
automata to achieve the group synergy. A Distributed learning automata (DLA) [36] is a network of the 
learning automata which collectively cooperate to solve a particular problem. Formally, a DLA can be 
defined by a quadruple >< 0,,, ATEA , where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂  

is the set of the edges in which edge ),( jie corresponds to the action jα  of the automaton iA , T is the set of 

learning schemes with which the learning automata update their action probability vectors, and 0A is the root 
automaton of DLA from which the automaton activation is started .  

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses one 
of its outgoing edges (actions) according to its action probabilities and activates the learning automaton at the 
other end of the selected edge. The activated automaton also randomly selects an action which results in 
activation of another automaton. The process of choosing the actions and activating the automata is continued 
until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen actions, 
along the path induced by the activated automata between the root and leaf, are applied to the random 
environment. The environment evaluates the applied actions and emits a reinforcement signal to the DLA. 
The activated learning automata along the chosen path update their action probability vectors on the basis of 
the reinforcement signal by using the learning schemes. The paths from the unique root automaton to one of 
the leaf automata are selected until the probability with which one of the paths is chosen is close enough to 
unity. Each DLA has exactly one root automaton which is always activated, and at least one leaf automaton 
which is activated probabilistically. 
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3.4. Variable Action-set Learning Automata 

A variable action-set learning automaton is an automaton in which the number of actions available at 
each instant changes with time. Variable action-set learning automata have been found to be useful in many 
applications. For instance, Akbari Torkestani and Meybodi employed variable action-set learning automata 
for solving vertex coloring problem [46], connected dominating set problem [26, 36, 45], and stochastic 
minimum spanning tree problem [43]. It has been shown in [36, 39, 43] that a learning automaton with a 
changing number of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is 

IRL − . Such an automaton has a finite set of n  actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA =
denotes the set of action subsets and α⊆)(kA  is the subset of all the actions that can be chosen by the 
learning automaton, at each instant k . The selection of the particular action subsets is randomly made by an 
external agency according to the probability distribution )}(),...,(),({)( 21 kqkqkqkq m=  defined over the 

possible subsets of the actions, where ]121,|)([)( −≤≤∈== n
iii iAAAkAprobkq . 

[ ])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα  is the probability of choosing action iα , conditioned on the 

event that the action subset )(kA  has already been selected and also )(kAi ∈α . The scaled probability 

)(ˆ kpi is defined as 

)(/)()(ˆ kKkpkp ii =  (3)  

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset )(kA ,and 

[ ]ii kprobkp αα == )()( . 
 
The procedure of choosing an action and updating the action probabilities in a variable action-set 

learning automaton can be described as follows. Let )(kA be the action subset selected at instant k . Before 
choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in equation 
(3). The automaton then randomly selects one of its possible actions according to the scaled action probability 
vector )(ˆ kp . Depending on the response received from the environment, the learning automaton updates its 
scaled action probability vector. Note that the probability of the available actions is only updated.  Finally, the 
probability vector of the actions of the chosen subset is rescaled as )()1(ˆ)1( kKkpkp ii ⋅+=+ , for all

)(kAi ∈α . The absolute expediency and −ε optimality of the method described above have been proved in 
[39].  

 
4. The WSCDS Algorithms 

In this section, we propose three centralized approximation algorithms based on learning automata for 
finding a near optimal solution to the minimum weighted Steiner connected dominating set problem as 
described in subsection 3.1. In these algorithms, a learning automaton is first assigned to each vertex of the 
graph ),( EVG , and so a network of the learning automata isomorphic to the graph is formed. The resultant 

network of learning automata can be described by a triple >< WA ,,α , where },...,,{ 21 nAAAA =  denotes 

the set of the learning automata, },...,,{ 21 nαααα = denotes the set of actions in which 

},...,,{ 21 ri
iiii αααα = defines the action-set of learning automaton iA , for each αα ∈i , and 

},...,{ 1 nwwW = denotes the set of weights such that iw  is the weight associated with automaton iA . Since 
the proposed algorithms associate a learning automaton with each host, hereafter a host may be referred to as 
its corresponding learning automaton and vice versa. In the first proposed algorithm, which we call it 
Algorithm I, the action-set of each learning automaton iA  (i.e., iα ) contains only two actions 0

iα  and 1
iα . 
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Choosing action 0
iα  by learning automaton iA declares vertex iv  as a dominatee vertex and choosing action 

1
iα  declares it as a dominator vertex. Algorithm I consists of a number of stages, and k th stage of this 

algorithm is shown in Figure 1. 
 

Algorithm I The First SCDS Formation Algorithm
STEP 1        SCDS FORMATION 

- For all learning automata do in parallel 
- Each automaton iA chooses one of its two actions according to its action probability vector. 
- If  (The chosen action declares  vertex iv  as a dominator) 
   Then 

- Vertex iv is added to the set of dominator set being selected in this stage. 
- Weight iw  associated with vertex iv  is added to the weight of the selected dominator set. 
- Vertex iv  and all its neighbors are added to the set of dominatee set (if they have not been 

added yet). 
   End for 

STEP 2        DOMINATION & CONNECTIVITY CHECKING 
- If  (Terminal-set R  is a subset of the dominatee set and the sub-graph induced by selected 
         dominators is connected) 
   Then  

- Go to step 3 
              Else 

- Repeat step 1  {this step checks whether the constructed dominating set is a SCDS or not}   
STEP 3        COMPARING WITH A DYNAMIC THRESHOLD 

- Let dynamic threshold kT  (which is initially set to a large value) denotes the cardinality of the 
minimum size SCDS constructed until stage k . 

- Dynamic threshold kT  is updated to the cardinality of the constructed SCDS, if kT  is larger than the 
cardinality of constructed SCDS.   

STEP 4        UPDATING THE ACTION PROBABILITY VECTOR 
- Depending on the result of the comparison in step 3, all the learning automata (only the activated 

automata in Algorithm III) reward their chosen actions if the cardinality of the constructed SCDS is 
less than or equal to the dynamic threshold kT , and penalize them otherwise. Each learning 
automaton then updates its action probability vector using a IRL − reinforcement scheme. 

STEP 5        STOP CONDITION 
The process of constructing the SCDSs and updating the action probabilities are repeated until the 
product of the probability of choosing the vertices of the constructed SCDS is greater than a certain 
threshold or the number of constructed SCDS exceeds a pre-specified threshold. The SCDS which is 
formed last before stopping the algorithm is the SCDS with the minimum cardinality among all
SCDSs. 

Figure 1. Algorithm I 
 
The first proposed algorithm has two disadvantages which may increase the running time of algorithm. 

The first weakness is that some members of subset R  may not be dominated by the selected dominator set, 
and the second is that the sub-graph induced by the constructed dominator set may be disconnected. In both 
cases, Algorithm I rejects the selected dominator set, and restarts step 1 for constructing a new dominator set. 
The second algorithm we propose in this paper attempts to solve the first disadvantage of Algorithm I. This 
algorithm is very similar to Algorithm I, but differs in the action-set defined for each learning automaton, as 
well as the way of constructing the SCDS. In this algorithm which is called Algorithm II, the action-set of 
learning automaton iA  (corresponding to vertex iv ) includes an action for (associated with) each vertex jv  

(for all },...,1{ nj∈ ), where vertex jv is adjacent to vertex iv , as well as an action for vertex iv  itself. Indeed, 

in this algorithm, each vertex iv , by choosing action i
j

i
αα ∈  declares vertex jv as its dominator and adds it 

to the SCDS, if it has not yet been added. The first two steps of Algorithm II at each stage k  are described as 
shown in figure 2. The remaining steps (steps 3, 4, and 5) of Algorithm II are the same as those described in 
Algorithm I. 
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Repeat 

For all learning automata do in parallel 
- Each automaton iA chooses one of its actions (e.g. action j

i
α ) according to its action probability 

vector 
- The vertex corresponding to the selected action (i.e., vertex jv ) is added to the dominator set  

- The weight associated with vertex jv (i.e., weight jw ) is added to the weight of the dominator set 
which is being selected at stage k  

End for 
Until ( The sub-graph induced by the selected dominator set is a connected sub-graph of G ) 

Figure 2. The SCDS formation step (steps 1 and 2) in Algorithm II 
 

Although the dominator set constructed by Algorithm II dominates all members of terminal-set R , it 
does not guarantee a connected dominating set to be formed at each stage of algorithm. This problem 
significantly increases the number of dominator sets that must be constructed until formation of a Steiner 
connected dominating set. 

To solve the addressed problem, we propose another algorithm based on DLA called Algorithm III by 
which the formation of a SCDS at each stage of algorithm is guaranteed. In this algorithm, the action-set of 
each learning automaton iA  includes an action for each vertex jv  (for all },...,1{ nj∈ ), where vertex jv is 

adjacent to vertex iv . At each stage of Algorithm III , the first dominator (e.g., vertex iv ) is randomly chosen 

using a separate learning automaton whose action-set contains the set of all the vertices of graph G . The 
chosen vertex is added to the SCDS, and its weight is added to the weight of SCDS. Vertex iv and its 

neighbors are also added to the dominatee set. The learning automaton corresponding to vertex iv  (i.e., iA ) 
is activated. To improve the convergence speed of the learning automaton, some actions may be disabled in 
the action-set of the currently active automaton. To do so, the actions corresponding to the selected vertices 
(or dominators) are temporarily removed from the action-set of  the active automaton. This avoids choosing a 
dominator many times. Furthermore, in Algorithm III, the currently active learning automaton updates its 
action-set by disabling the actions corresponding to the dominators by which no more vertices can be 
dominated. This avoids redundant dominators, and so considerably decreases the cardinality of the 
constructed SCDS. Now, the active learning automaton randomly chooses one of its actions according to its 
updated action probability vector. The learning automaton corresponding to the selected action is activated 
and does the same as the previous activated automata did. This sequential activation process is either repeated 
until formation of a SCDS (all terminals to be dominated) or no more actions can be taken by the currently 
active learning automaton. In the first case, the current iteration is over, and in the second case, the algorithm 
traces the path induced by the activated automata back for finding a learning automaton with available 
actions. The action-set of such an automaton (found in backtracking phase) is updated by disabling its last 
chosen action and the current iteration is resumed as described earlier. In Algorithm III, each learning 
automaton may activate more than one of its neighbors at each stage. That is, more than one action can be 
chosen by each learning automaton. This algorithm can be implemented in a fully distributed manner and so 
we use it for multicast routing in ad-hoc networks. The SCDS formation step of Algorithm III has been 
shown in figure 3 for a sample graph. The remaining steps (steps 3, 4, and 5) of Algorithm III are the same as 
those described in Algorithm I. 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

  
(e) 

Figure 3. The steps of SCDS formation in Algorithm III
 
The sample graph shown in figure 3 has 11 vertices and 18 edges. In these figures, a black circle 

represents a dominator, an encircled vertex represents the first chosen dominators, and a grey circle represents 
a dominatee. Therefore, a white circle represents a host that it is neither a dominator nor dominatee. The 
number beside each vertex represents its ID and the weight associated with that vertex too. The set near a 
dominator represents the action-set of the learning automaton corresponding to it. For instance in figure 3(b), 
since vertices 2, 3 and 5 are the neighbors of dominator vertex 1, the action-set of the learning automaton 
corresponding to vertex 1 contains three actions for choosing vertices 2, 3 and 5 as dominators. A crossed 
action represents a disabled action which can not be temporarily chosen by the learning automaton (e.g., 
action 3 in figure 3(b)). Letter "T" near a vertex represents that this vertex is a terminal and must be 
dominated. In this example, vertices 6, 10 and 11 form the terminal-set. An arrow from vertex iv  to jv  

means that the action corresponding to vertex jv  has been chosen by automaton iA , and so automaton jA  
should be activated. As shown in figure 3(a), let us assume that vertex 1 is chosen as the first dominator. It is 
added to the SCDS and dominatee set also. Its neighboring vertices are added to the dominatee set. Its weight 
is added to the weight of SCDS. Vertices 2, 3 and 4 form the initial action-set of the learning automaton (i.e.,

}5,3,2{ ) corresponding to vertex 1. As described earlier, the action corresponding to vertex 3 must be 
disabled, since it dominates no more actions. Therefore, vertex 1 randomly chooses one of its two remaining 
actions. Let us assume that vertex 5 to be chosen as the second dominator. Vertex 5 is activated and does the 
same as vertex 1 did. Let us assume that vertex 5 chooses vertex 4 (by which terminal 6 is dominated), vertex 
4 chooses vertex 7, and vertex 7 finally chooses vertex 8 (by which terminals 10 and 11 are dominated). At 
this point the current iteration is over, and the selected SCDS contains }8,7,5,4,1{ . The weight of the selected 
SCDS is calculated as the sum of the weight of its members. According to assumptions, this weight is 25 for 
this example. Like Algorithm I, in step 3, the weight of the selected SCDS is compared with the dynamic 
threshold kT . If this weight is less than or equal to the dynamic threshold kT , in step 4, the activated automata 
are rewarded, and they are penalized otherwise. The action probability vector of the activated automata is 
updated using a IRL − reinforcement scheme. The stop condition is verified and a new iteration begins, if the 
stop condition is false. Due to the distributed nature of DLA, Algorithm III can be also implemented in a fully 
distributed manner, and so in the next section, it will be used for multicast routing in wireless mobile ad-hoc 
networks.  

 
5. DLA-based Multicast Routing Algorithm 

In this section, a distributed learning automata-based multicast routing algorithm called DLAMRA is 
proposed for wireless mobile ad-hoc networks. The multicast routing algorithm that we are going to propose 
in this paper is a distributed version of the last WSCDS algorithm proposed in section 4 (i.e., Algorithm III), 
where the relative speed of each host is considered as its weight. In this approach, the multicast messages are 
forwarded along the MVB by which the multicast source is connected to each of the multicast receivers. This 
backbone can be found by solving the WSCDS problem in the network graph where subset R comprises the 
multicast source and the multicast receivers. In this method, each host (e.g., ih )  is equipped by a learning 

automaton (e.g., iA ) whose learning algorithm is linear reward-inaction. The resulting network of learning 
automata is isomorphic to the network graph and can be described by a triple >< WA ,,α  as described in 

section 4, where iw  represents the mobility speed associated with host ih .   
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To form the action-set of each learning automaton iA , its corresponding host (i.e., ih ) propagates 
locally a message to its one-hop neighbors. The hosts which are within the transmission range of the sender 
host, upon receiving the message, reply it and return their action-set information. The sender forms its action-
set on the basis of the received replies, so that each host jh  by which the message is replied is associated 

with action j
iα  in the action-set of automaton iA . Action j

iα corresponds to the selection of host jh  as a 

dominator host by learning automaton iA . Therefore, the action-set size of each learning automaton is 
strongly dependent on the degree of its corresponding host, and consequently, on the network density. Due to 
the frequent topology changes in mobile ad-hoc networks, the action-set size of the learning automata is 
always changing.    

The problem with the action-set defined above is that the number of actions is fixed and does not vary 
with time. This may result in a host to be chosen many times, the virtual backbone contains loops and suffers 
from the redundant dominators by which no more hosts can be dominated. Therefore, the fixed action-set 
decreases the convergence speed of algorithm and increases the virtual backbone size also. To overcome 
these shortcomings, we propose the learning automata with changing number of actions, and introduce the 
following rule for pruning the action-set of such learning automata. 

 
Pruning Rule. To avoid the loops and the redundant dominator hosts by which no more (dominatee) hosts 
can be dominated and to avoid choosing the same dominators (by different hosts), the proposed algorithm 
prunes the action-set as follows. As mentioned earlier, when host ih  is forming the action-set of its 
automaton, it receives some messages from its neighboring hosts which include the action-set information of 
these hosts. Depending on the received information, activated automaton iA  updates its action-set by 
disabling the actions corresponding to the hosts whose one-hop neighbors all have been dominated earlier, if 
any. By this rule, the action probability vector of each activated learning automaton is scaled as described in 
section 3.4, on the variable action-set learning automata. At the end of each iteration, the disabled actions of 
each activated learning automaton must be re-enabled for the next iteration.  

 
5.1. Multicast Routing Procedure  

In this algorithm, each mobile host immediately broadcasts its mobility information (mobility speed and 
movement direction) to its neighboring hosts, when it experiences a new epoch (or its mobility characteristics 
change). Each mobility epoch is considered as a (short) period of time in which both the mobility speed and 
the movement direction of a mobile host are constant. Then, each host calculates its relative mobility, on the 
basis of the recently received information from its neighbors. The relative mobility is defined as the mobility 
degree a mobile host exhibits with respect to its neighbors. The relative mobility of each host (with respect to 
all its neighbors) is considered as a criterion to measure the mobility degree of the host, and to classify the 
hosts for finding the more stable multicast routes.   

To compute the relative mobility, the mobility profile (mobility speed and movement direction) of each 
host must be exchanged with its neighboring hosts. Since the mobility characteristics of a mobile host vary 
with time, the host relative mobility changes as the host moves. Let ݏ௜

௞ denotes the mobility speed of host  ݄௜ 
at instant ݇, and ߙ௜

௞ denotes the movement direction of host ݄௜ at instant ݇. Thus, the relative mobility 
between two mobile hosts ݄௜ and ௝݄ at instant ݇ is defined as 

 

࣬௜௝
௞ ൌ ටݏ௜

௞ଶ ൅ ௝ݏ
௞ଶ െ ௜ߙ2

௞ߙ௝
௞cos ሺߙ௜

௞െߙ௝
௞ሻ    

 
Then, the relative mobility of a host ݄௜ with respect to all its neighbors can be achieved as follows. 
 

Թ௜
௞ ൌ

∑ ࣬೔ೕ
ೖ

౟ࣨא೓ೕ׊
|ࣨ౟|

  (4) 

 
where ୧ࣨ ൌ ሼ ௝݄| ௝݄ is a neighbor of ݄௜} denotes the set of all the neighbors of host ݄௜, and | ୧ࣨ| represents the 
cardinality of  ୧ࣨ. Relative mobility Թ௜

௞ is periodically calculated and assigned to each host ݄௜ as a weight. 
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The relative mobility speed of each host, in the proposed multicast routing method, corresponds to the weight 
associated with each vertex in equivalent WSCDS problem. A host with a high relative mobility is more 
prone to the erratic mobility behaviors compared to the stable hosts, and so more stable routes can be founded 
on the hosts with lower relative mobility. 

Each host included in the Steiner connected dominating set (or multicast route) is called a dominator 
host, otherwise a dominatee host. Indeed, a dominatee host is a one-hop neighbor of at least one host in the 
SCDS, if it is not included in the SCDS. In this method, upon receiving a multicast message, the dominator 
hosts re-broadcast it, while the dominatee hosts only receive the message. That is, the dominator hosts assume 
the role of the (intermediate) relay hosts. At each iteration of algorithm, the hosts which are selected as 
dominators form a route from the multicast source to each of the multicast receivers. The process of choosing 
the dominators is described later. The learning automata iteratively construct the multicast routes and update 
the action probability vectors until they find a near optimal solution to the WSCDS problem that guarantees 
the stability of the formed multicast route. Each host requires the following data structures to participate in 
the multicast routing process: Let Max_itr denotes the stopping condition of algorithm as a maximum number 
of iterations, Dominator_set denotes the set of dominator hosts by which the WSCDS is formed, 
Dominatee_set be the set of hosts in which each member is a one-hop neighbor of at least one dominator host 
in the Dominator_set, MRP denotes the threshold required for terminating the multicast routing process as the 
product of the probability of choosing the dominator hosts in the Dominator_set, Prob_vct denotes the vector 
of the probability of choosing the members of the Dominator_set, Itr_num be a counter which keeps the 
number of constructed Dominator_set, Multicast_grp includes the set of hosts to which the multicast message 
must be forwarded, Multicast_src denotes the host by which the multicast message is sent out, Trshld be a 
dynamic threshold including the weight of the minimum (weight) multicast routes (dominator sets) 
constructed yet which is initially set to a large value, and Dom_set_wgt denotes the weight associated with 
the chosen Dominator_set. 

When a multicast source decides to initiates a multicast session (or to send a multicast message to a 
multicast group), it inserts its one-hop neighbors' ID to the Dominatee_set, activates its corresponding 
learning automaton, disables some actions according to the pruning rule described earlier, chooses an action 
according to its action probability vector, generates an Activation message, and finally sends it to the mobile 
host corresponding to the chosen action. Each Activation message includes Dominatee_set, Dominator_set, 
Multicast_grp, Multicast_src, Trshld, Dom_set_wgt, Prob_vct, and Itr_num. The multicast group members 
are included in the Multicast_grp, and multicast source inserts the probability of the chosen action to the 
Prob_vct. The Activation message is described below.  

When a given host ih  receives an Activation message, it inserts its ID as a new dominator host into the 
Dominator_set. To update the Dominatee_set it adds its ID and its one-hop neighbors' ID to this set. The 
relative speed (or weight) of the activated host is added to the Dom_set_wgt.  Now, host ih  checks whether 
all multicast receivers are included in Dominatee_set or not. If so, it checks the stopping condition. 
Otherwise, host ih  updates its action-set using pruning rule, and determines whether there exist any available 
actions or not.  

If there exist any actions can be chosen by learning automaton iL , learning automaton iL  is activated and 
chooses one of its actions as a new dominator host. Otherwise, the path induced by the activated learning 
automata (selected dominator hosts) is traced back for finding a learning automaton with available actions. 
The action-set of such a learning automaton (found in backtracking phase) is updated by disabling its 
previous chosen action and the current iteration is resumed by choosing a new action. The probability of the 
chosen action is inserted in Prob_vct , and an Activation message is sent to the chosen dominator host. 

 To verify the stopping condition of the multicast routing process, the probability of choosing the 
recently selected Dominator_set is computed. This probability is defined as the product of the probability of 
choosing the dominator hosts contained in the Dominator_set. If this probability is greater than the certain 
threshold MRP or Itr_num exceeds a per-specified threshold Max_itr, dominator host ih  generates a 
MULTIICAST message including the last selected Dominator_set (or multicast route) and broadcasts it 
within the network. Otherwise (i.e., when the stopping condition is false), the relative speed of the chosen 
Dominator_set is calculated as the sum of the relative speed of the dominators contained in Dom_set_wgt. If 
the weight of the selected Dominator_set is less than the dynamic threshold Trshld, then dynamic threshold 
Trshld is updated to the weight of the selected Dominator_set and all the chosen actions of the activated 
automata (corresponding to the dominator hosts) are rewarded by sending back a Rewarding message, 
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otherwise, they are penalized by sending back a Penalizing message. Rewarding and Penalizing messages are 
binary reinforcement signals. Multicast source starts a new iteration when it receives a Rewarding or a 
Penalizing message.  

As our algorithm proceeds, the value of Trshld tends to the weight of the most stable multicast route, 
and so the probability of choosing the more stable routes increases as the probability of penalizing the 
unstable routes increases. Finally, the probability of choosing the most stable multicast route (i.e., the 
multicast route with the minimum relative speed) converges to one. In what follows, we describe the 
Multicast, Penalizing and Rewarding messages which are used in an Activation message.  

A Multicast message includes the multicast route selected during the last iteration. When host ih  

receives a Multicast message, it is noticed that the multicast routing process has been finished, and it 
thereafter uses the multicast route contained in the Multicast message to send the multicast packets to the 
given multicast members. It will then terminate the multicast routing procedure. 

Let j
iα denotes the chosen action by learning automaton iA . When dominator host ih  receives a 

Rewarding message, it updates its action probability vector using the learning algorithm given in equation (5), 
under which the chosen action (i.e., j

iα ) is rewarded, and the other actions ( ki ,α , for all jk ≠ ) are 
penalized.       

)](1[)()1( ,,, npanpnp jijiji −+=+ , 

jknpanp kiki ≠∀−=+ )()1()1( ,, . 
(5)  

where jip , is the probability with which host ih  chooses host jh as a dominator host.  
After rewarding the chosen action, the scaled action probability vector must be updated once again (or 

rescaled) by enabling all the disabled actions according to the rescaling method described in section 3.4 on 
the variable action-set learning automata. In this case, the multicast source starts a new iteration as described 
earlier. 

Since the reinforcement scheme by which the learning automata update their action probability vectors 
is IRL − , the action probabilities of the activated learning automata (corresponding to the dominator hosts) 
remain unchanged when they receive a Penalizing message. In this case, the disabled actions of each activated 
learning automaton are enabled again, and the multicast source starts a new iteration upon receiving a 
Penalizing message. 

 
6. Experimental Results 

In this paper, we first proposed three learning automata-based algorithms for approximating a near 
optimal solution to the minimum weighted Steiner connected dominating set problem (section 4). Then, we 
proposed a multicast routing algorithm for wireless mobile ad-hoc networks based on distributed learning 
automata (section 5). Therefore, we have conducted two groups of simulation experiments. In the first group 
of our experiments, we compare the centralized algorithms proposed (in section 4) for solving the minimum 
WSCDS problem, and in the second group, we study the performance of the proposed multicast routing 
algorithm in comparison with the best existing methods.  

 
6.1. WCDS Algorithms 

The simulation experiments conducted in this section are concerned with investigating the efficiency of 
the centralized approximation algorithms proposed for solving the minimum WSCDS problem. The results of 
these algorithms are compared with those of the previous well-known algorithms like Guha & Khuller’s 
algorithm [2], Wu et al.'s algorithm [3], and Muhammad's algorithm [7]. 

In all experiments presented in this paper, the reinforcement scheme used for updating the action 
probability vectors is IRL − , and the learning rate is 0.1. To generate the random graphs, a number of vertices 
are uniformly distributed in a two-dimensional simulation area of size 10001000×  units at random. We 
assume that a link to be established between two vertices, if the distance between them is not longer than 200 
units. Each algorithm is tested only on the connected graphs, and the reported results are averaged over 100 
runs. Each algorithm is terminated when the probability of choosing the SCDS approaches 0.95, or the 
number of selected SCDSs exceeds 10000. 
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In these experiments, 100 vertices are randomly distributed in the simulation area. To study the impact 
of the terminal-set size on the performance of the proposed algorithms, the size of the terminal-set ranges 
from 10 to 100. The average size of the Steiner connected dominating set constructed by the proposed 
algorithms is given in Figure 4, and the running time of each algorithm is given in Figure 5. 

From the results given in Figure 4, it is clear that, for all algorithms the size of the Steiner connected 
dominating set increases as the terminal-set size increases. For instance, in Guha & Khuller’s algorithm, the 
SCDS size is 7.35 when the terminal-set size is 10, and it approaches 19.10 when the terminal-set size 
increases to 100. 

The results given in Figures 4 and 5 show that, as expected, Algorithm III outperforms the others, and 
Algorithm I performs worst among the algorithms presented in this paper. As described earlier, in Algorithm 
II, each vertex chooses its dominator itself, and so unlike Algorithm I, it guarantees to form a dominating set 
at each iteration. Therefore, it is expected that Algorithm II will improve the running time of Algorithm I. 
However, from Figure 5, it is clear that the running time of Algorithm1 is very close to that of Algorithm II. 
This is because the action-set size of each learning automaton in Algorithm II is much larger than that of 
Algorithm I, and this prolongs the convergence of learning automaton to its optimal action, and increases the 
running time of algorithm. The results given in Figures 4 and 5 also show that Algorithm III significantly 
outperforms Algorithms I and II both  in terms of  the SCDS size and running time. This is due to the fact that 
at each stage of this algorithm a Steiner connected dominating set is formed. Furthermore, taking advantage 
of the variable action-set learning automata, Algorithm III avoids the redundant dominators by which no more 
vertices can be dominated. 

From the results given in Figures 4 and 5, it can be concluded that Algorithm III has the best 
performance both in terms of the running time and dominating set size compared to the first two algorithms 
presented in this paper (Algorithms I and II). Therefore, to evaluate our findings on constructing the optimal 
Steiner connected dominating set, we compare the results of Algorithm III with the best existing algorithms 
such as Guha & Khuller’s algorithm [2], Wu et al.'s algorithm [3], and Muhammad's algorithm [7]. 

Comparing the results of the previous algorithms given in Figure 4, we find that, in most cases, Guha & 
Khuller’s algorithm forms the Steiner connected dominating set with the smallest number of dominators, and 
Muhammad's algorithm and Wu et al.'s algorithm lag far behind. Though Wu et al.'s algorithm and 
Muhammad's algorithm both are MIS-based algorithms, it can be seen that the size of the Steiner connected 
dominating set constructed by Muhammad's algorithm is smaller compared to Wu et al.'s algorithm. The 
results show that our last proposed algorithm (Algorithm III) significantly outperforms the existing 
algorithms in terms of the SCDS size, especially for the larger terminal-sets. 

Figure 5 shows the average time taken (in seconds) by each algorithm to construct the Steiner connected 
dominating set of the random graphs. Comparing the results of algorithms given in Figure 5, it is observed 
that Wu et al.'s algorithm outperforms the others in terms of the average time required for constructing the 
SCDS. It can be also seen that Muhammad algorithm has the longest running time. From the results given in 
Figure 5, it is clear that, the running time of all algorithms is directly proportional to the number of terminals, 
and it increases as the terminal-set size increases. The obtained results also show that our last proposed 
algorithm considerably outperforms Guha & Khuller’s algorithm and Muhammad's algorithm, but has a 
longer running time in comparison with Wu et al.'s algorithm. 

Comparing the results shown in Figure 4 with Figure 5, it can be concluded that our proposed algorithm 
(Algorithm III) generates much smaller Steiner connected dominating sets compared to the other algorithms 
in a reasonable time (comparable to the fastest method), and so has the best overall performance. The size of 
the SCDS constructed by Muhammad's algorithm is as large as that constructed by Wu et al.'s algorithm, 
whereas Wu et al.'s algorithm has the shortest running time. Therefore, Muhammad's algorithm has the worst 
overall performance and Wu et al.'s algorithm is ranked below Algorithm III. Guha & Khuller’s algorithm is 
also ranked lower than Wu et al.'s algorithm but very higher than Muhammad's algorithm. 
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Figure 4. The average size of the Steiner connected dominating set constructed by different algorithms 
 

 
Figure 5. The average time taken by different algorithms (in seconds)  to construct the Steiner 

connected dominating set 
6.2. Multicast Routing Algorithm 

To study the performance of the multicast routing algorithms, we have conducted several simulation 
experiments in two sets. In the first set of experiments, we investigate the impact of the host mobility on the 
performance of algorithms. In these simulation experiments, the multicast group size is fixed at 10, and the 
host speed varies from 10 to 70 (km/h). The second set of the simulation experiments aims at evaluating the 
scalability of the multicast routing algorithms, and so in these experiments, the host mobility speed is fixed at 
15 (km/h) and the multicast group size changes from 5 to 30. In these experiments, the performance of the 
various multicast routing algorithms is evaluated in terms of the following metrics. 
• Packet delivery ratio. This metric is defined as the number of data packets delivered to the multicast 
receivers over the number of data packets supposed to be received by multicast receivers. This ratio 
represents the efficiency of routing in our proposed method. 
• End-to-end delay. The time elapsed between the instant when the source has data packet to send and the 
instant when the destination receives the data. Note that if no multicast route is available, the time spent for 
building a route (route acquisition latency) is also included in the end-to-end delay. In this case, this metric is 
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defined as the time required for multicast route creation as well as the time required for transmitting the 
multicast packets. 
• Multicast route Lifetime. The time interval during which the multicast routes remain connected. In mobile 
ad hoc networks, the network topology changes, caused by the host movement, shortens the lifetime of the 
links. To find the stable routes, these movements should be exactly estimated. This metric represents the 
efficiency of each algorithm to predict the realistic mobility behavior of a host.   

To show the efficiency of our proposed multicast routing algorithm, we compare its obtained results 
with those of the mobility-based hybrid multicast routing protocol proposed by An and Papavassiliou [13], 
hereafter referred to as AP, two enhanced versions of the ODMRP proposed by Su et al. [12], hereafter 
referred to as SLG-1 and SLG-2, and two distributed multicast routing algorithms proposed by Guo and Yang 
[14], hereafter referred to as GY-1 and GY-2.  

In our simulation scenarios, a mobile ad hoc network consisting of 50 mobile hosts is modeled in which 
the mobiles are randomly and uniformly distributed within a square simulation area of size 
1000(m)×1000(m). Each host is modeled as an infinite-buffer, store-and forward queuing station, and is 
assumed to be aware of its mobility information with the aid of a reliable positioning system. The IEEE 
802.11 DCF [44] (Distributed Coordination Function) with CSMA/CA (Carrier Sense Multiple 
Access/Collision Avoidance) is used as the medium access control protocol, and two ray ground as the 
propagation model. The wireless hosts communicate through a common broadcast channel of capacity 
2(Mb/s) using omnidirectional antennas. All mobile hosts have the same radio propagation range of 250(m). 
CBR (Continuous Bit Rate) traffic sources are used to generate the traffics with a rate of 20 packets per 
second. The packet size is 512 bytes. In our experiments, MRP is set to 0.90, and MAX_ITR  is set to 100. 
Mobility characteristics change at the beginning of each epoch and remain constant during the epoch. Each 
multicast group is associated with a multicast source, and the multicast members and source are randomly 
chosen with a uniform distribution. The multicast members join the group at the start of the multicast session 
and remain as members throughout the session. Each experiment is run on 100 connected graphs and the 
results, presented in this paper, are averaged over these runs.     

In these experiments, the packet delivery ratio is measured as a function of the host mobility speed. It is 
clear from Figure 6 that, the packet delivery ratio of GY-I, GY-II and AP rapidly degrades as the mobility 
speed increases. SLG-I and SLG-II are more stable, and the packet delivery ratio of DLAMRA more slowly 
decreases compared with the other algorithms. The results given in Figure 6 show that GY-I has the lowest 
packet delivery ratio, and DLAMRA provides the highest packet delivery ratio. This is due to the fact that, it 
uses the relative speed of the host (with respect to all its neighbors) as a criterion for selection of the routes. 
Therefore, it chooses the more stable routes that are not affected by the host mobility. In algorithms SLG-I 
and SLG-II, since they reconstruct the routes in advance of the topology changes, most data are delivered to 
the multicast receivers without being dropped. Therefore, they show a good performance in highly dynamic 
environments, and are ranked below DLAMRA. 

 
Figure 6. Packet delivery ratio of the multicast routing algorithms as a function of the mobility speed 
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The packet delivery ratio of the multicast routing algorithms as a function of the multicast group size is 

drawn in Figure 7. As shown in this figure, the packet delivery ratio of all algorithms is slightly improved as 
the multicast group size increases. Since in DLAMRA the dominator hosts broadcast the multicast packets to 
all its neighboring hosts, DLAMRA is robust to multicast group size. Like those in Figure 6, here DLAMRA 
has the highest packet delivery ratio, and SLG-II lags behind. The results show that the packet delivery ratio 
of SLG-I is very close to that of AP and GY-II. It can be also seen that GY-I has the lowest delivery ratio and 
is ranked below GY-II. 

 
Figure 7. Packet delivery ratio of the multicast routing algorithms as a function of the multicast group size 

 

 
Figure 8. End-to-end delay as a function of the mobility speed 

 
Figures 8 and 9 show the end-to-end delay of each multicast routing algorithm. Figure 8 shows the end-

to end delay as a function of the mobility speed, and Figure 9 shows it as a function of the multicast group 
size. In these experiments, we varied the mobility speed from 10(km/h) to 70(km/h) and measured the end-to-
end delay of each algorithm. As shown in these figures, SLG-II and DLAMRA have the shortest end-to-end 
delay, and GY-I performs worst compared with the others. From the results shown in Figure 8, it is clear that 
GY-II only slightly outperforms GY-I. In SLG-II, multicast sources flood the Join Data before they form the 
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forwarding groups. Therefore, in SLG-II, the route acquisition latency is eliminated and the packets are 
delivered to the multicast receivers in a shorter time. DLAMRA finds the more stable routes, and this causes a 
longer delay. On the other side, it minimizes the size (number of relay hosts) of the multicast routes also. 
Generally, it sends the multicast packets in a reasonable delay. 

Figure 9. End-to-end delay as a function of the multicast group size 
 
Among the studied algorithms, AP, SLG-II, and DLAMRA consider the mobility-prediction issues for 

constructing the stable multicast routes. As described earlier, SLG-II uses the route expiration time as the 
route selection metric, AP utilizes the concept of the relative mobility to characterize the mobility degree of a 
host. SLG-II and AP predict the motion behaviors of a host based on the samples taken from the mobility 
parameters during a single epoch. DLAMRA samples the mobility characteristics in different epochs to 
estimate their expected values. Therefore, it finds the more stable routes that stay connected for a longer time. 
The lifetime of the multicast routes constructed by the various algorithms is presented in Figures 10 and 11. 
The results depicted in these figures show that DLAMRA significantly outperforms the others and GY-I and 
SLG-I have the worst results in terms of the route lifetime. The routes constructed by SLG-II are more stable 
than those of AP, but their lifetime is much shorter compared with GY-II. From Figure 10, it is obvious that 
the route lifetime is degraded as the mobility speed increases. This is because the wireless connections 
between the hosts become looser as the host speed increases. The number of intermediate hosts required for 
relaying the multicast packets increases as the number of multicast receivers increases. On the other side, the 
duration of the multicast route is directly proportional to the number of relay nodes. Therefore, as shown in 
Figure 11 , the multicast route duration increases as the multicast group size increases. 
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Figure 10. The lifetime of the multicast route as a function of the mobility speed 

  
Figure 11. The lifetime of the multicast route as a function of the multicast group size 

 
7. Conclusion 

In this paper, we first proposed three learning automata-based approximation algorithms for finding a 
near optimal solution to the minimum weighted Steiner connected dominating set problem. Then, we 
proposed a multicast routing algorithm for wireless mobile ad-hoc networks based on distributed learning 
automata. Our multicast routing algorithm is a distributed implementation of the last algorithm proposed in 
this paper for solving the weighted Steiner connected dominating set problem. We compared the proposed 
centralized WSCDS algorithms with the best existing algorithms and showed that the last proposed algorithm 
(Algorithm III) outperforms the others both in terms of the dominating set size and running time. The results 
of the simulation experiments showed that our proposed multicast routing algorithm is superior to the well-
known multicast routing protocols in terms of the packet delivery ratio, multicast route lifetime, and end-to-
end delay. 
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