

Weighted Steiner Connected Dominating Set and its Application
to Multicast Routing in Wireless MANETs

Javad Akbari Torkestani
Department of Computer Engineering, Islamic Azad University, Arak Branch, Arak, Iran

j-akbari@iau-arak.ac.ir

Mohammad Reza Meybodi
Department of Computer Engineering and IT, Amirkabir University of Technology, Tehran, Iran

Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Computer Science, Tehran, Iran
mmeybodi@aut.ac.ir

Abstract
In this paper, we first propose three centralized learning automata-based heuristic
algorithms for approximating a near optimal solution to the minimum weight Steiner
connected dominating set (WSCDS) problem. Finding the Steiner connected
dominating set of the network graph is a promising approach for multicast routing in
wireless ad-hoc networks. Therefore, we present a distributed implementation of the
last approximation algorithm proposed in this paper (Algorithm III) for multicast
routing in wireless mobile ad-hoc networks. The proposed WSCDS algorithms are
compared with the well-known existing algorithms and the obtained results show that
Algorithm III outperforms the others both in terms of the dominating set size and
running time. Our simulation experiments also show the superiority of the proposed
multicast routing algorithm over the best previous methods in terms of the packet
delivery ratio, multicast route lifetime, and end-to-end delay.

Keyword: Steiner connected dominating set, multicast routing, learning automata, ad-
hoc networks

1. Introduction

Dynamic network topology changes, resource constraints (e.g., bandwidth and power limitations), lack
of fixed infrastructures and centralized administrations result in the optimal multicast routing becomes one of
the most challenging problems in wireless mobile ad hoc networks. A wireless mobile ad-hoc network
(MANET) is a self-organizing and self-configuring multi hop wireless communication network supporting a
collection of the mobile hosts. There is neither a fixed infrastructure nor a central administration in these
networks, and mobiles can temporarily form a network infrastructure in an ad-hoc fashion. In ad hoc
networks, two hosts can directly communicate when they are within transmission range of each other, and
indirectly through relaying by the intermediate hosts. In such environments, each host assumes the role of a

 J. Akbari Torkestani & M. R. Meybodi….

router to relay the packets toward the final destinations, and so the messages are forwarded through the multi
hop communications, if the source and destination are not within the transmission range of each other. In
addition to the multi-hop nature of the wireless ad-hoc networks and the lack of a fixed infrastructure, these
networks inherit the traditional problems of the wireless and mobile communications. Frequent and hard to
predict topology changes are the most important issues that must be taken into consideration in mobile
networking.

Multicast routing is an effective way to facilitate the group communications in which the messages need
to be sent from a transmitting node to multiple receivers. Due to the broadcast nature of the wireless channels,
a single transmission can be received by all neighbors of the transmitting node [1]. Therefore, the multicast
routing in wireless ad-hoc networks significantly differs from the traditional multicasting in wired networks.
In wired networks, the multicast packets are forwarded along the tree edges, and so the multicast routing
problem can be defined as a Steiner tree problem (ST), where the multicast group members are the terminals
(leaf nodes) in the Steiner tree. While in wireless networks, owing to the broadcast nature of the
omnidirectional antennae, the Steiner connected dominating set (SCDS) problem [2] is a promising approach
for modeling the multicast routing problem, where the only multicast group members need to be dominated.
Due to the fundamental natural differences, the protocols designed for multicast routing in traditional wired
networks can not be applied to the wireless mobile ad-hoc networks.

The minimum Steiner connected dominating set problem was first proposed by Guha and Khuller [2], as
the generalization of the well-known minimum connected dominating set problem, where only a specified
subset of the nodes should be dominated. Using the Steiner connected dominating set for modeling the
multicast routing in ad-hoc networks was also proposed by Wu et al. [3] for the first time. They proposed a
method in which taking advantage of the Steiner connected dominating set a virtual multicast backbone
(VMB) is formed along which the multicast messages can be sent. The proposed method aims at minimizing
the number of nodes which are responsible for relaying the multicast packets. In SCDS-based multicast
routing protocols, a subset of the nodes is chosen as dominators to construct a route from the multicast source
to each of the multicast receivers. That is, the Steiner connected dominating set forms a virtual backbone by
which not only all the multicast group members are dominated but also the number of hosts responsible for
broadcasting is reduced to the number of hosts in the backbone. Nevertheless, a few SCDS-based algorithms
have been designed for wireless ad-hoc networks, and the notorious global flooding method [4], in which all
hosts broadcast the multicast messages, is still a common approach in most of the multicast routing protocols.

In this paper, three centralized approximation algorithms are first proposed for solving the minimum
weight Steiner connected dominating set problem proposed by Guha and Khuller. In these algorithms, it is
assumed that a random weight is associated with each node. Each proposed algorithm consists of a number of
stages, and at each stage, a subset of the nodes is randomly chosen as a Steiner connected dominating set. The
weight of the selected Steiner connected dominating set is evaluated through the random environment, and
depending on the response received from the environment, the selected Steiner connected dominating set is
rewarded or penalized. After a number of iterations, the algorithm learns how to find the Steiner connected
dominating set with the minimum weight. The proposed centralized algorithms are compared with each other,
and the obtained results show that the third proposed algorithm outperforms the others both in terms of the
Steiner connected dominating set size and running time of algorithm. Then, this algorithm is compared with
the well-known previous algorithms and the results show its superiority over the others. Due to the lack of the
central administration in mobile ad-hoc networks, the proposed centralized algorithms are not applicable to
such environments. Therefore, in this paper, a distributed version of the last proposed centralized algorithm
(Algorithm III) is presented for multicast routing in wireless mobile ad-hoc networks. The proposed multicast
routing algorithm is also compared with the best multicasting methods, and the simulation experiments show
that the proposed multicast routing algorithm is superior to the existing methods in terms of the packet
delivery ratio, multicast route lifetime, and end-to-end delay.

 The rest of the paper is organized as follows. The next section describes related work on Steiner
connected dominating set, multicast routing in wireless mobile ad-hoc networks, and learning automata.
Section 3 summarizes some preliminaries on the dominating set and learning automata. The centralized
Steiner connected dominating set algorithms are proposed in section 4, and the proposed multicast routing
algorithm is presented in section 5. Section 6 shows the efficiency of the proposed algorithms through the
simulation experiments, and section 7 concludes the paper.

 nns ournal of Wireless Personal CommunicatioJ

3

2. Related Work
In this section, we give a brief overview of the existing literature on the Steiner connected dominating

problem, mobility-based multicast routing algorithms in ad-hoc networks, and applications of learning
automata in a variety of network environments.

2.1. Steiner Connected Dominating Set

Guha and Khuller [2] first introduced the Steiner connected dominating set problem as a generalization
of the CDS problem, where only a specified subset of the nodes, VR ⊆ , should be dominated. They also
showed that the SCDS is an NP-hard problem in general graphs and even in unit disk graphs (UDG). The
centralized algorithm proposed by Guha and Khuller [2] is a polynomial time greedy algorithm with
approximation ratio [] OPT1)()1(⋅−+⋅+ cHc δ , where c is the Steiner approximation ratio for graphs

(currently, 55.1≈c [5]), H is the harmonic function,),min(R∆≤δ is the size of the largest subset of R ,

adjacent to a vertex in the graph, ∆ is the maximum node degree, and OPT denotes the optimal solution to
the Steiner connected dominating set problem. The time complexity of the proposed algorithm is at most

)(2VO , where V denotes the number of vertices in the graph. Wu et al. [3] proposed two approximation
algorithms based on maximal independent set (MIS) for solving the minimum SCDS (MSCDS) problem.
Their former algorithm is a one-hop method for approximating the MSCDS of a unit disk graph with a
constant approximation ratio at most 10. This algorithm exploits the properties of the MIS and minimum ST
to form the MSCDS. The proposed algorithm first finds the MIS of the graph induced by only the vertices in
R . Then, the Steiner tree algorithm proposed in [6] is applied to connect the vertices of the constructed MIS.
The size of the SCDS constructed by the proposed one-hop algorithm is at most 1OPT10 +× . The time
complexity of this algorithm is)(VDO ⋅ , where D denotes the graph diameter. They also proposed a d -

hop algorithm in which a d -hop graph is initially constructed, where the terminals form the vertex-set of the
graph. In this method, every two vertices of the graph are connected by an edge, if they are d -hop neighbors.
Now, like the one-hop algorithm, an MIS of the d -hop graph is computed, and than a Steiner tree algorithm
[6] is applied to connect the vertices of MIS. The d-hop algorithm computes a SCDS of subset R , whose size
is at most 1OPT)4288(2 −⋅+++ ddd , if d is even, and

)12/(]3244OPT)641616[(2323 −+−++⋅+++ ddddddd , if is d odd. The d -hop algorithm can be
implemented in a fully distributed manner, and the message and time complexity of the distributed d -hop
algorithm are)(2VO and)(VDO ⋅ , respectively. They showed the distributed d -hop algorithm can be
effectively used for multicast routing in ad-hoc networks by constructing a VMB with a small number of
forwarding nodes. Muhammad [7, 8] also proposed a distributed MIS-based Steiner connected dominating set
algorithm for multicast routing in wireless ad-hoc networks. The first step of this algorithm constructs a
maximal independent set in)(VO time, whose size is at most 1OPT4 +×=MIS . The second step uses a

distributed Steiner tree with message complexity)2(VO and time complexity ()VEVO log)1(⋅⋅− for
connecting the MIS members. The total size of the SCDS constructed by Muhammad's algorithm is smaller
than 1)1OPT(2 +−+MIS , and the message and time complexity of this algorithm are)2(VO and

()VEVO log)1(⋅⋅− , respectively. Aggarwal et al. [9] proposed an algorithm for approximating the MSCDS

in a dominating pair graph. The time complexity of the proposed algorithm is)(8 RVO ⋅ , where V and

R denotes the cardinality of the vertex set and terminal-set, respectively. The authors show that the proposed

algorithm computes the Steiner connected dominating set in)(4 RVO ⋅ time, if the distance between the
dominating pair vertices is greater than 8. The cardinality of the Steiner connected dominating set constructed

 J. Akbari Torkestani & M. R. Meybodi….

by Aggarwal et al.'s algorithm is smaller than)(2OPT Gdt+ , where)(Gdt is the dominating target
number of graph G .

2.2. Multicast Routing in Ad-Hoc Networks

ODMRP [10] applies on-demand routing techniques to avoid channel overhead and improve scalability.
It uses the concept of forwarding group [11], a set of nodes which is responsible for forwarding multicast data
on the shortest paths between any member pairs to build a forwarding mesh for each multicast group. By
maintaining and using a mesh, ODMRP avoids drawbacks of multicast trees in mobile wireless networks (for
example, intermittent connectivity, traffic concentration, frequent tree reconfiguration, non-shortest path in a
shared tree). ODMRP is a reactive (on-demand) protocol that delivers packets to destination(s) on a mesh
topology using scoped flooding of data. ODMRP takes a soft-state approach to maintain multicast group
members. No explicit control message transmission is required to leave the group. ODMRP establishes and
maintains group membership and multicast routes by the source on demand. The major strengths of ODMRP
are its simplicity and scalability. Su et al. [12] proposed two mobility prediction mechanisms for mobile ad-
hoc networks. The former mobility prediction method utilizes the location and mobility information provided
by the global positioning system (GPS) to estimate the link expiration time. In this method, the time interval
during which two neighboring hosts remain within the transmission range of each other, is determined based
on their mobility information (speed and direction) and radio range transmission. Since GPS may not work
properly in certain situations, we may not always be able to accurately predict the link expiration time for a
particular link. Therefore, Su et al. [12] proposed an alternative method to predict the link expiration time
based on a more realistic propagation model. In this method, the transmission power samples are measured
periodically from packets received from a neighboring host. Based on this information, the mobile can
compute the rate of change for a particular neighbor’s transmission power level. Therefore, the time that the
transmission power level drops below the acceptable value can be computed. They applied the proposed
mobility prediction method to ODMRP and showed it superiorities over ODMRP. An and Papavassiliou [13]
proposed a mobility-based hybrid multicast routing protocol for mobile ad-hoc wireless networks. In mobile
ad-hoc networks, communications are often among teams that tend to coordinate their movements. Therefore,
the relative mobility of each host with respect to its peers is the mobility metric upon which the proposed
multicast routing algorithm is based. In this method, the network is dynamically and adaptively partitioned
into several groups, each with its own mobility behaviors. Then, a group-based hierarchical multicast routing
is supported in each group. Guo and Yang [14] proposed two distributed multicast routing algorithms for
achieving the maximum-lifetime in mobile ad-hoc networks. The former algorithm is a basic energy efficient
multicast routing algorithm called BEEM which can construct and maintain a multicast tree in a distributed
manner. It uses beaconing to allow periodical transmission power adjustment to the minimal level at each
transmitting node in the tree such that it could significantly save energy compared to those multicast
algorithms for mobile ad-hoc networks which only apply single level of transmission power. They also
proposed a distributed maximum lifetime multicast routing algorithm called DMLM, in which an extra
localized operation called lifetime enhancement operation is used to prolong the tree lifetime. In this method,
the hosts make decisions based solely on the mobility information of and distances to its neighbors.

2.3. Learning Automata Applications

Learning automata have been found to be useful in systems where incomplete information about the
environment, in which those systems operate, exists. Learning automata are also proved to perform well in
dynamic environment of the wireless, ad-hoc and sensor networks. Haleem and Chandramouli [15] used
learning automata to address a cross-layer design for joint user scheduling and adaptive rate control for
downlink wireless transmission. The proposed method tends to ensure that user defined rate requests are
satisfied by the right combination of transmission schedules and rate selections. Nicopolitidis et al. [16]
proposed a bit rate control mechanism based on learning automata for broadcasting data items in wireless
networks. A learning automaton is used in the server which learns the demand of wireless clients for each
data item. As a result of this learning, the server is able to transmit more demanded data items by the network
more frequently. The same authors [17] proposed a learning automata based polling protocol for wireless
LANs in which the access point uses a learning automaton to assign to each station a portion of the bandwidth
proportional to the station's need. Nicopolitidis et al. [18] proposed an ad-hoc learning automata-based
protocol for wireless LANs. In this protocol, the data transmission permission is granted by means of the
learning automata to the stations. The proposed protocol is capable of operating efficiently under the bursty

 nns ournal of Wireless Personal CommunicatioJ

5

traffic conditions. They showed the proposed protocol outperforms TDMA in all cases. Nicopolitidis et al.
[19] also proposed a carrier-sense-assisted adaptive learning MAC protocol for wireless LANs, in bursty
traffic wireless networks with unreliable channel feedback. The self adaptive proposed protocol utilizes
carrier sensing in order to reduce the collisions that are caused by different decisions at the various mobile
stations due to the unreliable channel feedback. Ravana and Morthy [20] proposed Learning-TCP, a novel
learning automata based reliable transport protocol for wireless networks, which efficiently adjusts the
congestion window size and thus reduces the packet losses.

Learning automata are also used in cellular radio networks [21-24]. Beigy and Meybodi [21] proposed
two learning automata based decentralized dynamic guard channel algorithms for cellular mobile networks.
The proposed algorithms use learning automata to adjust the number of guard channels to be assigned to the
cells in the network. In [21] they also introduced a new model for non-stationary environments under which
the proposed algorithms work. They [22] also introduced a multi-threshold guard channel policy, and
proposed a prioritized channel assignment algorithm for multi-cells cellular networks to minimize the
probability of blocking the calls with lowest level of QoS subject to constraints on the blocking probabilities
of other calls. The same authors [23] also proposed an adaptive and autonomous call admission algorithm for
cellular mobile networks in which a new continuous action-set learning automaton is used to minimize the
blocking probability of the new calls.

Learning automata have been found to be useful in systems where incomplete information about the
environment, in which those systems operate, exists. Learning automata are also proved to perform well in
dynamic environments. It has been shown in [36, 45, 46] that the learning automata are capable of solving the
NP-hard problems. Recently, several learning automata-based protocols have been also designed for
improving the performance of the wireless ad hoc networks [25-27, 45]. For instance in [45], Akbari
Torkestani and Meybodi proposed a learning automata-based cluster formation algorithm for ad hoc
networks. In comparison with the best existing clustering methods, the proposed algorithm reduces the
number of cluster-heads as well as the message overhead. In [25], the same authors proposed a
CDMA/TDMA channel assignment scheme for mobile ad hoc networks. In the proposed channel assignment
scheme, each host is assigned a fraction of TDMA frame proportional to its needs (traffic load). In [26],
Akbari Torkestani and Meybodi also proposed a backbone formation algorithm based on distributed learning
automata. By the proposed algorithm, the overheads of the multicast routing and broadcasting in wireless ad
hoc networks can be significantly reduced. This is due to the fact that the proposed algorithm decreases the
number of hosts which are responsible for relaying the message to the number of hosts in backbone.

3. Preliminaries

In this section, to provide a sufficient background for the remainder of the paper, we present a brief
overview of the dominating set problems and their applications in communication networks, as well as some
preliminaries on learning automata theory and variations of learning automata.

3.1. Dominating Set

The dominating set problems are a class of the combinatorial optimization problems in graph theory
which are widely used in wireless ad-hoc networks [28-32]. In wireless networks, message broadcasting,
network clustering, multicast routing, and network backbone formation are some networking issues in which
the dominating set plays an important role. In what follows, the different optimization problems dealing with
the domination sets, and their applications in wireless ad-hoc networks are summarized.

A dominating set S of graph),(EVG = is a subset of V , such that every vertex Vv∈ is either in
S or adjacent to a vertex of S . A vertex of S is said to dominate itself and all adjacent vertices. Finding the
dominating set is a well-known approach, proposed for clustering the wireless ad-hoc networks [32]. A
minimum DS (MDS) is a DS with the minimum cardinality. A dominating set is also an independent
dominating set, if no two vertices in the set are adjacent.

A connected dominating set S of a given graph G is a dominating set whose induced sub-graph,
denoted by >< S , is connected, and a minimum CDS (MCDS) is a CDS with the minimum cardinality. A
MCDS forms a virtual backbone in the network graph by which the routing overhead can be significantly
reduced, where the number of hosts responsible for the route discovery and data transmission can be reduced
to the number of vertices in the MCDS of the network topology graph. Finding the MCDS is a promising

 J. Akbari Torkestani & M. R. Meybodi….

approach to send the broadcast messages [28, 30]. The MDS and MCDS problems have been shown to be
NP-Hard [33, 34], and even for a unit disk graph, the problem of finding a MCDS is still NP-Hard [34].

A weakly connected dominating set (WCDS) S of a given graph G is a dominating set of G , where
the graph))][(],[(SSNESNS W ×∩=>< is a connected sub-graph of G . The closed neighborhood of

a given host v ,][vNG , consists of the hosts adjacent to v and host v itself, and closed neighborhood of set

S ,][SNG , is the unionU Sv G vN
∈

][. That is, the weakly induced sub-graph WS >< contains the hosts of

S , their neighbors, and all edges with at least one endpoint in S . Finding the WCDS was first suggested for
clustering the wireless networks by Chen and Listman [35].

The Steiner connected dominating set S of a given graph G is a connected dominating set by which
only a given subset VR ⊆ (hereafter referred to as terminal-set) must be dominated. Each member of this
subset is referred to as a terminal. Indeed, in SCDS problem, a specified subset, R , of the vertices has to be
dominated by the a connected dominating set. Finding the SCDS of the network graph is a well-known
approach proposed for solving the multicast routing problem in wireless ad-hoc networks [2-3, 6-9], where
subset R comprises the multicast source and the multicast receivers. In this method, the SCDS includes the
intermediate nodes by which the massage sent out by the multicast source is relayed.

In most of the multicast routing protocols, it is assumed that all the nodes have the same weights, and so
these protocols try to minimize the number of forwarding nodes for optimizing the multicast routes. In these
methods, the multicast routing problem is defined as finding the connected dominating set with the minimum
cardinality. However, in many applications of the wireless ad-hoc networks, the assumption above can not
hold true, and reducing the number of forwarding nodes is not sufficient. In such networks, due to the host
heterogeneity, host mobility, and strict resource limitations, each wireless host may have a different cost in
the multicast tree. Therefore, in the following, we present the concept of the weighted Steiner connected
dominating set. The (node)-weighted Steiner connected dominating set problem (WSCDS) is the
generalization of the Steiner connected dominating set problem to the case where the vertices have weight,
and the minimum WSCDS problem aims at finding the Steiner connected dominating set with a minimum
weight. The weight of a set is assumed to be sum of the weight of the elements contained in it.

3.2. Learning Automata

A learning automaton [36-43] is an adaptive decision-making unit that improves its performance by
learning how to choose the optimal action from a finite set of allowed actions through repeated interactions
with a random environment. The action is chosen at random based on a probability distribution kept over the
action-set and at each instant the given action is served as the input to the random environment. The
environment responds the taken action in turn with a reinforcement signal. The action probability vector is
updated based on the reinforcement feedback from the environment. The objective of a learning automaton is
to find the optimal action from the action-set so that the average penalty received from the environment is
minimized.

The environment can be described by a triple },,{ cE βα≡ , where },...,,{ 21 rαααα ≡ represents
the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of the values can be taken by the

reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the penalty probabilities, where the

element ic is associated with the given action iα . If the penalty probabilities are constant, the random
environment is said to be a stationary random environment, and if they vary with time, the environment is
called a non stationary environment. The environments depending on the nature of the reinforcement signal
β can be classified into P -model, Q -model and S -model. The environments in which the reinforcement

signal can only take two binary values 0 and 1 are referred to as P -model environments. Another class of the
environment allows a finite number of the values in the interval [0, 1] can be taken by the reinforcement
signal. Such an environment is referred to as Q -model environment. In S -model environments, the
reinforcement signal lies in the interval],[ba .

 Learning automata can be classified into two main families [37]: fixed structure learning automata and
variable structure learning automata. Variable structure learning automata are represented by a triple

 nns ournal of Wireless Personal CommunicatioJ

7

>< T,,αβ , where β is the set of inputs, α is the set of actions, and T is learning algorithm. The

learning algorithm is a recurrence relation which is used to modify the action probability vector. Let)(kα
and)(kp denote the action chosen at instant k and the action probability vector on which the chosen action is
based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm by which the
action probability vector p is updated. Let)(kiα be the action chosen by the automaton at instant k .

⎪⎩

⎪
⎨
⎧

≠∀−

=−+
=+

ijjnpa
ijnpanp

np
j

jj
j)()1(

)](1[)(
)1((1)

when the taken action is rewarded by the environment (i.e. 0)(=nβ) and

⎪⎩

⎪
⎨
⎧

≠∀−+
−

=−
=+

ijjnpb
r

b
ijnpb

np
j

j

j)()1()
1

(

)()1(
)1((2)

When the taken action is penalized by the environment (i.e. 1)(=nβ). r is the number of actions

which can be chosen by the automaton,)(ka and)(kb denote the reward and penalty parameters and
determine the amount of increases and decreases of the action probabilities, respectively. If)()(kbka = , the

recurrence equations (1) and (2) are called linear reward-penalty (PRL −) algorithm, if)()(kbka >> the

given equations are called linear reward-ε penalty (PRL ε−), and finally if 0)(=kb they are called linear

reward-inaction (IRL −). In the latter case, the action probability vectors remain unchanged when the taken
action is penalized by the environment. In the multicast routing algorithm presented in this paper, each
learning automaton uses a linear reward-inaction learning algorithm to update its action probability vector.

3.3. Distributed Learning Automata

A learning automaton is by design a simple unit by which simple things can be done. The full potential
of the learning automata will be realized when a cooperative effort is made by a set of interconnected learning
automata to achieve the group synergy. A Distributed learning automata (DLA) [36] is a network of the
learning automata which collectively cooperate to solve a particular problem. Formally, a DLA can be
defined by a quadruple >< 0,,, ATEA , where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂

is the set of the edges in which edge),(jie corresponds to the action jα of the automaton iA , T is the set of

learning schemes with which the learning automata update their action probability vectors, and 0A is the root
automaton of DLA from which the automaton activation is started .

The operation of a DLA can be described as follows: At first, the root automaton randomly chooses one
of its outgoing edges (actions) according to its action probabilities and activates the learning automaton at the
other end of the selected edge. The activated automaton also randomly selects an action which results in
activation of another automaton. The process of choosing the actions and activating the automata is continued
until a leaf automaton (an automaton which interacts to the environment) is reached. The chosen actions,
along the path induced by the activated automata between the root and leaf, are applied to the random
environment. The environment evaluates the applied actions and emits a reinforcement signal to the DLA.
The activated learning automata along the chosen path update their action probability vectors on the basis of
the reinforcement signal by using the learning schemes. The paths from the unique root automaton to one of
the leaf automata are selected until the probability with which one of the paths is chosen is close enough to
unity. Each DLA has exactly one root automaton which is always activated, and at least one leaf automaton
which is activated probabilistically.

 J. Akbari Torkestani & M. R. Meybodi….

3.4. Variable Action-set Learning Automata

A variable action-set learning automaton is an automaton in which the number of actions available at
each instant changes with time. Variable action-set learning automata have been found to be useful in many
applications. For instance, Akbari Torkestani and Meybodi employed variable action-set learning automata
for solving vertex coloring problem [46], connected dominating set problem [26, 36, 45], and stochastic
minimum spanning tree problem [43]. It has been shown in [36, 39, 43] that a learning automaton with a
changing number of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is

IRL − . Such an automaton has a finite set of n actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA =
denotes the set of action subsets and α⊆)(kA is the subset of all the actions that can be chosen by the
learning automaton, at each instant k . The selection of the particular action subsets is randomly made by an
external agency according to the probability distribution)}(),...,(),({)(21 kqkqkqkq m= defined over the

possible subsets of the actions, where]121,|)([)(−≤≤∈== n
iii iAAAkAprobkq .

[])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα is the probability of choosing action iα , conditioned on the

event that the action subset)(kA has already been selected and also)(kAi ∈α . The scaled probability

)(ˆ kpi is defined as

)(/)()(ˆ kKkpkp ii = (3)

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset)(kA ,and

[]ii kprobkp αα ==)()(.

The procedure of choosing an action and updating the action probabilities in a variable action-set

learning automaton can be described as follows. Let)(kA be the action subset selected at instant k . Before
choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in equation
(3). The automaton then randomly selects one of its possible actions according to the scaled action probability
vector)(ˆ kp . Depending on the response received from the environment, the learning automaton updates its
scaled action probability vector. Note that the probability of the available actions is only updated. Finally, the
probability vector of the actions of the chosen subset is rescaled as)()1(ˆ)1(kKkpkp ii ⋅+=+ , for all

)(kAi ∈α . The absolute expediency and −ε optimality of the method described above have been proved in
[39].

4. The WSCDS Algorithms

In this section, we propose three centralized approximation algorithms based on learning automata for
finding a near optimal solution to the minimum weighted Steiner connected dominating set problem as
described in subsection 3.1. In these algorithms, a learning automaton is first assigned to each vertex of the
graph),(EVG , and so a network of the learning automata isomorphic to the graph is formed. The resultant

network of learning automata can be described by a triple >< WA ,,α , where },...,,{ 21 nAAAA = denotes

the set of the learning automata, },...,,{ 21 nαααα = denotes the set of actions in which

},...,,{ 21 ri
iiii αααα = defines the action-set of learning automaton iA , for each αα ∈i , and

},...,{ 1 nwwW = denotes the set of weights such that iw is the weight associated with automaton iA . Since
the proposed algorithms associate a learning automaton with each host, hereafter a host may be referred to as
its corresponding learning automaton and vice versa. In the first proposed algorithm, which we call it
Algorithm I, the action-set of each learning automaton iA (i.e., iα) contains only two actions 0

iα and 1
iα .

 nns ournal of Wireless Personal CommunicatioJ

9

Choosing action 0
iα by learning automaton iA declares vertex iv as a dominatee vertex and choosing action

1
iα declares it as a dominator vertex. Algorithm I consists of a number of stages, and k th stage of this

algorithm is shown in Figure 1.

Algorithm I The First SCDS Formation Algorithm
STEP 1 SCDS FORMATION

- For all learning automata do in parallel
- Each automaton iA chooses one of its two actions according to its action probability vector.
- If (The chosen action declares vertex iv as a dominator)
 Then

- Vertex iv is added to the set of dominator set being selected in this stage.
- Weight iw associated with vertex iv is added to the weight of the selected dominator set.
- Vertex iv and all its neighbors are added to the set of dominatee set (if they have not been

added yet).
 End for

STEP 2 DOMINATION & CONNECTIVITY CHECKING
- If (Terminal-set R is a subset of the dominatee set and the sub-graph induced by selected
 dominators is connected)
 Then

- Go to step 3
 Else

- Repeat step 1 {this step checks whether the constructed dominating set is a SCDS or not}
STEP 3 COMPARING WITH A DYNAMIC THRESHOLD

- Let dynamic threshold kT (which is initially set to a large value) denotes the cardinality of the
minimum size SCDS constructed until stage k .

- Dynamic threshold kT is updated to the cardinality of the constructed SCDS, if kT is larger than the
cardinality of constructed SCDS.

STEP 4 UPDATING THE ACTION PROBABILITY VECTOR
- Depending on the result of the comparison in step 3, all the learning automata (only the activated

automata in Algorithm III) reward their chosen actions if the cardinality of the constructed SCDS is
less than or equal to the dynamic threshold kT , and penalize them otherwise. Each learning
automaton then updates its action probability vector using a IRL − reinforcement scheme.

STEP 5 STOP CONDITION
The process of constructing the SCDSs and updating the action probabilities are repeated until the
product of the probability of choosing the vertices of the constructed SCDS is greater than a certain
threshold or the number of constructed SCDS exceeds a pre-specified threshold. The SCDS which is
formed last before stopping the algorithm is the SCDS with the minimum cardinality among all
SCDSs.

Figure 1. Algorithm I

The first proposed algorithm has two disadvantages which may increase the running time of algorithm.

The first weakness is that some members of subset R may not be dominated by the selected dominator set,
and the second is that the sub-graph induced by the constructed dominator set may be disconnected. In both
cases, Algorithm I rejects the selected dominator set, and restarts step 1 for constructing a new dominator set.
The second algorithm we propose in this paper attempts to solve the first disadvantage of Algorithm I. This
algorithm is very similar to Algorithm I, but differs in the action-set defined for each learning automaton, as
well as the way of constructing the SCDS. In this algorithm which is called Algorithm II, the action-set of
learning automaton iA (corresponding to vertex iv) includes an action for (associated with) each vertex jv

(for all },...,1{ nj∈), where vertex jv is adjacent to vertex iv , as well as an action for vertex iv itself. Indeed,

in this algorithm, each vertex iv , by choosing action i
j

i
αα ∈ declares vertex jv as its dominator and adds it

to the SCDS, if it has not yet been added. The first two steps of Algorithm II at each stage k are described as
shown in figure 2. The remaining steps (steps 3, 4, and 5) of Algorithm II are the same as those described in
Algorithm I.

 J. Akbari Torkestani & M. R. Meybodi….

Repeat

For all learning automata do in parallel
- Each automaton iA chooses one of its actions (e.g. action j

i
α) according to its action probability

vector
- The vertex corresponding to the selected action (i.e., vertex jv) is added to the dominator set

- The weight associated with vertex jv (i.e., weight jw) is added to the weight of the dominator set
which is being selected at stage k

End for
Until (The sub-graph induced by the selected dominator set is a connected sub-graph of G)

Figure 2. The SCDS formation step (steps 1 and 2) in Algorithm II

Although the dominator set constructed by Algorithm II dominates all members of terminal-set R , it
does not guarantee a connected dominating set to be formed at each stage of algorithm. This problem
significantly increases the number of dominator sets that must be constructed until formation of a Steiner
connected dominating set.

To solve the addressed problem, we propose another algorithm based on DLA called Algorithm III by
which the formation of a SCDS at each stage of algorithm is guaranteed. In this algorithm, the action-set of
each learning automaton iA includes an action for each vertex jv (for all },...,1{ nj∈), where vertex jv is

adjacent to vertex iv . At each stage of Algorithm III , the first dominator (e.g., vertex iv) is randomly chosen

using a separate learning automaton whose action-set contains the set of all the vertices of graph G . The
chosen vertex is added to the SCDS, and its weight is added to the weight of SCDS. Vertex iv and its

neighbors are also added to the dominatee set. The learning automaton corresponding to vertex iv (i.e., iA)
is activated. To improve the convergence speed of the learning automaton, some actions may be disabled in
the action-set of the currently active automaton. To do so, the actions corresponding to the selected vertices
(or dominators) are temporarily removed from the action-set of the active automaton. This avoids choosing a
dominator many times. Furthermore, in Algorithm III, the currently active learning automaton updates its
action-set by disabling the actions corresponding to the dominators by which no more vertices can be
dominated. This avoids redundant dominators, and so considerably decreases the cardinality of the
constructed SCDS. Now, the active learning automaton randomly chooses one of its actions according to its
updated action probability vector. The learning automaton corresponding to the selected action is activated
and does the same as the previous activated automata did. This sequential activation process is either repeated
until formation of a SCDS (all terminals to be dominated) or no more actions can be taken by the currently
active learning automaton. In the first case, the current iteration is over, and in the second case, the algorithm
traces the path induced by the activated automata back for finding a learning automaton with available
actions. The action-set of such an automaton (found in backtracking phase) is updated by disabling its last
chosen action and the current iteration is resumed as described earlier. In Algorithm III, each learning
automaton may activate more than one of its neighbors at each stage. That is, more than one action can be
chosen by each learning automaton. This algorithm can be implemented in a fully distributed manner and so
we use it for multicast routing in ad-hoc networks. The SCDS formation step of Algorithm III has been
shown in figure 3 for a sample graph. The remaining steps (steps 3, 4, and 5) of Algorithm III are the same as
those described in Algorithm I.

(a)

(b)

(c)

 nns ournal of Wireless Personal CommunicatioJ

11

(d)

(e)

Figure 3. The steps of SCDS formation in Algorithm III

The sample graph shown in figure 3 has 11 vertices and 18 edges. In these figures, a black circle

represents a dominator, an encircled vertex represents the first chosen dominators, and a grey circle represents
a dominatee. Therefore, a white circle represents a host that it is neither a dominator nor dominatee. The
number beside each vertex represents its ID and the weight associated with that vertex too. The set near a
dominator represents the action-set of the learning automaton corresponding to it. For instance in figure 3(b),
since vertices 2, 3 and 5 are the neighbors of dominator vertex 1, the action-set of the learning automaton
corresponding to vertex 1 contains three actions for choosing vertices 2, 3 and 5 as dominators. A crossed
action represents a disabled action which can not be temporarily chosen by the learning automaton (e.g.,
action 3 in figure 3(b)). Letter "T" near a vertex represents that this vertex is a terminal and must be
dominated. In this example, vertices 6, 10 and 11 form the terminal-set. An arrow from vertex iv to jv

means that the action corresponding to vertex jv has been chosen by automaton iA , and so automaton jA
should be activated. As shown in figure 3(a), let us assume that vertex 1 is chosen as the first dominator. It is
added to the SCDS and dominatee set also. Its neighboring vertices are added to the dominatee set. Its weight
is added to the weight of SCDS. Vertices 2, 3 and 4 form the initial action-set of the learning automaton (i.e.,

}5,3,2{) corresponding to vertex 1. As described earlier, the action corresponding to vertex 3 must be
disabled, since it dominates no more actions. Therefore, vertex 1 randomly chooses one of its two remaining
actions. Let us assume that vertex 5 to be chosen as the second dominator. Vertex 5 is activated and does the
same as vertex 1 did. Let us assume that vertex 5 chooses vertex 4 (by which terminal 6 is dominated), vertex
4 chooses vertex 7, and vertex 7 finally chooses vertex 8 (by which terminals 10 and 11 are dominated). At
this point the current iteration is over, and the selected SCDS contains }8,7,5,4,1{ . The weight of the selected
SCDS is calculated as the sum of the weight of its members. According to assumptions, this weight is 25 for
this example. Like Algorithm I, in step 3, the weight of the selected SCDS is compared with the dynamic
threshold kT . If this weight is less than or equal to the dynamic threshold kT , in step 4, the activated automata
are rewarded, and they are penalized otherwise. The action probability vector of the activated automata is
updated using a IRL − reinforcement scheme. The stop condition is verified and a new iteration begins, if the
stop condition is false. Due to the distributed nature of DLA, Algorithm III can be also implemented in a fully
distributed manner, and so in the next section, it will be used for multicast routing in wireless mobile ad-hoc
networks.

5. DLA-based Multicast Routing Algorithm

In this section, a distributed learning automata-based multicast routing algorithm called DLAMRA is
proposed for wireless mobile ad-hoc networks. The multicast routing algorithm that we are going to propose
in this paper is a distributed version of the last WSCDS algorithm proposed in section 4 (i.e., Algorithm III),
where the relative speed of each host is considered as its weight. In this approach, the multicast messages are
forwarded along the MVB by which the multicast source is connected to each of the multicast receivers. This
backbone can be found by solving the WSCDS problem in the network graph where subset R comprises the
multicast source and the multicast receivers. In this method, each host (e.g., ih) is equipped by a learning

automaton (e.g., iA) whose learning algorithm is linear reward-inaction. The resulting network of learning
automata is isomorphic to the network graph and can be described by a triple >< WA ,,α as described in

section 4, where iw represents the mobility speed associated with host ih .

 J. Akbari Torkestani & M. R. Meybodi….

To form the action-set of each learning automaton iA , its corresponding host (i.e., ih) propagates
locally a message to its one-hop neighbors. The hosts which are within the transmission range of the sender
host, upon receiving the message, reply it and return their action-set information. The sender forms its action-
set on the basis of the received replies, so that each host jh by which the message is replied is associated

with action j
iα in the action-set of automaton iA . Action j

iα corresponds to the selection of host jh as a

dominator host by learning automaton iA . Therefore, the action-set size of each learning automaton is
strongly dependent on the degree of its corresponding host, and consequently, on the network density. Due to
the frequent topology changes in mobile ad-hoc networks, the action-set size of the learning automata is
always changing.

The problem with the action-set defined above is that the number of actions is fixed and does not vary
with time. This may result in a host to be chosen many times, the virtual backbone contains loops and suffers
from the redundant dominators by which no more hosts can be dominated. Therefore, the fixed action-set
decreases the convergence speed of algorithm and increases the virtual backbone size also. To overcome
these shortcomings, we propose the learning automata with changing number of actions, and introduce the
following rule for pruning the action-set of such learning automata.

Pruning Rule. To avoid the loops and the redundant dominator hosts by which no more (dominatee) hosts
can be dominated and to avoid choosing the same dominators (by different hosts), the proposed algorithm
prunes the action-set as follows. As mentioned earlier, when host ih is forming the action-set of its
automaton, it receives some messages from its neighboring hosts which include the action-set information of
these hosts. Depending on the received information, activated automaton iA updates its action-set by
disabling the actions corresponding to the hosts whose one-hop neighbors all have been dominated earlier, if
any. By this rule, the action probability vector of each activated learning automaton is scaled as described in
section 3.4, on the variable action-set learning automata. At the end of each iteration, the disabled actions of
each activated learning automaton must be re-enabled for the next iteration.

5.1. Multicast Routing Procedure

In this algorithm, each mobile host immediately broadcasts its mobility information (mobility speed and
movement direction) to its neighboring hosts, when it experiences a new epoch (or its mobility characteristics
change). Each mobility epoch is considered as a (short) period of time in which both the mobility speed and
the movement direction of a mobile host are constant. Then, each host calculates its relative mobility, on the
basis of the recently received information from its neighbors. The relative mobility is defined as the mobility
degree a mobile host exhibits with respect to its neighbors. The relative mobility of each host (with respect to
all its neighbors) is considered as a criterion to measure the mobility degree of the host, and to classify the
hosts for finding the more stable multicast routes.

To compute the relative mobility, the mobility profile (mobility speed and movement direction) of each
host must be exchanged with its neighboring hosts. Since the mobility characteristics of a mobile host vary
with time, the host relative mobility changes as the host moves. Let ݏ௜

௞ denotes the mobility speed of host ݄௜
at instant ݇, and ߙ௜

௞ denotes the movement direction of host ݄௜ at instant ݇. Thus, the relative mobility
between two mobile hosts ݄௜ and ௝݄ at instant ݇ is defined as

࣬௜௝
௞ ൌ ටݏ௜

௞ଶ ൅ ௝ݏ
௞ଶ െ ௜ߙ2

௞ߙ௝
௞cos ሺߙ௜

௞െߙ௝
௞ሻ

Then, the relative mobility of a host ݄௜ with respect to all its neighbors can be achieved as follows.

Թ௜
௞ ൌ

∑ ࣬೔ೕ
ೖ

౟ࣨא೓ೕ׊
|ࣨ౟|

 (4)

where ୧ࣨ ൌ ሼ ௝݄| ௝݄ is a neighbor of ݄௜} denotes the set of all the neighbors of host ݄௜, and | ୧ࣨ| represents the
cardinality of ୧ࣨ. Relative mobility Թ௜

௞ is periodically calculated and assigned to each host ݄௜ as a weight.

 nns ournal of Wireless Personal CommunicatioJ

13

The relative mobility speed of each host, in the proposed multicast routing method, corresponds to the weight
associated with each vertex in equivalent WSCDS problem. A host with a high relative mobility is more
prone to the erratic mobility behaviors compared to the stable hosts, and so more stable routes can be founded
on the hosts with lower relative mobility.

Each host included in the Steiner connected dominating set (or multicast route) is called a dominator
host, otherwise a dominatee host. Indeed, a dominatee host is a one-hop neighbor of at least one host in the
SCDS, if it is not included in the SCDS. In this method, upon receiving a multicast message, the dominator
hosts re-broadcast it, while the dominatee hosts only receive the message. That is, the dominator hosts assume
the role of the (intermediate) relay hosts. At each iteration of algorithm, the hosts which are selected as
dominators form a route from the multicast source to each of the multicast receivers. The process of choosing
the dominators is described later. The learning automata iteratively construct the multicast routes and update
the action probability vectors until they find a near optimal solution to the WSCDS problem that guarantees
the stability of the formed multicast route. Each host requires the following data structures to participate in
the multicast routing process: Let Max_itr denotes the stopping condition of algorithm as a maximum number
of iterations, Dominator_set denotes the set of dominator hosts by which the WSCDS is formed,
Dominatee_set be the set of hosts in which each member is a one-hop neighbor of at least one dominator host
in the Dominator_set, MRP denotes the threshold required for terminating the multicast routing process as the
product of the probability of choosing the dominator hosts in the Dominator_set, Prob_vct denotes the vector
of the probability of choosing the members of the Dominator_set, Itr_num be a counter which keeps the
number of constructed Dominator_set, Multicast_grp includes the set of hosts to which the multicast message
must be forwarded, Multicast_src denotes the host by which the multicast message is sent out, Trshld be a
dynamic threshold including the weight of the minimum (weight) multicast routes (dominator sets)
constructed yet which is initially set to a large value, and Dom_set_wgt denotes the weight associated with
the chosen Dominator_set.

When a multicast source decides to initiates a multicast session (or to send a multicast message to a
multicast group), it inserts its one-hop neighbors' ID to the Dominatee_set, activates its corresponding
learning automaton, disables some actions according to the pruning rule described earlier, chooses an action
according to its action probability vector, generates an Activation message, and finally sends it to the mobile
host corresponding to the chosen action. Each Activation message includes Dominatee_set, Dominator_set,
Multicast_grp, Multicast_src, Trshld, Dom_set_wgt, Prob_vct, and Itr_num. The multicast group members
are included in the Multicast_grp, and multicast source inserts the probability of the chosen action to the
Prob_vct. The Activation message is described below.

When a given host ih receives an Activation message, it inserts its ID as a new dominator host into the
Dominator_set. To update the Dominatee_set it adds its ID and its one-hop neighbors' ID to this set. The
relative speed (or weight) of the activated host is added to the Dom_set_wgt. Now, host ih checks whether
all multicast receivers are included in Dominatee_set or not. If so, it checks the stopping condition.
Otherwise, host ih updates its action-set using pruning rule, and determines whether there exist any available
actions or not.

If there exist any actions can be chosen by learning automaton iL , learning automaton iL is activated and
chooses one of its actions as a new dominator host. Otherwise, the path induced by the activated learning
automata (selected dominator hosts) is traced back for finding a learning automaton with available actions.
The action-set of such a learning automaton (found in backtracking phase) is updated by disabling its
previous chosen action and the current iteration is resumed by choosing a new action. The probability of the
chosen action is inserted in Prob_vct , and an Activation message is sent to the chosen dominator host.

 To verify the stopping condition of the multicast routing process, the probability of choosing the
recently selected Dominator_set is computed. This probability is defined as the product of the probability of
choosing the dominator hosts contained in the Dominator_set. If this probability is greater than the certain
threshold MRP or Itr_num exceeds a per-specified threshold Max_itr, dominator host ih generates a
MULTIICAST message including the last selected Dominator_set (or multicast route) and broadcasts it
within the network. Otherwise (i.e., when the stopping condition is false), the relative speed of the chosen
Dominator_set is calculated as the sum of the relative speed of the dominators contained in Dom_set_wgt. If
the weight of the selected Dominator_set is less than the dynamic threshold Trshld, then dynamic threshold
Trshld is updated to the weight of the selected Dominator_set and all the chosen actions of the activated
automata (corresponding to the dominator hosts) are rewarded by sending back a Rewarding message,

 J. Akbari Torkestani & M. R. Meybodi….

otherwise, they are penalized by sending back a Penalizing message. Rewarding and Penalizing messages are
binary reinforcement signals. Multicast source starts a new iteration when it receives a Rewarding or a
Penalizing message.

As our algorithm proceeds, the value of Trshld tends to the weight of the most stable multicast route,
and so the probability of choosing the more stable routes increases as the probability of penalizing the
unstable routes increases. Finally, the probability of choosing the most stable multicast route (i.e., the
multicast route with the minimum relative speed) converges to one. In what follows, we describe the
Multicast, Penalizing and Rewarding messages which are used in an Activation message.

A Multicast message includes the multicast route selected during the last iteration. When host ih

receives a Multicast message, it is noticed that the multicast routing process has been finished, and it
thereafter uses the multicast route contained in the Multicast message to send the multicast packets to the
given multicast members. It will then terminate the multicast routing procedure.

Let j
iα denotes the chosen action by learning automaton iA . When dominator host ih receives a

Rewarding message, it updates its action probability vector using the learning algorithm given in equation (5),
under which the chosen action (i.e., j

iα) is rewarded, and the other actions (ki ,α , for all jk ≠) are
penalized.

)](1[)()1(,,, npanpnp jijiji −+=+ ,

jknpanp kiki ≠∀−=+)()1()1(,, .
(5)

where jip , is the probability with which host ih chooses host jh as a dominator host.
After rewarding the chosen action, the scaled action probability vector must be updated once again (or

rescaled) by enabling all the disabled actions according to the rescaling method described in section 3.4 on
the variable action-set learning automata. In this case, the multicast source starts a new iteration as described
earlier.

Since the reinforcement scheme by which the learning automata update their action probability vectors
is IRL − , the action probabilities of the activated learning automata (corresponding to the dominator hosts)
remain unchanged when they receive a Penalizing message. In this case, the disabled actions of each activated
learning automaton are enabled again, and the multicast source starts a new iteration upon receiving a
Penalizing message.

6. Experimental Results

In this paper, we first proposed three learning automata-based algorithms for approximating a near
optimal solution to the minimum weighted Steiner connected dominating set problem (section 4). Then, we
proposed a multicast routing algorithm for wireless mobile ad-hoc networks based on distributed learning
automata (section 5). Therefore, we have conducted two groups of simulation experiments. In the first group
of our experiments, we compare the centralized algorithms proposed (in section 4) for solving the minimum
WSCDS problem, and in the second group, we study the performance of the proposed multicast routing
algorithm in comparison with the best existing methods.

6.1. WCDS Algorithms

The simulation experiments conducted in this section are concerned with investigating the efficiency of
the centralized approximation algorithms proposed for solving the minimum WSCDS problem. The results of
these algorithms are compared with those of the previous well-known algorithms like Guha & Khuller’s
algorithm [2], Wu et al.'s algorithm [3], and Muhammad's algorithm [7].

In all experiments presented in this paper, the reinforcement scheme used for updating the action
probability vectors is IRL − , and the learning rate is 0.1. To generate the random graphs, a number of vertices
are uniformly distributed in a two-dimensional simulation area of size 10001000× units at random. We
assume that a link to be established between two vertices, if the distance between them is not longer than 200
units. Each algorithm is tested only on the connected graphs, and the reported results are averaged over 100
runs. Each algorithm is terminated when the probability of choosing the SCDS approaches 0.95, or the
number of selected SCDSs exceeds 10000.

 nns ournal of Wireless Personal CommunicatioJ

15

In these experiments, 100 vertices are randomly distributed in the simulation area. To study the impact
of the terminal-set size on the performance of the proposed algorithms, the size of the terminal-set ranges
from 10 to 100. The average size of the Steiner connected dominating set constructed by the proposed
algorithms is given in Figure 4, and the running time of each algorithm is given in Figure 5.

From the results given in Figure 4, it is clear that, for all algorithms the size of the Steiner connected
dominating set increases as the terminal-set size increases. For instance, in Guha & Khuller’s algorithm, the
SCDS size is 7.35 when the terminal-set size is 10, and it approaches 19.10 when the terminal-set size
increases to 100.

The results given in Figures 4 and 5 show that, as expected, Algorithm III outperforms the others, and
Algorithm I performs worst among the algorithms presented in this paper. As described earlier, in Algorithm
II, each vertex chooses its dominator itself, and so unlike Algorithm I, it guarantees to form a dominating set
at each iteration. Therefore, it is expected that Algorithm II will improve the running time of Algorithm I.
However, from Figure 5, it is clear that the running time of Algorithm1 is very close to that of Algorithm II.
This is because the action-set size of each learning automaton in Algorithm II is much larger than that of
Algorithm I, and this prolongs the convergence of learning automaton to its optimal action, and increases the
running time of algorithm. The results given in Figures 4 and 5 also show that Algorithm III significantly
outperforms Algorithms I and II both in terms of the SCDS size and running time. This is due to the fact that
at each stage of this algorithm a Steiner connected dominating set is formed. Furthermore, taking advantage
of the variable action-set learning automata, Algorithm III avoids the redundant dominators by which no more
vertices can be dominated.

From the results given in Figures 4 and 5, it can be concluded that Algorithm III has the best
performance both in terms of the running time and dominating set size compared to the first two algorithms
presented in this paper (Algorithms I and II). Therefore, to evaluate our findings on constructing the optimal
Steiner connected dominating set, we compare the results of Algorithm III with the best existing algorithms
such as Guha & Khuller’s algorithm [2], Wu et al.'s algorithm [3], and Muhammad's algorithm [7].

Comparing the results of the previous algorithms given in Figure 4, we find that, in most cases, Guha &
Khuller’s algorithm forms the Steiner connected dominating set with the smallest number of dominators, and
Muhammad's algorithm and Wu et al.'s algorithm lag far behind. Though Wu et al.'s algorithm and
Muhammad's algorithm both are MIS-based algorithms, it can be seen that the size of the Steiner connected
dominating set constructed by Muhammad's algorithm is smaller compared to Wu et al.'s algorithm. The
results show that our last proposed algorithm (Algorithm III) significantly outperforms the existing
algorithms in terms of the SCDS size, especially for the larger terminal-sets.

Figure 5 shows the average time taken (in seconds) by each algorithm to construct the Steiner connected
dominating set of the random graphs. Comparing the results of algorithms given in Figure 5, it is observed
that Wu et al.'s algorithm outperforms the others in terms of the average time required for constructing the
SCDS. It can be also seen that Muhammad algorithm has the longest running time. From the results given in
Figure 5, it is clear that, the running time of all algorithms is directly proportional to the number of terminals,
and it increases as the terminal-set size increases. The obtained results also show that our last proposed
algorithm considerably outperforms Guha & Khuller’s algorithm and Muhammad's algorithm, but has a
longer running time in comparison with Wu et al.'s algorithm.

Comparing the results shown in Figure 4 with Figure 5, it can be concluded that our proposed algorithm
(Algorithm III) generates much smaller Steiner connected dominating sets compared to the other algorithms
in a reasonable time (comparable to the fastest method), and so has the best overall performance. The size of
the SCDS constructed by Muhammad's algorithm is as large as that constructed by Wu et al.'s algorithm,
whereas Wu et al.'s algorithm has the shortest running time. Therefore, Muhammad's algorithm has the worst
overall performance and Wu et al.'s algorithm is ranked below Algorithm III. Guha & Khuller’s algorithm is
also ranked lower than Wu et al.'s algorithm but very higher than Muhammad's algorithm.

 J. Akbari Torkestani & M. R. Meybodi….

Figure 4. The average size of the Steiner connected dominating set constructed by different algorithms

Figure 5. The average time taken by different algorithms (in seconds) to construct the Steiner

connected dominating set
6.2. Multicast Routing Algorithm

To study the performance of the multicast routing algorithms, we have conducted several simulation
experiments in two sets. In the first set of experiments, we investigate the impact of the host mobility on the
performance of algorithms. In these simulation experiments, the multicast group size is fixed at 10, and the
host speed varies from 10 to 70 (km/h). The second set of the simulation experiments aims at evaluating the
scalability of the multicast routing algorithms, and so in these experiments, the host mobility speed is fixed at
15 (km/h) and the multicast group size changes from 5 to 30. In these experiments, the performance of the
various multicast routing algorithms is evaluated in terms of the following metrics.
• Packet delivery ratio. This metric is defined as the number of data packets delivered to the multicast
receivers over the number of data packets supposed to be received by multicast receivers. This ratio
represents the efficiency of routing in our proposed method.
• End-to-end delay. The time elapsed between the instant when the source has data packet to send and the
instant when the destination receives the data. Note that if no multicast route is available, the time spent for
building a route (route acquisition latency) is also included in the end-to-end delay. In this case, this metric is

0

5

10

15

20

25

30

35

10 20 30 40 50 60 70 80 90 100

A
ve
ra
ge
 s
iz
e
of
 th

e
SC
D
S

Terminal‐Set Size
22

Guha & Khuller's Algorithm
Wu et al.'s Algorithm
Muhammad's Algorithm
Algorithm I
Algorithm II
Algorithm III

0

5

10

15

20

10 20 30 40 50 60 70 80 90 100

Ru
nn

in
g
Ti
m
e
(S
ec
.)

Terminal‐Set Size
22

Guha & Khuller's Algorithm
Wu et al.'s Algorithm
Muhammad's Algorithm
Algorithm I
Algorithm II
Algorithm III

 nns ournal of Wireless Personal CommunicatioJ

17

defined as the time required for multicast route creation as well as the time required for transmitting the
multicast packets.
• Multicast route Lifetime. The time interval during which the multicast routes remain connected. In mobile
ad hoc networks, the network topology changes, caused by the host movement, shortens the lifetime of the
links. To find the stable routes, these movements should be exactly estimated. This metric represents the
efficiency of each algorithm to predict the realistic mobility behavior of a host.

To show the efficiency of our proposed multicast routing algorithm, we compare its obtained results
with those of the mobility-based hybrid multicast routing protocol proposed by An and Papavassiliou [13],
hereafter referred to as AP, two enhanced versions of the ODMRP proposed by Su et al. [12], hereafter
referred to as SLG-1 and SLG-2, and two distributed multicast routing algorithms proposed by Guo and Yang
[14], hereafter referred to as GY-1 and GY-2.

In our simulation scenarios, a mobile ad hoc network consisting of 50 mobile hosts is modeled in which
the mobiles are randomly and uniformly distributed within a square simulation area of size
1000(m)×1000(m). Each host is modeled as an infinite-buffer, store-and forward queuing station, and is
assumed to be aware of its mobility information with the aid of a reliable positioning system. The IEEE
802.11 DCF [44] (Distributed Coordination Function) with CSMA/CA (Carrier Sense Multiple
Access/Collision Avoidance) is used as the medium access control protocol, and two ray ground as the
propagation model. The wireless hosts communicate through a common broadcast channel of capacity
2(Mb/s) using omnidirectional antennas. All mobile hosts have the same radio propagation range of 250(m).
CBR (Continuous Bit Rate) traffic sources are used to generate the traffics with a rate of 20 packets per
second. The packet size is 512 bytes. In our experiments, MRP is set to 0.90, and MAX_ITR is set to 100.
Mobility characteristics change at the beginning of each epoch and remain constant during the epoch. Each
multicast group is associated with a multicast source, and the multicast members and source are randomly
chosen with a uniform distribution. The multicast members join the group at the start of the multicast session
and remain as members throughout the session. Each experiment is run on 100 connected graphs and the
results, presented in this paper, are averaged over these runs.

In these experiments, the packet delivery ratio is measured as a function of the host mobility speed. It is
clear from Figure 6 that, the packet delivery ratio of GY-I, GY-II and AP rapidly degrades as the mobility
speed increases. SLG-I and SLG-II are more stable, and the packet delivery ratio of DLAMRA more slowly
decreases compared with the other algorithms. The results given in Figure 6 show that GY-I has the lowest
packet delivery ratio, and DLAMRA provides the highest packet delivery ratio. This is due to the fact that, it
uses the relative speed of the host (with respect to all its neighbors) as a criterion for selection of the routes.
Therefore, it chooses the more stable routes that are not affected by the host mobility. In algorithms SLG-I
and SLG-II, since they reconstruct the routes in advance of the topology changes, most data are delivered to
the multicast receivers without being dropped. Therefore, they show a good performance in highly dynamic
environments, and are ranked below DLAMRA.

Figure 6. Packet delivery ratio of the multicast routing algorithms as a function of the mobility speed

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70

Pa
ck
et
 D
el
iv
er
y
Ra

tio

Mobility Speed
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

 J. Akbari Torkestani & M. R. Meybodi….

The packet delivery ratio of the multicast routing algorithms as a function of the multicast group size is

drawn in Figure 7. As shown in this figure, the packet delivery ratio of all algorithms is slightly improved as
the multicast group size increases. Since in DLAMRA the dominator hosts broadcast the multicast packets to
all its neighboring hosts, DLAMRA is robust to multicast group size. Like those in Figure 6, here DLAMRA
has the highest packet delivery ratio, and SLG-II lags behind. The results show that the packet delivery ratio
of SLG-I is very close to that of AP and GY-II. It can be also seen that GY-I has the lowest delivery ratio and
is ranked below GY-II.

Figure 7. Packet delivery ratio of the multicast routing algorithms as a function of the multicast group size

Figure 8. End-to-end delay as a function of the mobility speed

Figures 8 and 9 show the end-to-end delay of each multicast routing algorithm. Figure 8 shows the end-

to end delay as a function of the mobility speed, and Figure 9 shows it as a function of the multicast group
size. In these experiments, we varied the mobility speed from 10(km/h) to 70(km/h) and measured the end-to-
end delay of each algorithm. As shown in these figures, SLG-II and DLAMRA have the shortest end-to-end
delay, and GY-I performs worst compared with the others. From the results shown in Figure 8, it is clear that
GY-II only slightly outperforms GY-I. In SLG-II, multicast sources flood the Join Data before they form the

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

Pa
ck
et
 D
el
iv
er
y
Ra

tio

Multicast Group Size
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

10

15

20

25

30

35

40

10 20 30 40 50 60 70

En
d‐
To

‐E
nd

 D
el
ay

Mobility Speed
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

 nns ournal of Wireless Personal CommunicatioJ

19

forwarding groups. Therefore, in SLG-II, the route acquisition latency is eliminated and the packets are
delivered to the multicast receivers in a shorter time. DLAMRA finds the more stable routes, and this causes a
longer delay. On the other side, it minimizes the size (number of relay hosts) of the multicast routes also.
Generally, it sends the multicast packets in a reasonable delay.

Figure 9. End-to-end delay as a function of the multicast group size

Among the studied algorithms, AP, SLG-II, and DLAMRA consider the mobility-prediction issues for

constructing the stable multicast routes. As described earlier, SLG-II uses the route expiration time as the
route selection metric, AP utilizes the concept of the relative mobility to characterize the mobility degree of a
host. SLG-II and AP predict the motion behaviors of a host based on the samples taken from the mobility
parameters during a single epoch. DLAMRA samples the mobility characteristics in different epochs to
estimate their expected values. Therefore, it finds the more stable routes that stay connected for a longer time.
The lifetime of the multicast routes constructed by the various algorithms is presented in Figures 10 and 11.
The results depicted in these figures show that DLAMRA significantly outperforms the others and GY-I and
SLG-I have the worst results in terms of the route lifetime. The routes constructed by SLG-II are more stable
than those of AP, but their lifetime is much shorter compared with GY-II. From Figure 10, it is obvious that
the route lifetime is degraded as the mobility speed increases. This is because the wireless connections
between the hosts become looser as the host speed increases. The number of intermediate hosts required for
relaying the multicast packets increases as the number of multicast receivers increases. On the other side, the
duration of the multicast route is directly proportional to the number of relay nodes. Therefore, as shown in
Figure 11 , the multicast route duration increases as the multicast group size increases.

10

15

20

25

30

35

40

5 10 15 20 25 30

En
d‐
To

‐E
nd

 D
el
ay

Multicast Group Size
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

 J. Akbari Torkestani & M. R. Meybodi….

Figure 10. The lifetime of the multicast route as a function of the mobility speed

Figure 11. The lifetime of the multicast route as a function of the multicast group size

7. Conclusion

In this paper, we first proposed three learning automata-based approximation algorithms for finding a
near optimal solution to the minimum weighted Steiner connected dominating set problem. Then, we
proposed a multicast routing algorithm for wireless mobile ad-hoc networks based on distributed learning
automata. Our multicast routing algorithm is a distributed implementation of the last algorithm proposed in
this paper for solving the weighted Steiner connected dominating set problem. We compared the proposed
centralized WSCDS algorithms with the best existing algorithms and showed that the last proposed algorithm
(Algorithm III) outperforms the others both in terms of the dominating set size and running time. The results
of the simulation experiments showed that our proposed multicast routing algorithm is superior to the well-
known multicast routing protocols in terms of the packet delivery ratio, multicast route lifetime, and end-to-
end delay.

Acknowledgement

The authors would like to thank the editor and anonymous reviewers whose helpful comments and
constructive criticism improved the quality of this paper.

0

200

400

600

800

1000

10 20 30 40 50 60 70

Li
fe
tim

e

Mobility Speed
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

0

200

400

600

800

1000

5 10 15 20 25 30

Li
fe
tim

e

Multicast Group Size
22

GY‐I
GY‐II
AP
SLG‐I
SLG‐II
DLAMRA

 nns ournal of Wireless Personal CommunicatioJ

21

References
1. T. Nadeem, and S. Parthasarathy, “Mobility control for throughput maximization in ad-hoc

networks,” Wireless Communication and Mobile Computing, Vol. 6, pp. 951-967, 2006.

2. S. Guha and S. Khuller, “Approximation Algorithms for Connected Dominating Sets,”
Algorithmica, Vol. 20, No. 4, pp. 374-387, 1998.

3. Y. Wu, Y. Xu, G. Chen, and K. Wang, “On the construction of virtual multicast backbone for

wireless ad-hoc networks,” IEEE International Conference on Mobile Ad-hoc and Sensor Systems,
pp. 294 – 303, 2004.

4. H. Lim, and C. Kim, “Flooding in Wireless Ad-hoc Networks,” Journal of Computer

Communications, Vol. 24, pp. 353-363, 2001.

5. G. Robins, and A. Zelikovsky, “Improved Steiner Tree Approximation in graphs,” in Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770-779, 2000.

6. G. Singh, and K. Vellanki, “A distributed protocol for constructing multicast trees,” in Proceedings

of the International Conference on Principles of Distributed Systems, France, 1998.

7. R. B. Muhammad, “Distributed Steiner Tree Algorithm and its Application in Ad-hoc Wireless
Networks,” in Proceedings of The 2006 International Conference on Wireless Networks (ICWN'06),
USA, pp. 173-178, 2006.

8. R. B. Muhammad, “A Distributed Graph Algorithm for Geometric Routing in Ad-hoc Wireless

Networks,” Journal of Networks, Vol. 2, No. 6, pp. 50-57, 2007.

9. D. Aggarwal, C. K. Dubey, and S. K. Mehta, “Algorithms on Graphs with Small Dominating
Targets,” ISAAC 2006, LNCS 4288, pp. 141-152, 2006.

10. S. J. Lee, M. Gerla and C. C. Chiang, “On-demand multicast routing protocol, ” in Proceedings of

IEEE WCNC’99, New Orleans, LA, pp. 1298–1302, 1999.

11. C. C. Chiang, M. Gerla, and L. Zhang, “Forwarding Group Multicast Protocol (FGMP) for
Multihop, Mobile Wireless Networks,” Journal of Cluster Computing, Vol. 1, No. 2, p. 187-196,
1998.

12. W. Su, S. J. Lee, and M. Gerla, “Mobility prediction and routing in ad-hoc wireless networks,”

International Journal of Network Management, Vol. 11, pp. 3–30, 2001.

13. B. An, and S. Papavassiliou, “MHMR: mobility-based hybrid multicast routing protocol in mobile
ad-hoc wireless networks,” Wireless Communication and Mobile Computing, Vol. 3, pp.255-270,
2003.

14. S. Guo, and O. Yang, “Maximizing Multicast Communication Lifetime in Wireless Mobile Ad-hoc

Networks,” IEEE Transactions on Vehicular Technology, Vol. 57, pp. 2414-2425, 2008.

15. M. Haleem and R. Chandramouli, “Adaptive Downlink Scheduling and Rate Selection: A Cross
Layer Design,” Special issue on Mobile Computing and Networking, IEEE Journal on Selected
Areas in Communications, Vol. 23, No. 6, 2005.

16. P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Exploiting Locality of Demand to

Improve the Performance of Wireless Data Broadcasting,” IEEE Transactions on Vehicular
Technology, Vol. 55, No. 4, pp. 1347-1361, 2006.

 J. Akbari Torkestani & M. R. Meybodi….

17. P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Learning-Automata-Based Polling
Protocols for Wireless LANs,” IEEE Transactions on Communications, Vol. 51, No. 3, pp. 453-
463, March 2003.

18. P. Nicopolitidis, G. I. Papadimitriou and A. S. Pomportsis, “Distributed Protocols for Ad-Hoc

Wireless LANs: A Learning-Automata-Based Approach,” Ad-hoc Networks, Vol. 2, No. 4, pp. 419-
431, 2004.

19. P. Nicopolitidis, G. I. Papadimitriou, M. S. Obaidat and A. S. Pomportsis, “Carrier-sense-assisted

Adaptive Learning MAC Protocol for Distributed Wireless LANs,” International Journal of
Communication Systems, Wiley, Vol. 18, No. 7, pp. 657-669, 2005.

20. B. V. Ramana and C. S. R. Murthy, “Learning-TCP: A Novel Learning Automata Based

Congestion Window Updating Mechanism for Ad-hoc Wireless Networks,” 12th IEEE
International Conference on High 13 Performance Computing, pp. 454-464, 2005.

21. H. Beigy and M. R. Meybodi, “Learning Automata-based Dynamic Guard Channel Algorithms,”

Journal of High Speed Networks, 2008, to appear.

22. H. Beigy and M. R. Meybodi, “A General Call Admission Policy for Next Generation Wireless
Networks,” Computer Communications, Vol. 28, pp. 1798–1813, 2005.

23. H. Beigy, and M.R. Meybodi, “An Adaptive Call Admission Algorithm for Cellular Networks,”

Computers and Electrical Engineering, Vol. 31, pp. 132–151, 2005.

24. H. Beigy, and M. R. Meybodi, “A Learning Automata-based Dynamic Guard Channel Scheme,”
Lecture Notes on Information and Communication Technology, Vol. 2510 Springer Verlag, pp. 643-
650, 2002.

25. J. Akbari Torkestani, and M. R. Meybodi, “An Efficient Cluster-based CDMA/TDMA Scheme for

Wireless Mobile AD-Hoc Networks: A Learning Automata Approach,” Journal of Network and
Computer applications, 2010, in press.

26. J. Akbari Torkestani, and M. R. Meybodi, “An Intelligent Backbone Formation Algorithm for

Wireless Ad Hoc Networks based on Distributed Learning Automata,” Computer Networks,
Elsevier Publishing Company, 2010, in press.

27. J. Akbari Torkestani, and M. R. Meybodi, “Mobility-based Multicast Routing Algorithm for

Wireless Mobile Ad-Hoc Networks: A Learning Automata Approach,” Journal of Computer
Communications, 2010, in press.

28. J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On Calculating Power-Aware Connected Dominating

Sets for Efficient Routing in Ad-hoc Wireless Networks,” Journal of Communications and
Networks, Vol.4, No.1, pp. 1-12, 2002.

29. J. Wu and H. Li, “On Calculating Connected Dominating Set for Efficient Routing in Ad-hoc

Wireless Networks,” in Proceedings of the 3rd International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communication, pp. 7–14, 1999.

30. Y. Wang, W. Wang, X.-Y. Li, “Distributed Low-Cost Backbone Formation for Wireless Ad-hoc

Networks,” in Proceedings of the Sixth ACM International Symposium on Mobile Ad-hoc
Networking and Computing (MobiHoc 2005), pp. 2–13, 2005.

31. B. Han, “Zone-based Virtual Backbone Formation in Wireless Ad-hoc Networks,” Ad-hoc

Networks, Vol. 7, pp. 183-200, 2009.

 nns ournal of Wireless Personal CommunicatioJ

23

32. K.M. Alzoubi, P.-J. Wan, O. Frieder, “Maximal Independent Set, Weakly Connected Dominating

Set, and Induced Spanners for Mobile Ad-hoc Networks,” International Journal of Foundations of
Computer Science, Vol. 14, No. 2, pp. 287-303, 2003.

33. B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs,” Discrete Mathematics, Vol. 86,

pp. 165-177, 1990.

34. M.V. Marathe, H. Breu, H.B. Hunt, S.S. Ravi, and D.J. Rosenkrantz, “Simple Heuristics for Unit
Disk Graphs,” Networks, Vol. 25, pp. 59–68, 1995.

35. Y.Z. Chen, A.L. Listman, “Approximating Minimum Size Weakly Connected Dominating Sets for

Clustering Mobile Ad-hoc Networks,” Proceedings of the Third ACM International Symposium on
Mobile Ad-hoc Networking and Computing (MobiHoc’2002), pp. 157–164, 2002.

36. J. Akbari Torkestani, and M. R. Meybodi, “Approximating the Minimum Connected Dominating

Set in Stochastic Graphs Based on Learning Automata,” in Proceedings of International Conference
on Information Management and Engineering (ICIME 2009), Malaysia, pp. 672-676, 2009.

37. K. S. Narendra and K. S. Thathachar, “Learning Automata: An Introduction,” New York, Printice-

Hall, 1989.

38. M. A. L. Thathachar, P. S. Sastry, “A Hierarchical System of Learning Automata That Can Learn
the Globally Optimal Path,” Information Science, Vol.42, pp.743-766, 1997.

39. M. A. L. Thathachar and B. R. Harita, “Learning Automata with Changing Number of Actions,”

IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMG17, pp. 1095-1100, 1987.

40. M. A. L. Thathachar, V. V. Phansalkar, “Convergence of Teams and Hierarchies of Learning
Automata in Connectionist Systems,” IEEE Transactions on Systems, Man and Cybernetics, Vol.
24, pp. 1459-1469, 1995.

41. S. Lakshmivarahan and M. A. L. Thathachar, “Bounds on the Convergence Probabilities of

Learning Automata,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-6, pp. 756-
763, 1995.

42. K. S. Narendra, and M. A. L. Thathachar, “On the Behavior of a Learning Automaton in a Changing

Environment with Application to Telephone Traffic Routing,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. SMC-l0, No. 5, pp. 262-269, 1980.

43. J. Akbari Torkestani, and M. R. Meybodi, “Solving the Minimum Spanning Tree Problem in

Stochastic Graphs Using Learning Automata,” in Proceedings of International Conference on
Information Management and Engineering (ICIME 2009), Malaysia, pp. 643-647, 2009.

44. IEEE Computer Society LAN MAN Standards Committee, Wireless LAN Medium Access Protocol

(MAC) and Physical Layer (PHY) specification, IEEE Standard 802.11-1997, The Institute of
Electrical and Electronics Engineers, New York, 1997.

45. J. Akbari Torkestani, and M. R. Meybodi, “Clustering the Wireless Ad-Hoc Networks: A

Distributed Learning Automata Approach,” Journal of Parallel and Distributed Computing, Elsevier
Publishing Company, 2010, in press.

46. J. Akbari Torkestani, and M. R. Meybodi, “A New Vertex Coloring Algorithm Based on Variable

Action-Set Learning Automata,” Journal of Computing and Informatics, 2010, in press.

 J. Akbari Torkestani & M. R. Meybodi….

 Javad Akbari Torkestani received the B.S. and M.S. degrees in Computer Engineering in
2001 and 2004, respectively. He is currently pursuing the Ph.D. degree in Computer
Engineering at Science and Research University, Tehran, Iran. He joined the faculty of
Computer Engineering Department at Arak Azad University, Arak, Iran, in 2004. His
research interests include wireless networks, mobile ad hoc networks, fault tolerant systems,
learning systems, parallel algorithms, and soft computing.

Mohammad Reza Meybodi received the B.S. and M.S. degrees in Economics from Shahid
Beheshti University in Iran, in 1973 and 1977, respectively. He also received the M.S. and
Ph.D. degree from Oklahoma University, USA, in 1980 and 1983, respectively in Computer
Science. Currently, he is a full professor in Computer Engineering Department, Amirkabir
University of Technology, Tehran, Iran. Prior to current position, he worked from 1983 to
1985 as an assistant professor at Western Michigan University, and from 1985 to 1991 as an
associate professor at Ohio University, USA. His research interests include wireless
networks, fault tolerant systems, learning systems, parallel algorithms, soft computing and

software development.

