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Introduction

We want to present the basics of a new point of view in a variety of areas using the idea of
Dual Vector Fields. These topics include operator calculus, representations of Lie algebras,
analytic semigroups, and probability semigroups.

Ph. Feinsilver
Feb. 2006



1 Coherent State Representations:
Operators and Duality

Let us start with the basics of operators and duality with some examples relating to
probability theory.

I. Simple Fock Spaces

We have a vector space H with a basis {ψn}n≥0. Throughout, our scalars will be C, the
complex numbers, or alternatively, we restrict to R, the real numbers.

The Dirac notation writes ψn = |n 〉, called “ket”, where the label n is the eigenvalue of
an operator on H. In this case, it is the number operator, N , Nψn = nψn. In other words,
N is diagonal in this basis with eigenvalues {0, 1, 2, . . .}. In realizing these as functions,
it is convenient to label them according to the number of underlying variables. For d
variables, { x1, . . . , xd }, we write the basis as ψn = ψn1,...,nd

= |n1, . . . , nd 〉, so that n
denotes the corresponding multi-index (n1, . . . , nd), with number operators Niψn = ni ψn.
Then N =

∑

i Ni acts as Nψn = |n|ψn, the total degree of ψn. The state | 0 〉 is called
the vacuum state, is often denoted by Ω, and is mapped to the zero vector by all lowering
operators.

1.1 RAISING AND LOWERING OPERATORS

For a single index, introduce raising and lowering operators, R and V.

R|n 〉 = |n+ 1 〉, V |n 〉 = n|n− 1 〉

Think of going from xn → xn+1 by multiplying by x, and correspondingly from
xn → nxn−1 by differentiation. The specific operators analogous to differentiation are
denoted by V’s and referred to as velocity operators as “lowering operator” refers more
generally to any operator lowering the degree. For d variables, we have

Ri |n 〉 = |n+ ei 〉 = |n1, . . . , ni + 1, . . . , nd 〉, Vi |n 〉 = ni|n− ei 〉

where ei is a vector of 0’s except for a 1 in the ith spot.

1.2 LIE ALGEBRAS

A Lie algebra, g, is an algebra where the multiplication, denoted by brackets [a, b], satisfies
[a, a] = 0 and the Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0

1



In our case, we will use the Lie product given by [a, b] = ab− ba, the commutator on an
associative algebra.

A representation of g is a realization of g where the elements are given as linear maps
on a vector space and the Lie product maps to the commutator. The action of a as a linear
map on g given by b→ [a, b] is the adjoint representation, the mapping written as

(ada)(b) = [a, b]

Typically a Lie algebra is specified by prescribed commutation relations on a basis. Ele-
ments a and b commute if [a, b] = 0. Commutation relations between commuting elements
are not explicitly indicated.

Throughout, we will use { ξ1, ξ2, . . . , ξd } as the basis for a d-dimensional Lie algebra. Then
the Lie algebra is determined by the linear maps

(ad ξk)(ξj) = [ξk, ξj] =
∑

i

cikjξi

The coefficients cikj are called the structure constants of the Lie algebra. These determine

matrices of the adjoint representation, which we denote by ξ̌k,

(ξ̌k)ij = cikj

The fact that this is a representation follows from the Jacobi identity.

We work mainly with operators acting on polynomials and by extension to holomorphic
functions defined in some given neighborhood of 0, which we call locally holomorphic
functions. Alternatively, we can use formal power series. We refer to these three classes of
objects as “suitable functions”.

The Heisenberg-Weyl algebra is given by the commutation rule

[ξ3, ξ1] = ξ2

where it is implicit that ξ2 is in the center, i.e., it commutes with ξ1 and ξ3. A matrix
representation of the HW algebra is

ξ1 =





0 0 0
0 0 1
0 0 0



 , ξ2 =





0 0 1
0 0 0
0 0 0



 , ξ3 =





0 1 0
0 0 0
0 0 0





Note that the adjoint representation is different:

ξ̌1 =





0 0 0
0 0 −1
0 0 0



 , ξ̌2 =





0 0 0
0 0 0
0 0 0



 , ξ̌3 =





0 0 0
1 0 0
0 0 0




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1.3 REPRESENTATIONS OF HW

Now, notice that, for one variable, R and V acting on the vectors |n 〉 satisfy [V,R] = I,
where I is the identity operator, i.e.,

(VR−RV)|n 〉 = (n+ 1 − n)|n 〉 = |n 〉

And I commutes with all operators. So this is a representation of the HW algebra.

Remark. We will usually identify a multiple of the identity operator, say, cI, with the
number c.

Let’s use the realization of operators on polynomials as follows. We denote

X operator of multiplication by x, D differentiation with respect to x

The basis is |n 〉 = xn, with | 0 〉 = 1. For polynomials in d variables, we have correspond-
ingly Xi as multiplication by xi and Di partial differentiation with respect to xi. Note the
commutation relations

[Dj , Xi] = δij I

which prescribe the d-dimensional HW algebra. Any family of operators {Ri,Vj } satisfy-
ing analogous commutation relations are called boson operators in quantum probability.

Note that any Lie algebra may be realized using first-order differential operators, vector

fields, by the mapping,

ξi ↔ Xλc
λ
iµDµ

called the Jordan map.

Notation. Our summation convention is: Greek indices are always summed.

When we have specific realizations of R’s and V’s acting on polynomials or spaces of
functions, we denote the corresponding operators by R’s and V ’s.

1.4 EXAMPLES IN PROBABILITY THEORY

Interesting examples are available from probability theory. We look at the moment polyno-

mials arising from a distribution and we look at certain families of orthogonal polynomials
for some probability distributions.
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1.4.1 Gaussian

Let pt(dx) =
e−x2/(2t)

√
2πt

dx be the Gaussian density with mean zero, variance t > 0. Defin-

ing

hn(x) =

∫ ∞

−∞
(x+ y)n pt(dy) =

∫ ∞

−∞
(x+ y

√
t)np1(dy) (1.4.1.1)

we write this, using angle brackets to denote expected value, as

〈(x+Xt)
n〉

where Xt is the corresponding Gaussian variable.

One sees that V = D, i.e., Dhn = nhn−1. The raising operator, R, is no longer X , but,
in fact, is R = X + tD. This can be written as a recurrence formula. Another way to
think of it as a realization of X in terms of R and V . From X = R− tD = R− tV we have

xhn = hn+1 − tn hn−1

It turns out that a family of Hermite polynomials is orthogonal with respect to this
distribution. They are given by

Hn(x) =

∫ ∞

−∞
(x+ iy)n pt(dy)

where i =
√
−1. From the second formulation in equation (1.4.1.1), we see that one has

replaced t→ −t. Thus,

R = X − tD, V = D

for the Hermite polynomials. The recurrence is thus

xψn = hn+1 + tn hn−1

which is the three-term recurrence a family of orthogonal polynomials must satisfy.

Notice that R∗ = tV , the operator adjoint to R with respect to the inner product

〈f, g〉 =

∫ ∞

−∞
f(y)g(y) pt(dy)

on polynomials or smooth functions with derivatives in L2(R) of the corresponding Gaus-
sian measure.

4



1.4.2 Poisson

Now consider the Poisson distribution, with

pt(x) = e−t t
x

x!

for integer x ≥ 0. The Poisson-Charlier polynomials are orthogonal with respect to this
Poisson distribution. They have generating function

G(v) = G(v; x, t) = (1 + v)x e−vt =
∑

n≥0

vn

n!
Pn(x, t)

Verifying that 〈G(v)G(w)〉 is a function of vw alone shows that the polynomials Pn are
indeed orthogonal. We have the difference operator expressed in terms of D by

(eD − 1)f(x) = f(x+ 1) − f(x)

on polynomials (in general, suitable functions). Notice the duality “multiplication by v”
and the lowering operator V Pn = nPn−1. Acting on G, we see that V = eD − 1. The
raising operator R is dual to differentiation with respect to v. In other words, the operators
V,R are given by transferring the action of the HW representation “multiplication by v,
differentiation with respect to v” via the generating function G to the sequence {Pn }. We
must express the result of differentiating with respect to v in terms of X and D. Noting
that

1

1 + V
= e−D

we find the HW representation

R = Xe−D − tI, V = eD − I

Solving, we find
X = (R + t)(1 + V ) = t+R+RV + tV

Note that RV is the number operator. Thus the recurrence formula

xPn = Pn+1 + (n+ t)Pn + ntPn−1

1.4.3 Analytic HW realizations

To see why we expect that [V,R] = I from the above formulas, we first note that for
any polynomial f(x), inductively it follows that [V, f(R)] = f ′(R) acting on kets. Dually,
[f(V ), R] = f ′(V ). So the analogous formulas hold for all boson operators. These extend
to suitable functions f . In particular, if V (z) denotes a locally holomorphic function, such
that V (0) = 0, V ′(0) 6= 0, we define canonical boson operators associated to V by

R = XW (D), V = V (D)

where W (D) = V ′(D)−1, a notation to be used consistently throughout. The vacuum for
the representation is the function equal to 1.

5



1.5 RAISING AND LOWERING OPERATORS REVISITED

We always have the actions of R and V the same as the corresponding actions of the
abstract operators R and V, so we will use them interchangeably. The question is to
express various operators in the representation of the Lie algebra in terms of R’s and V ’s.
In particular, of interest is the operator L, the adjoint of R, with respect to the inner
product of the L2 space of the underlying measure.

The properties of these operators are determined by the squared norms. Let Lψn =
bnψn−1. Then the condition L = R∗ yields

〈ψn, ψn〉 = γn = bnγn−1

With ‖Ω‖2 = 1, b0 = 0, we get
γn = b1b2 · · · bn

From the Gaussian example, we have R = X − tD, L = tD. Thus, the squared norms are
‖Hn‖2 = tn n!.

II. Coherent states and CSR’s

The techniques we use are based on dualizing the action of operators through a generating
function. For the HW algebra, the basic generating function is the exponential. Borrowing
terminology from quantum physics, we call the generating function

ψv = evRΩ

a coherent state. To get an inner product space, let

〈ψn, ψm〉 = δmnn!

That is, γn = n!. In this way, we have 〈Rψn, ψm〉 = 〈ψn, V ψm〉, i.e., R and V are adjoint
with respect to the inner product.

Note that
V ψv = V evRΩ = evRV Ω + [V, evR]Ω = vevRΩ = vψv

Thus, on ψv we have

Rψv =
∂

∂v
ψv, V ψv = v ψv

rendering the duality R ↔ differentiation, V ↔ multiplication. Multiplying by vm/m!
and summing gives 〈ψn, ψv〉 = vn. Multiplying by wn/n! and summing gives the inner
product of coherent states

〈ψw, ψv〉 = Υwv = ewv

This function is called the Leibniz function as it embodies the Leibniz rule for differenti-
ating the product of functions. It satisfies the partial differential equation

∂Υ

∂w
= 〈Rψw, ψv〉 = vΥ (2.1)

which is another way of expressing that the adjoint of R on this space is V .

6



2.1 CSR’S FOR HW

The coherent state representation of an operator Q, say, is defined by

〈Q〉wv =
〈ψw, Qψv〉
〈ψw, ψv〉

For the Gaussian case, we have R = X − tD, L = tD. Proceeding as above, we have

Υwv = 〈ewRΩ, evRΩ〉 = etwv

Differentiating with respect to v yields the CSR of R, differentiating with respect to w
yields the CSR of L. We find

〈R〉wv = tw, 〈L〉wv = tv

The partial differential equation, cf. equation (2.1),

∂Υ

∂w
= tvΥ

is another way to see that L = tV .

2.2 REPRESENTATIONS OF SL(2)

A second basic example is given by the Lie algebra sl(2) of 2× 2 matrices with zero trace.
The basis given by

R =

(

0 1
0 0

)

, ρ =

(

1 0
0 −1

)

, ∆ =

(

0 0
−1 0

)

satisfies the commutation relations

[∆, R] = ρ, [ρ, R] = 2R, [∆, ρ] = 2∆

An operator realization is given on functions of d variables:

∆ = 1
2

∑ ∂2

∂x2
j

, R = 1
2

∑

x2
j , ρ =

∑

xj
∂

∂xj
+
d

2

so that ∆ is one-half times the Laplacian acting on radial functions and ρ is a variation
on the number operator.

The basis vectors for the representation space are ψn = RnΩ, with ∆Ω = 0, ρΩ = cΩ, for
some scalar c. Inductively we find the commutation rule

[∆, Rn] = n(ρ+ n− 1)Rn−1

Applying this to Ω yields
∆ψn = n(c+ n− 1)ψn−1

7



2.3 COHERENT STATES AND CSR’S FOR SL(2)

Taking ∆ as lowering operator L, we have L = cV +RV 2 and the squared norms

‖ψn‖2 = n!(c)n

Proceeding as before, we have, with ψv = evRΩ,

〈ψn, ψv〉 = (c)nv
n

Multiplying by wn/n! and summing gives the Leibniz function

Υwv = (1 − wv)−c

This satisfies the partial differential equation

∂Υ

∂w
= cvΥ + v2 ∂Υ

∂v

corresponding to the lowering operator cV +RV 2.

It is useful to denote the operators of the representation as ∆̂, ρ̂, R̂. So for the Lie algebra
we have R̂ = R and ∆̂ = cV +RV 2. Then,

ρ̂ = [∆̂, R̂] = c+ 2RV

We use this relation to find the CSR of ρ̂, converting it via

(c+ 2RV )ψv = (c+ 2v
∂

∂v
)ψv

to

〈ρ〉wv = c+
2v

Υ

∂Υ

∂v

Differentiating, we find directly the CSR’s of R̂ and ∆̂. Thus,

〈R〉wv =
cw

1 − wv
, 〈ρ〉wv = c

1 + wv

1 − wv
, 〈L〉wv =

cv

1 − wv

8



III. Appell families

In one variable, Appell systems {hn} are typically defined by these properties:

hn(x) is a polynomial of degree n, n ≥ 0

Dhn(x) = nhn−1(x)

For N ≥ 1, we have analogously

hn(x) is a polynomial of degree n, n ≥ 0

Djhn(x) = nj hn−ej
(x)

(3.1)

where degree n means that the polynomial has top term xn and other terms are of lower
(total) degree. The condition on the degree is a non-degeneracy assumption that will
become clear below.

Let {hn(x)} be an Appell system. Let

F (z, x) =
∑

n≥0

zn hn(x)/n!

be a generating function for this system. The basic property (3.1) implies

∂F

∂xi
= zi F (3.2)

In general we have the form
F (z, x) = ez·xG(z)

The expansion G(z) =
∑

n≥0 z
n cn/n! yields

hn(x) =
∑

m≥0

(

n

m

)

cmx
n−m

as a generic expression for Appell polynomials . The condition on the degree gives us
c0 6= 0, i.e., G(0) 6= 0.

Next we notice that (3.2) may be read from right to left, i.e., multiplication by zi acts as
differentiation Di. Now consider the action of ∂/∂zj:

∂F

∂zj
=

∑

n≥0

zn hn+ej
(x)/n!

i.e., ∂/∂zj acts as a raising operator: hn → hn+ej
. With G(0) 6= 0 we can locally express

G(z) = eH(z) so that F takes the form

F (z, x) = ez·x+H(z)

9



where we normalize by G(0) = 1, H(0) = 0. The operators Dj and ∂/∂zj satisfy

Dj F = zj F,
∂F

∂zj
=

(

xj +
∂H

∂zj

)

F

Thus, Xj denoting the operator of multiplication by xj ,

hn+ej
=

(

Xj +
∂H

∂Dj

)

hn

In summary,

3.1 Theorem. For Appell systems, given H(z) an arbitrary function holomorphic in a

neighborhood of 0, the boson calculus is given by Ri = Xi +
∂H

∂Di
, Vi = Di, with states

|n 〉 = hn. The hn have the generating function

ez·R | 0 〉 = ez·x+H(z) =
∑

n≥0

zn

n!
hn(x)

3.1 EVOLUTION EQUATION AND HAMILTONIAN FLOW

Now consider the evolution equation

∂u

∂t
= H(D)u , u(x, 0) = ez·x

with H locally holomorphic, as in the above discussion. We find

u(x, t) = etH(D) ez·x = ez·x+tH(z)

and expanding in powers of z, we have the Appell system

hn(x, t) = etH(D) xn

Note that in the previous section the t is absorbed into the H, alternatively, set to 1.
The hn satisfy ∂u/∂t = H(D)u with polynomial initial condition u(x, 0) = xn. Thus,
we see Appell systems as evolved powers. The monomials xn are built by successive
multiplication by xj , which we denote by the operators Xj: Xjx

n = xn+ej . Here we
conjugate by the flow etH :

hn+ej
=

(

etH Xje
−tH

)

etH xn = etH xn+ej

10



I.e., the raising operator is given by R = etH Xe−tH . By the holomorphic operator calculus
we have [etH , Xj] = t(∂H/∂Dj)e

tH , so that

Rj = Xj + t
∂H

∂Dj

as we have seen previously (for t = 1).

The mapping (X,D) → (R, V ) is given by the Heisenberg-Hamiltonian flow

R = etH Xe−tH , V = etH De−tH

which induces an automorphism of the entire Heisenberg-Weyl algebra. As t varies, writ-
ing X(t) for R, we have the Heisenberg-Hamiltonian equations of motion (suppressing
subscripts)

Ẋ = [H,X ] =
∂H

∂D
, Ḋ = [H,D] = −∂H

∂X

where in the case H = H(D), D remains constant so that V = D.

3.2 STOCHASTIC FORMULATION

Suppose thatH comes from a family of probability measures pt with corresponding random
variables Xt by Fourier-Laplace transform as follows:

〈ez·Xt 〉 =

∫

ez·x pt(dx) = etH(z) (3.2.1)

with H(0) = 0 here corresponding to the fact that the measures integrate to 1. Then

ez·x+tH(z) =

∫

ez·(x+u) pt(du)

and

hn(x, t) =

∫

(x+ u)npt(du) = 〈(x+Xt)
n〉 (3.2.2)

are moment polynomials.

3.2.1 Proposition. In the stochastic case,

hn(x, t) =
∑

m≥0

(

n

m

)

µm(t)xn−m

where µm(t) are moments of the probability measure pt.

11



Proof: Expand out equation (3.2.2).

The probability measures satisfying eq. (3.2.1) form a convolution family: pt ∗ ps = pt+s,
with the Xt a corresponding stochastic process. In this sense, we see the hn(x, t) as
averages of the evolution of the functions xn along the paths of the stochastic process Xt.

Remark. Unless the measures pt are infinitely divisible, one will not be able to take t to
be a continuous variable. But in any case, we always have Appell systems, analytic in t.
What can be guaranteed is that if eH(z) =

∫

ez·x p(dx) then this extends to the discrete-
parameter process for integer-valued t ≥ 0. For other values of t, the corresponding
measures will not necessarily be probability measures, i.e., positivity may not hold.

3.3 CANONICAL SYSTEMS

The principal feature of (X,D) in the construction of Appell systems is that they are
boson variables. We can make Appell systems starting from any canonical pair (Y, V ),
Y = XW , and evolve under the Heisenberg-Hamiltonian flow

Ẏ = [H, Y ] , V̇ = [H, V ]

For H = H(D), V = V (D) is invariant, while, writing H ′ = (∂H/∂D1, . . . , ∂H/∂DN),

R = Y (t) = etH Xe−tH W (D) = (X + tH ′)W

= Y + tH ′W
(3.3.1)

The canonical Appell system is thus hn(x, t) = etH yn(x).

3.3.1 Theorem. For canonical Appell systems, we have:

1. The generating function

ev·R | 0 〉 = ex·U(v)+tH(U(v)) =
∑

n≥0

vn

n!
hn(x, t)

2. The relation
eV (z)·R | 0 〉 = ez·x+tH(z)

3. The form of X
X = RV ′ − tH ′

Proof: The first relation comes by applying etH(D) to the generating function for the yn

etH ex·U(v) = ex·U(v)+tH(U(v))

on the one hand, which is then the generating function for hn(x, t) = etH yn(x). Relation
#2 follows from #1 by replacing v = V (z). For #3, recall eq. (3.3.1),

R = (X + tH ′)W = (X + tH ′)(V ′)−1

Solving for X yields the result.

12



IV. References

The main reference for these notes is the 3-volume work [13], [12], [11].

Overall references:

The operator calculus approach we use is very close in spirit to that developed by Rota
[21] under the general term “umbral calculus, ” see [7].

Lie algebras and Lie groups in general: [15], [5], and [6].

Mathematical physics: [16] and [2].

Group theory and special functions: [17] is a must.

Coherent states: [19] gives a general approach

The coherent state representation is based on Berezin quantization, see [4].

Connections of our work to that of Hua [14] merits exploration.
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2 Lie Algebras: Representations and Groups

I. Enveloping algebras

We are given a Lie algebra g with basis { ξ1, . . . , ξd }. Originally we considered representa-
tions on the space generated by raising operators Ri, which commute. More generally, we
can take the algebra generated by all of the elements ξi and find the action of g on that
space. The Poincaré-Birkhoff-Witt theorem says that there is an associative algebra with
basis vectors given by ordered monomials

|n 〉 = ξn = ξn1

1 · · · ξnd

d

on which g acts. If there are no other relations imposed besides the defining commuta-
tion relations of the algebra, this yields the universal enveloping algebra, U(g). For any
representation of g as linear maps, the algebra they generate is the associated enveloping
algebra. In general, the corresponding monomials will no longer be linearly independent.

Take, for example, the HW algebra with basis {Q,H, P}, where we may have, e.g., Q = X ,
P = tD, H = tI. Then, for U(g)), we have the basis elements

| l,m, n 〉 = QlHmPn

By induction, we find [P,Ql] = lQl−1H. Thus, the representation

Q̂| l,m, n 〉 = | l + 1, m, n 〉
Ĥ| l,m, n 〉 = | l,m+ 1, n 〉
P̂ | l,m, n 〉 = | l,m, n+ 1 〉 + l| l− 1, m+ 1, n 〉

(1.1)

We now want to use duality techniques to see how multiplication by the basis elements ξi
on U(g) looks. Form the generating function

g(A) =
∑

n≥0

An

n!
ξn =

∑

n1,n2,...,nd

(A1ξ1)
n1

n1!
· · · (Adξd)

nd

nd!
= eA1ξ1 · · · eAdξd (1.2)

This is an element of the group G generated by g, as it is a product of the one-parameter
subgroups generated by the basis elements.

The group law is written in terms of the variables A as

g(A)g(A′) = g(A⊙A′)

14



Example. For the HW group we have, using the 3 × 3 matrix representation

eA1ξ1 =





1 0 0
0 1 A1

0 0 1



 , eA2ξ2 =





1 0 A2

0 1 0
0 0 1



 , eA3ξ3 =





1 A3 0
0 1 0
0 0 1





Multiplying these gives g(A) =





1 A3 A2

0 1 A1

0 0 1



. Multiplying

g(A)g(B) =





1 A3 +B3 A2 +B2 + A3B1

0 1 A1 +B1

0 0 1





which, comparing with the form of g(A) yields the group law

(A⊙B)1 = A1 +B1

(A⊙B)2 = A2 +B2 + A3B1

(A⊙B)3 = A3 +B3

We introduce the boson operators Ri, Vj acting on the basis as

Ri|n 〉 = |n+ ei 〉, Vi|n 〉 = ni|n− ei 〉

The idea is to express the elements of g in terms of R’s and V ’s.

In this Chapter, X will denote a general element of g, with coefficients {αi},

X = αµξµ

The operator of multiplication by x we will identify with x.

1.1 ADJOINT REPRESENTATION OF THE GROUP

The adjoint representation of the algebra extends to the group by exponentiating the
corresponding matrices. Let Y and X denote any two elements of the Lie algebra. Then

eAY Xe−AY = eA ad Y X

To see this, observe that u = eAY Xe−AY satisfies

∂u

∂A
= Y u− uY = (adY )u

15



with initial condition u(0) = X . We can express this as the series expansion

eAY Xe−AY = X +
∑

n≥1

An(adY )n

n!
X

If X is written as a linear combination of basis elements ξi, then we get an expression of
the form Cµ(A)ξµ. Specifically, to extend the adjoint representation to the group, we have
functions Ci

kj(A) determined by

eAξkξje
−Aξk = C1

kj(A)ξ1 + C2
kj(A)ξ2 + · · · + Cd

kj(A)ξd

= Cµ
kj(A)ξµ

The functions Ci
kj(A) extend the structure constants of the Lie algebra to the adjoint

group. We denote the corresponding matrices by Čk(A), so that

(Čk(A))ij = Ci
kj(A)

Note that Čk(0) is the identity matrix for every k.

Example. For the HW algebra, we have (adP )(Q) = H, (adP )2(Q) = [P,H] = 0. Thus,

eAPQe−AP = Q+ AH

For any suitable f ,
eAP f(Q)e−AP = f(Q+AH)

Acting on the vacuum with PΩ = 0, HΩ = 1, QΩ = x, we get P acting as a translation
operator

eAP f(x) = f(x+A)

since Q and H commute, we may iteratively calculate eAPQnΩ = (x+ A)nΩ.

Example. Introduce the affine algebra, aff(2), having basis elements ξ1, ξ2 satisfying
commutation relation [ξ2, ξ1] = ξ1. For example, we may take ξ1 = x, multiplication by x,
ξ2 = xD, the number operator. We have

eAξ2ξ1e
−Aξ2 = ξ1 +Aξ1 +

A2

2
ξ1 + · · · = eAξ1

I.e., we have the formula
eA xDx e−A xD = eAx

Raising both sides to the nth power, we have, for suitable functions f ,

eA xDf(x)e−A xD = f(eAx)
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Applying this to the vacuum, 1, we get the action

eA xDf(x) = f(eAx)

Denoting λ = eA shows that xD generates the dilation group

λxDf(x) = f(λx)

Example. For sl(2), we have [∆, R] = ρ, so (ad∆)2(R) = 2∆. Thus,

eA∆Re−A∆ = R +Aρ+A2∆

On the vacuum with ∆Ω = 0, RΩ = x, ρΩ = cΩ, we get

eA∆f(x) = f(R+Aρ+A2∆)Ω

The action is not immediate as the elements do not commute. This is one of the motivations
behind the splitting technique developed in this Chapter.

Example. Method of characteristics. An important case is the flow of a vector field.

Write X = πµ(x)
∂

∂xµ
, where πi(x) are locally analytic functions. Note that X1 = 0. Let

xi(t) = etXxi e
−tX

Then for suitable functions f ,

f(x(t)) = etXf(x)e−tX

Thus the solution to
∂u

∂t
= Xu, u(0) = f(x)

is given by
u = etXf(x) = f(x(t))1

Observe that, in fact,

(adX)f(x) = [X, f(x)] = πµ(x)[Dµ, f(x)] = Xf(x)

is a function, i.e., no derivative operators are involved. Iterating, we get

f(x(t)) = etXf(x) = f(x(t))1

as a function of x and t. And

ẋi(t) = etX [X, xi]e
−tX = etXπi(x)e

−tX = πi(x(t))

holds for xi(t) as functions of x and t. These equations

ẋ = π(x)

are the characteristic equations for the flow generated by X . They are solved with initial
conditions xi(0) = xi.
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II. Dual Representations

Now we will find realizations of the Lie algebra as vector fields acting on functions of the
coordinates Ai.

2.1 PI-MATRICES

To get the action of g on the enveloping algebra, we define left and right multiplication
operators acting on the generating function, group element, g according to

ξig = ξ
‡
i g, gξi = ξ∗i g

where now ξ
‡
i and ξ∗i are to be expressed in terms of the variables Ai and the corresponding

partial differentiation operators ∂i.

One approach is to start with the action of the operators ∂i on g. We think of ξ and ξ‡ as

row vectors with components ξi and ξ
‡
i respectively. Then, we can write

eAξiξje
−Aξi = ξµC

µ
ij(A) = (ξČi(A))j

First, ∂1g = ξ
‡
1 . Next,

∂2g = eA1ξ1ξ2e
A2ξ2 · · · eAdξd

= eA1ξ1ξ2e
−A1ξ1eA1ξ1eA2ξ2 · · · eAdξd

= (ξ‡Č1(A1))2 g

For ∂3 we find

∂3g = (ξ‡Č1(A1)Č2(A2))3

And so on. We write

Π
‡
1i(A) = δi1, Π

‡
2i(A) = Č1(A1)i2, Π

‡
3i(A) = (Č1(A1)Č2(A2))i3 . . .

Generally,

∂i = (ξ‡Č1(A1)Č2(A2)Č3(A3) . . . Čk−1(Ak−1))i

= Π
‡
iµ(A)ξ‡µ

We can write these in terms of column vectors ∂ = (∂1, ∂2, . . . , ∂d) and ξ‡ as

∂ = Π‡(A)ξ‡
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Recalling that all of the Č’s are the identity at A = 0, there is a neighborhood of the

identity of the group where Π‡(A) is invertible. The inverse of Π‡(A) is the pi-matrix

π‡(A). We thus have the left-dual vector fields

ξ
‡
i = π‡(A)iµ∂µ

Similarly, we can convert ∂i in terms of multiplying g on the right by ξi’s , progressively
pulling across the exponentials ending with eAdξd , converting the adjoint actions into
matrices Čj(−Aj). We see that there is the pi-matrix π∗(A) defining the right-dual vector
fields

ξ∗i = π∗(A)iµ∂µ

The right dual mapping ξ → ξ∗ gives a Lie homomorphism, i.e., [ξi, ξj]
∗ = [ξ∗i , ξ

∗
j ], while

the action on the left reverses the order of operations, giving a Lie antihomomorphism

[ξi, ξj]
‡ = [ξ

‡
j , ξ

‡
i ]. An important feature is that the left and right actions commute. Thus,

as vector fields, every ξ
‡
i commutes with every ξ∗j .

2.2 SPLITTING LEMMA

As a vector space with basis {ξ1, . . . , ξd}, a typical element of g has the form X = αµξµ.
The αi are called coordinates of the first kind. The variables {Ai } are coordinates of the

second kind.

For the one-parameter subgroup generated by X we have

etX = eA1(t)ξ1eA2(t)ξ2 · · · eAd(t)ξd

= g(A(t))

When t = 1, we have the coordinate mapping

α↔ A

corresponding to the relation

eX = g(A) = eA1(α)ξ1eA2(α)ξ2 · · · eAd(α)ξd

Writing the group element g(A) in terms of coordinates of the second kind, we have ef-
fectively factorized, “split”, the exponential into a product of one-parameter subgroups.
Thus the lemma relating the two types of coordinates is called the splitting lemma.

In fact, the factorization corresponds to the right and left dual vector fields and the flow
of the group (composition) law. To see this, consider the left dual:

X g(A) = X‡g(A) = αλπ
‡
λµ∂µ g(A)
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Denote α = (α1, . . . , αd), so that tα = (tα1, . . . , tαd) for a real parameter t. Note that
A(t) = A(tα) as X → tX maps α→ tα.

Now let x(t) = A(tα)⊙A denote the ‘flow of the group law’, for t in some neighborhood of
0. And g(x(t)) = g(A(tα))g(A) = etXg(A) = ex1(t)ξ1ex2(t)ξ2 · · · exd(t)ξd . Let’s differentiate
with respect to t.

d

dt
g(x(t)) = etXX g(A) = Xg(x(t)) = X‡g(x(t))

since X and X‡ commute. So, noting that x(0) = A, we have

g(x(t)) = etX‡
g(A) = g(A(tα)⊙ A)

The characteristics for the flow generated by X‡ are given by

ẋi = αλπ
‡
λi(x)

A similar argument, writing g(x(t)) = g(A)etX , yields the corresponding result for x(t) =
A⊙A(tα). So,

2.2.1 Lemma. Flow of the group
Let X = αµξµ. Let A(α) be the map of coordinates determined by

exp(X) = g(A) = eA1(α)ξ1 · · · eAd(α)ξd

Let ⊙ denote the group law: g(A)g(B) = g(A⊙B).

1. Let A(t) = A(tα) ⊙ A. Then A(t) satisfies the equations Ȧj = αλπ
‡
λj(A), with initial

condition A(0) = A.

2. Let A(t) = A ⊙ A(tα). Then A(t) satisfies the equations Ȧj = αλπ
∗
λj(A), with initial

condition A(0) = A.

We may reformulate this in terms of vector fields:

2.2.2 Corollary.

1. The integral curves of the vector field X‡ = αλπ
‡
λµ(A)∂µ are of the form A(tα) ⊙ A.

2. The integral curves of the vector field X∗ = αλπ
∗
λµ(A)∂µ are of the form A⊙A(tα).

Now follows
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2.2.3 Splitting Lemma.

Let X = αµξµ. Consider the factorization

exp(X) = g(A) = eA1(α)ξ1 · · · eAd(α)ξd

Let π̃ denote the coefficient matrix (pi-matrix) of either the left or the right dual represen-
tation, Then the coordinate map α → (A1(α), . . . , Ad(α)) is determined as follows. Solve
the differential equations

Ȧj = αλπ̃λj(A), j = 1, . . . , d

for Ai as functions of t with the initial conditions A1(0) = · · · = Ad(0) = 0. Then
Ai(α) = Ai(t)

∣

∣

t=1
, for 1 ≤ i ≤ d.

Proof: For π̃ = π‡, we have A(1) = A(α)⊙A. With the initial variables Ai = 0, 1 ≤ i ≤ d,
we have x(1) = A(α) as required. Note that for π̃ = π∗, the zero initial conditions yield
the same result.

Since the flows with zero initial conditions are identical, we have the interesting

2.2.4 Corollary. For the coordinate map α → A of coordinates of the first kind to
coordinates of the second kind, we have the identity

αλπ
‡
λj(A(α)) = αλπ

∗
λj(A(α))

for 1 ≤ j ≤ d.

Remark. Taking transposes, this may be reformulated as π̌(A(α))α = α, where π̌ is
the group element formed by exponentiating the adjoint representation. I.e., this shows
invariance of the α’s under the adjoint group.

The splitting lemma makes it expedient to find the pi-matrices. Here’s the procedure:

1. Write X = αµξµ.

2. Calculate g(A). Formally differentiate with respect to t.

3. Equate the result of step 2 with Xg(A). Solve for Ȧi.

4. Express the formulas for Ȧi as αµπ
‡
µ(A).

5. Similarly, use g(A)X to find π∗(A).
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Example. For HW, we get X =





0 α3 α2

0 0 α1

0 0 0



. From our result for g(A), we find

ġ =





0 Ȧ3 Ȧ2

0 0 Ȧ1

0 0 0



 = Xg =





0 α3 α2 +A1α3

0 0 α1

0 0 0





Thus,
Ȧ1 = α1

Ȧ2 = α2 +A1α3

Ȧ3 = α3

We read off

π‡(A) =





1 0 0
0 1 0
0 A1 1





Similarly, we find

π∗(A) =





1 A3 0
0 1 0
0 0 1





Solving the above equations for the left flow with initial conditions A(0) = A we get

A1(t) = A1 + α1t

A2(t) = A2 + α2t+A1α3t+ α1α3t
2/2

A3(t) = A3 + α3t

With t = 1, A = 0, this gives the coordinate map α → A. Then at t = 1 we can verify
that A(1) = A(α) ⊙ A. Similar properties hold for the right flow.

Example. A matrix realization of aff(2) is given by

X =

(

α2 α1

0 0

)

The corresponding group element is

g(A) =

(

eA2 A1

0 1

)

The group law is
(A⊙B)1 = A1 +B1e

A2

(A⊙B)2 = A2 +B2
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Equating ġ = Xg and ġ = gX we find the pi-matrices

π‡ =

(

1 0
A1 1

)

and

π∗ =

(

eA2 0
0 1

)

For the left flow, we have Ȧ1 = α1 + α2A1, Ȧ2 = α2 with solution

A1(t) = A1e
α2t +

α1

α2
(eα2t − 1) , A2(t) = A2 + α2t

For the right flow, we have Ȧ1 = α1e
A2 , Ȧ2 = α2 with solution

A1(t) = A1 +
α1

α2
(eα2t − 1)eA2 , A2(t) = A2 + α2t

Now, setting t = 1 yields A(α) ⊙ A and A ⊙ A(α). Further, setting A = 0, we have the
coordinate map

A1(α) =
α1

α2
(eα2 − 1) , A2(α) = α2

And from this we can check consistency with the flow of the group.

2.3 DOUBLE DUAL

The right dual vector fields ξ∗i give a Lie homomorphism. To get a Lie homomorphism
from the left dual, we must dualize it. I.e., we rewrite the left dual in terms of boson
operators R’s and V ’s, exchanging A↔ V , ∂ ↔ R, ordering with all R’s on the left. Thus,
we let

ξ̂i = Rµπ
‡
iµ(V )

This is the original action of multiplication by ξi in terms of R and V acting on the basis
|n 〉. So we have calculated the action by multiplication of g on U(g).

We make the further observation that since R and V are boson variables, we may conve-
niently replace them by R → x, V → D to get a realization of g in terms of operators
acting on functions of x.

Examples will show how this works.

Example. HW. Let’s find ξ∗, ξ‡, and ξ̂. First, let’s go back to equation (1.1) and predict
the double dual. We see that

Q̂ = R1, Ĥ = R2, P̂ = R3 +R2V1
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Now let’s use the pi-matrices found previously.

ξ∗1 = ∂1 +A3∂2, ξ∗2 = ∂2, ξ∗3 = ∂3

And

ξ
‡
1 = ∂1, ξ

‡
2 = ∂2, ξ

‡
3 = A1∂2 + ∂3

which gives the double dual

ξ̂1 = R1, ξ̂2 = R2, ξ̂3 = R2V1 +R3

We may write the double dual in terms of (x,D) as

ξ̂1 = x1, ξ̂2 = x2, ξ̂3 = x2D1 + x3

Example. Affine. Using our previously found pi-matrices we have

ξ∗1 = eA2∂1, ξ∗2 = ∂2

And

ξ
‡
1 = ∂1, ξ

‡
2 = A1∂1 + ∂2

which gives the double dual

ξ̂1 = R1, ξ̂2 = R1V1 +R2

which we may write as
ξ̂1 = x1, ξ̂2 = x1D1 + x2

which recovers our original formulation of aff(2) if we ignore x2.

III. Matrix elements

Exponentiating the representation of g on U(g) we get a representation of G on U(g). We
define the matrix elements of the representation on U(g) by

g(A)|n 〉 =
∑

m

〈m

n

〉

A
|m 〉

These matrix elements are types of special functions and typically can be expressed in
terms of generalized hypergeometric functions.

The following proposition gives a useful formula for calculating the matrix elements.

3.1 Principal formula.

With the standard basis cm(A) = Am/m! = (Am1

1 /m1!) · · · (Amd

d /md!) for polynomials in
A, the matrix elements are given by

〈m

n

〉

A
= (ξ∗)nAm/m!

where (ξ∗)n = (ξ∗1)n1 · · · (ξ∗d)nd , basis monomials in terms of the right dual representation.
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Proof: Write the product of group elements g(A) and g(B) as

g(A)g(B) = g(A, ξ)
∑

n

cn(B)|n 〉

=
∑

n

cn(B)g(A)|n 〉

=
∑

m,n

cn(B)
〈m

n

〉

A
|m 〉,

since the A’s and B’s commute. On the other hand, pulling exponentials in B across g(A)
one at a time reconstitutes the group element g(B) with ξ replaced by ξ∗. Denoting this
by g(B)∗ we have

g(A)g(B) = g(B)∗g(A)

=
∑

n,m

cn(B)(ξ∗)ncm(A)|m 〉

Comparing these two expressions leads to the desired formula.

Example. An immediate consequence of this formula is that the right dual pi-matrices
are matrix elements for transitions between basis elements. I.e.,

π∗
ij =

〈

ej

ei

〉

Proof: This follows from the principal formula thus

〈

ej

ei

〉

= ξ∗iAj = π∗
iλ∂λAj = π∗

ij

We mention some of the many interesting relations for the matrix elements that can now
be deduced from the group law and the relations of the operators ξ∗. This approach to
special functions is in the spirit of now classic work of Vilenkin, see Klimyk & Vilenkin
[17].

3.1 ADDITION THEOREMS

Writing the group law (as in the above proof)

g(A)g(B) =
∑

m,n

cn(B)
〈m

n

〉

A
|m 〉

and as
g(A⊙B) =

∑

m

cm(A⊙B)|m 〉,
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we read off the transformation formula

cm(A⊙B) =
∑

n

〈m

n

〉

A
cn(B)

that is, the coefficients cn transform as a vector for the representation. Similarly,

g(A)g(B)|n 〉 = g(A⊙B)|n 〉

yields the addition theorem

〈m

n

〉

A⊙B
=

〈m

λ

〉

A

〈

λ

n

〉

B

where in the implied summation λ is a multi-index. So these are indeed a matrix repre-
sentation of the group acting on U(g).

3.2 DIFFERENTIAL RECURRENCE RELATIONS

Define the matrix elements of left multiplication by ξi on |n 〉 by

ξi|n 〉 =
∑

r

Mrn(ξi)| r 〉

Since the right dual representation gives a homomorphism of Lie algebras, we have

ξ∗i

〈m

n

〉

A
= ξ∗i (ξ∗)ncm(A)

=
∑

r

Mrn(ξi)(ξ
∗)rcm(A)

=
∑

r

〈m

r

〉

A
Mrn(ξi)

Now, recall that this action is the same as the double dual ξ̂i = Rµπ
‡
iµ(V ) acting on the

n-indices. In other words,

ξ∗i

〈m

n

〉

A
= ξ̂i

〈m

n

〉

A

the boldface indicating that the multi-index n is varied.

Example. For the affine group, the principal formula gives the matrix elements

〈

m1, m2

n1, n2

〉

A1,A2

= (ξ∗1)n1(ξ∗2)n2(Am1

1 /m1!)(A
m2

2 /m2!)
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Introduce the difference indices ∆ = m−n = (m1 −n1, m2 −n2). Using the right dual we
find

〈

m1, m2

n1, n2

〉

A1,A2

= (eA2∂1)
n1(∂2)

n2(Am1

1 /m1!)(A
m2

2 /m2!)

= en1A2
A∆1

1

∆1!

A∆2

2

∆2!

Bringing in the double dual, ξ̂1 = R1, ξ̂2 = R2 + R1V1, we find the following differential
recurrence relations:

(eA2∂1)

〈

m1, m2

n1, n2

〉

A1,A2

=

〈

m1, m2

n1 + 1, n2

〉

A1,A2

∂2

〈

m1, m2

n1, n2

〉

A1,A2

=

〈

m1, m2

n1, n2 + 1

〉

A1,A2

+ n1

〈

m1, m2

n1, n2

〉

A1,A2

More generally, one finds rather involved types of functions of generalized hypergeometric
type. Our approach provides a canonical formalism for expressing and discovering the
properties these matrix elements satisfy as special functions. One can develop our approach
further and find “pure” recurrence relations, not involving derivatives, that generalize the
well-known ‘contiguous relations’ satisfied by classical hypergeometric functions.

IV. References

Enveloping algebras: [8]

Splitting techniques: [24] and [25] are originals

Mathematical physics: the left and right dual representations are used by Tomé [23] to
develop path integrals on groups
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3 Dual Vector Fields

I. DVFs

As in the double dual, in (x,D) variables, we have operators of the form

xµWµ(D)

where Wi are suitable functions of Di. We write optionally aµbµ as a · b. The basic fact is
the following primitive version of the Fourier transform:

x ·W (D) eA·x = W (A) · ∂A e
A·x = x ·W (A) eA·x (1.1)

where the components of ∂A are ∂i = ∂/∂Ai.

What this does is exchange the operators in the (x,D) variables with corresponding oper-
ators in (A, ∂A) variables. Thus each vector field has its dual and vice versa.

We abbreviate “dual vector field” by “dvf”. Since the dvf’s are our main interest, we write

Yi = xµWµi(D), Ỹi = Wµi(A)∂µ

Til now we have been considering vector fields realizing a Lie algebra. Now we will be
interested in families of commuting vector fields. We indicate a standard construction.

When discussing functions of D, we use the variable z for complex variables defining the
function involved. For an operator f(D), the function f(z) is referred to as its symbol.
The expression “canonical” refers to operators satisfying the boson commutation relations.

Start with a function V (z) = (V1(z), . . . , VN (z)) holomorphic in a neighborhood of 0, with

V (0) = 0, and the Jacobian matrix V ′ =

(

∂Vi

∂zj

)

nonsingular at 0.

U(v) denotes the functional inverse of V , i.e., zj = Uj(V (z)).

We call the Vi “canonical coordinates” or canonical functions. The associated dvf’s are
called the “canonical variables” and are given by

Yj = xλWλj(D)

where W (z) = V ′(z)−1 is the matrix inverse to V ′(z).
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1.1 Proposition. The commutation relations

[Vi(D), Yj] = δijI

hold.

Proof: We have
[Vi(D), xλ]Wλj = (V ′)iλWλj = δijI

As the Vi(D) mutually commute, to check that we indeed have a boson calculus, we need
the commutativity of the Y ’s.

1.2 Proposition. The variables Y1, . . . , YN commute.

Proof: Denoting differentiation by a comma followed by the appropriate subscript, we
have

[Yi, Yj ] = [xλWλi, xµWµj ] = xλWλi,µWµj − xµWµj,λWλi

= xεWεi,µWµj − xεWεj,µWµi

I.e., we need to show that Wki,µWµj = Wkj,µWµi, that the expression Wki,µWµj is sym-
metric in ij. Recall that if W depends on a parameter, t, say, then W = Z−1 satisfies
Ẇ = −WŻW . Thus, the relation W = (V ′)−1 yields the matrix equation

∂W

∂zi
= −W ∂V ′

∂zi
W

which gives
∂Wki

∂zµ
Wµj = −Wkε

(

∂V ′

∂zµ

)

ελ

WλiWµj

= −Wkε
∂2Vε

∂zµ∂zλ
WλiWµj

so that the required symmetry follows from equality of the mixed partials of V .

From now on, W will refer to the inverse Jacobian of a given function V .

Example. If V is a linear mapping, Vi(z) = Siλzλ, where S is an invertible constant
matrix, with inverse T , we have V ′ = S. Thus

Vi(D) = SiλDλ, Yi = xµTµi

The inverse function is Ui(v) = Tiλvλ.

Example. As for the Poisson case, with V (z) = ez − 1, we have W (z) = e−z and U(v) =
log(1 + v).
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II. Flow of a dual vector field

We would like to calculate the solution to

∂u

∂t
= Y u, u(0) = f(x)

for the dvf Y = vλYλ = vλxµWµλ(D).

Using equation (1.1), we have

etY eA·x = etỸ eA·x

We know how to calculate the flow of the vector field Ỹ by the characteristic equations

Ȧi = vλWiλ(A)

Multiplying both sides by V ′(A) we get

ȦµV
′
kµ = vk

Now the left-hand side is an exact derivative. I.e.,

d

dt
Vk(A(t)) = vk

Integrating, with initial conditions A(0) = A, we get

V (A(t)) = V (A) + tv

Solving, we have
A(t) = U(tv + V (A))

Thus,

etY eA·x = etỸ eA·x = ex·U(tv+V (A)) (2.1)

This is our main formula. A main corollary is the action of the dvf Y on the vacuum
function equal to 1. We get this by setting A = 0:

etY 1 = ex·U(tv)

For d = 1, we get

2.1 Main Formula.

For a canonical function V (z), with W (z) = 1/V ′(z), U(V (z)) = z, let Y = xW (D) be
the associated canonical variable. Then we have

evY eAx = exU(v+V (A))

And, in particular,
evY 1 = exU(v)
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III. Canonical polynomials

Now we get the basis for the vector space:

yn(x) = Y n1

where the vacuum is the constant function equal to 1. These are polynomials in x, the
associated canonical polynomials. They satisfy

Y yn(x) = yn+1(x), V (D)yn(x) = nyn−1(x)

providing a representation of the HW algebra.

We have the expansion

ev·Y 1 = ex·U(v) =
∑

n≥0

vn

n!
yn(x)

Example. With V (z) = ez − 1, we have Y = xe−D. Since e−Df(x) = f(x− 1), we have

yn(x) = Y n1 = xe−Dyn−1(x) = x(x− 1) · · · (x− n+ 1) = x(n)

the nth factorial power. With U(v) = log(1 + v), the expansion is

(1 + v)x =
∑

n≥0

vn

n!
x(n)

the standard binomial theorem.

3.1 CANONICAL POLYNOMIALS AND RANDOM WALKS

There is an interesting connection with random walks in the case when W (z) is the
moment generating function for a probability distribution. Let, in general,

W (z) =
∑

n≥0

zn

n!
µn

where, in the probabilistic case, µn would be the moments of a probability distribution.

In any case, define the generalized moments

〈〈Xn〉〉 = µn

and probabilistic case:
〈Xn〉 = µn
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For an analytic function f , expand

f(x+X) =

∞
∑

n=0

Xn

n!
f (n)(x)

where here X denotes a virtual or actual random variable.

Taking (generalized) expected value, we have the action of the operator W (D) as a formal
convolution operator

W (D) f(x) =

∞
∑

n=0

µn

n!
f (n)(x) = 〈〈f(x+X)〉〉

We extend the generalized averaging to several variables by taking them to be effectively
independent:

〈〈Xn1

1 Xn2

2 . . .Xnm
m 〉〉 = µn1

µn2
· · ·µnm

Then we have

3.1.1 Random walk formula.

The basic polynomials are given in the form of generalized factorials by

yn(x) = 〈〈x(x+X1)(x+X1 +X2) · · · (x+X1 +X2 + · · · +Xn−1)〉〉

In the probabilistic case, we denote the random walk generated by the underlying distri-
bution by Sn = X1 +X2 + · · ·+Xn, where the Xi are independent, identically distributed
random variables with moment generating function equal to W . With S0 = x, the corre-
sponding expectation value is denoted by 〈·〉x. Then the formula yields

yn = 〈S0S1S2 · · ·Sn−1〉x

Note that this is the product of consecutive variables of the random walk.

In the probabilistic case, write

W (D) =

∫

euD p(du)

Then

(xW (D))n = x

∫

eu1D p(du1) · · ·x
∫

eunD p(dun)

With euDf(x)e−uD = f(x+ u), we get

(xW (D))n =

∫

x(x+u1)(x+u1+u2) · · · (x+u1+· · ·+un−1)·exp
(

(

n
∑

j=1

uj)D
)

p(du1) · · ·p(dun)
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This is a formula for the operator Y n. I.e.,

Y n = 〈S0S1S2 · · ·Sn−1e
SnD〉x

Applying this to the constant function 1 yields the formula stated above.

We thus have

exU(v) = 1 + x

∞
∑

n=0

vn

n!
〈
n−1
∏

j=1

(x+ Sj)〉0

Example. Exponential random walk and Bessel polynomials

With W (z) = (1 − qz)−1, an exponential distribution with mean q, we get

V = z − qz2/2 , U =
1 −√

1 − 2qv

q

Thus, with T1, T2,. . . ,Tn,. . . independent exponentials with mean q we have

〈T1(T1 + T2) · · · (T1 + T2 + · · · + Tn)〉 = n!

(

2n

n

)

(q

2

)n

Now, scaling out q, consider V = z − z2/2, U = 1−
√

1 − 2v. From the classical theory of
random walks we have

(1 −
√

1 − 2v)n

√
1 − 2v

=
∑

p≥0

vn+p

2p

(

n+ 2p

p

)

This gives the expansion of
1√

1 − 2v
ex(1−

√
1−2v)

which is the generating function for Bessel polynomials θn(x). Differentiating ex(1−
√

1−2v)

with respect to v and integrating back we find

ex(1−
√

1−2v) = 1 +
∑

n≥1

xn

n!

∑

p≥0

n

n+ p

vn+p

2p

(

n+ 2p− 1

p

)

Thus, we have

yn(x) =
∑

p

(

n+ 2p− 1

p

)

2p( 1
2)p x

n−p

Example. Cayley example

With V (z) = z e−z , we get W (z) = ez(1 − z)−1, so that the corresponding probability
distribution is an exponential with mean 1 shifted by 1. Checking that

yn(x) = x(x+ n)n−1

we find
nn−1 = 〈(1 + T1)(2 + T1 + T2) · · · (n− 1 + T1 + T2 + · · · + Tn−1)〉
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3.2 INVERSION OF ANALYTIC FUNCTIONS

We can expand exU(v) in powers of x

exU(v) =
∑

n≥0

xn

n!
(U(v))n

Another way to think of this is by applying the operator g(D) to the expansion in powers
of v and evaluating at x = 0

g(U(v)) =
∑

n≥0

vn

n!
g(D)yn(0)

which is the Taylor expansion of the composition of g with U(v). This is an approach to
inversion alternative to Lagrange’s method. In particular, the expansion of U(v) itself is
the coefficient of x in the expansion of exU(v) in powers of v:

U(v) =
∑

n≥0

vn

n!
y′n(0)

In the random walk formulation, we thus have

U(v) =

∞
∑

n=1

vn

n!
〈
n−1
∏

j=1

Sj〉0

Example. Given an analytic moment generating function W (z), we can form

V (z) =

∫ z

0

du

W (u)

And the inverse of V is given by the above formula. In particular, if V ′(x) is a density
function, we have the expansion for the inverse distribution function.

Example. Gaussian random walk

With W (z) = ez2/2, we get V as the distribution function of a standard Gaussian, modulo
a factor of

√
2π. Thus, we have the expansion of the inverse Gaussian distribution in terms

of (i) the values y′n(0) or (ii) in terms of the Gaussian random walk.
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3.2.1 Dual approach

Going back to equation (2.1), we have, for d = 1,

evY eAx = evỸ eAx = exU(v+V (A)) =
∑

m≥0

(v + V (A))m

m!
ym(x)

Thus differentiating n times with respect to v and letting v = A = 0

yn(x) = (W (A)∂A)neAx

∣

∣

∣

∣

A=0

We see that differentiating with respect to v is the same as acting with Y so ym shifts up
every time. Differentiating n times with respect to v and letting v = 0 yields

(Ỹ )neAx =
∑

m≥0

V (A)m

m!
ym+n(x)

which gives the action of Ỹ n on the exponential. Applying g(D) yields

(Ỹ )ng(A)eAx =
∑

m≥0

V (A)m

m!
g(D)ym+n(x)

We want to let x = 0. Note that Ỹ obeys the Leibniz rule, just as ∂A itself does. I.e., Ỹ is
a derivation. If we apply Ỹ to eAx it will bring down a factor of x. That is, the surviving
terms involve Ỹ applied only to g. We have thus

(Ỹ )ng(A) =
∑

m≥0

V (A)m

m!
g(D)ym+n(0)

which gives the action of (Ỹ )n on an arbitrary function g.

We can start directly from equation (2.1), applying g(D) to get

evỸ g(A)eAx = g(U(v + V (A)))exU(v+V (A))

This illustrates the general fact that the exponential of a derivation is a homomorphism.

First let x = 0, then let A = 0 to get

evỸ g(0) = g(U(v)))

I.e.,

g(U(v)) =
∑

n≥0

vn

n!
Ỹ ng(0)
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(formula suggested by D.Dominici)

In particular, let g(D) = D. Then Ỹ A = W (A), so, for n ≥ 1,

(Ỹ )nA

∣

∣

∣

∣

A=0

= (Ỹ )n−1W (0)

gives the coefficient of vn/n! in the expansion of U(v).

Example. For V (z) = 1 − e−z, we have Ỹ = eA∂A. With U(v) = − log(1 − v), we get

U(v)m =
∑

n≥0

vn

n!
(eA∂A)nAm

∣

∣

∣

∣

A=0

On the other hand, we have

yn(x) = (xeD)n1 = x(x+ 1) · · · (x+ n− 1) = (x)n =
∑

k

Snkx
k

where Snk are the absolute values of Stirling numbers of the first kind. Hence,

Dmyn(0) = m!Snm

And we get

(− log(1 − v))m =
∑

n≥0

vn

n!
(eA∂A)nAm

∣

∣

∣

∣

A=0

=
∑

n≥0

vn

n!
m!Snm

another variation on the binomial theorem as seen by expanding (1 − v)−x.

Finally, observe that our approach applies equally well in d variables, with n as multi-index
and Y n = Y n1

1 · · ·Y nd

d , as it is based on equation (2.1) which holds in all dimensions. It is
essential that Y = vλYλ, where Yi generate an abelian algebra.

IV. References

Our main reference is [10].

Closely related to the material of this chapter is Winkel’s [26] and [27].

[22] develops several formulas for the yn in the framework of umbral calculus, including an
equivalent to our formulation as generalized expectation of the product along a random
walk. Also see [20].
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4 Polynomials

We discuss two more special types of families of polynomials to go with the Appell families
already introduced: orthogonal families, and canonical families associated to Lie algebras.

I. Orthogonal families

Orthogonal polynomials (in one variable) may be described in terms of Fourier-Laplace
transforms as follows. Given a measure p(dx), the functions φn(x) are orthogonal to all
polynomials of degree less than n if and only if

∫ ∞

−∞
esx φn(x) p(dx) = Vn(s)

such that Vn(s) has a zero of order n at s = 0. The proof is immediate from

∫ ∞

−∞
xkφn(x) p(dx) =

(

d

ds

)k∣

∣

∣

∣

0

Vn(s)

Thus, if the φn(x) are polynomials, they form a sequence of orthogonal polynomials.

1.1 ORTHOGONALITY AND CONVOLUTION

We sketch a ‘group theory’ construction, using Fourier-Laplace transform and convolution
that builds an orthogonal system from a given one. It is closely related to the reduction of
the tensor product of two copies of the given L2 space as in the construction of Clebsch-
Gordan coefficients.

Remark. In this section, unless otherwise indicated, we will discuss the N = 1-dimensional
case, for convenience. The constructions indicated hold for N > 1 as well, appropriately
modified.

1.1.1 Convolutions and Orthogonal functions

Start with a family of functions, kernels,

K(x, z, A)

where A indicates some parameters, that form a group under convolution
∫ ∞

−∞
K(x− y, z, A)K(y, z′, A′) dy = K(x, z + z′, A′′)
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(The integration here can be replaced analogously by a summation.) This means that the
Fourier-Laplace transforms form a multiplicative family. Let

K̂(s, z, A) =

∫ ∞

−∞
esy K(y, z, A) dy

Then
K̂(s, z, A)× K̂(s, z,′A′) = K̂(s, z + z′, A′′)

Form the product
K(x− y,−z, A)K(y, z, A′)

This integrates to K(x, 0, A′′) which is independent of z. This is the generating function
for the orthogonal functions we are looking for:

K(x− y,−z, A)K(y, z, A′) =
∑

znHn(x, y;A,A′) (1.1.1.1)

By construction, the integral
∫ ∞

−∞
Hn(x, y;A,A′) dy = 0

for every n > 0. To get orthogonality of Hn with respect to all polynomials of degree less
than n, consider

∑

zn

∫ ∞

−∞
ykHn(x, y;A,A′) dy =

∫ ∞

−∞
ykK(x− y,−z, A)K(y, z, A′) dy

where the terms of the summation must vanish for k < n. I.e., this must reduce to a
polynomial in z of degree k. Or one can take the transform

∫ ∞

−∞
esy K(x− y,−z, A)K(y, z, A′) dy

which has to be of the form such that the powers of z have factors depending on s so that
each degree in z has a factor with a zero of at least that order in s, as observed in the
remarks above.

1.1.2 Probabilities and means

Here is a general construction of kernels. Take any probability distributions whose means
form an additive group. Suppose that they have densities. Then the kernels are of the
form K(x, z, A) where z is the mean, and A, e.g., is the variance, or other parameters
determining the distribution. One example is provided by the Gaussian distributions:

K(x, z, A) =
e−(x−z)2/(2A)

√
2πA

Since means and variances are additive, you have a convolution family as required. In
general, it may not always be possible to parametrize the family in terms of the means.
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1.1.3 Bernoulli systems

Here we make a definition that applies for N ≥ 1.

1.1.3.1 Definition. A Bernoulli system is a canonical Appell system such that the basis
ψn = RnΩ is orthogonal.

For N = 1, we have the binomial distributions, corresponding to Bernoulli trials, hence
the name. We renormalize ψn and define a new generating function.

1.1.3.2 Definition. Define the basis φn = n! × ψn/γn, where γn = 〈ψn, ψn〉 are the
squared norms of the ψn. The generating function ωt is defined as

ωt(y, x) =
∑

n≥0

yn

n!
φn (1.1.3.1)

Now we have an important property of ωt.

1.1.3.3 Proposition. Consider a Bernoulli system, in N ≥ 1 dimensions, with canon-
ical operator V and Hamiltonian H. I.e.,

ezµxµ−tH(z) =
∑

n≥0

V (z)n

n!
ψn

Let the basis φn and the function ωt be as above. Then we have the Fourier-Laplace
transform

∫

eζy ωt(z, y) pt(dy) = ezV (ζ)+tH(ζ)

Proof: The integral on the left-hand side is the inner product

〈eζX Ω, ωt(z,X)Ω〉 = etH(ζ) 〈eV (ζ)R Ω, ωt(z,X)Ω〉

By orthogonality, and the definition of ωt, eq. (1.1.3.1), the inner product reduces to

∑

n≥0

znV (ζ)nn! γn

n!n! γn
= ezV (ζ)

as required.

Now go back to the case N = 1. Expanding in powers of z yields the relation

∫ ∞

−∞
esy φn(y) pt(dy) = V (s)n etH(s)
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so that V (0) = 0 is all we need to conclude that the φn are an orthogonal family. We take
t as our parameter A and

K(x, z, A) = ωA(z, x)pA(x) (1.1.3.2)

writing pt(dx) = pt(x)dx in the sense of distributions in the case of discrete spectrum
(e.g., the Poisson case). In the case when ωA(z, x) ≥ 0, these are a family of probability
measures as noted in example 1, with mean z + µt, and variance z + σ2t, where µ and σ2

are the mean and variance respectively of p1.

We thus have from the basic construction, eq. (1.1.1.1),

K(x− y,−z, A)K(y, z, B) = ωA(−z, x− y)ωB(z, y) pA(x− y)pB(y) (1.1.3.3)

Substituting in the expansions of the ω’s, equation (1.1.3.1), yields

∑

n≥0

zn

n!

n
∑

k=0

(

n

k

)

(−1)kφk(x− y, A)φn−k(y, B) pA(x− y)pB(y)

Thus, the functions Hn(x, y;A,B) take the form

Hn(x, y;A,B) =
n

∑

k=0

(

n

k

)

(−1)kφk(x− y, A)φn−k(y, B) pA(x− y)pB(y)

with corresponding orthogonal polynomials

φn(x, y;A,B) =
n

∑

k=0

(

n

k

)

(−1)kφk(x− y, A)φn−k(y, B)

and measure of orthogonality pA(x − y)pB(y). (Proof of orthogonality is based on an
addition formula for V (s).)

The convolution property of the family pt shows that
∫ ∞

−∞
pA(x− y)pB(y) dy = pA+B(x)

and thus, that we can normalize to give a probability measure of the form

pA(x− y)pB(y)/pA+B(x)

For the Meixner classes, i.e., the Bernoulli systems in one variable corresponding to sl(2),
we have the corresponding classes generated as follows:

Gaussian −→ Gaussian
Poisson −→ Krawtchouk
Laguerre −→ Jacobi
Binomial (3 types) −→ Hahn (3 types)

Observe that for the binomial types, this is essentially the construction of Clebsch-Gordan
coefficients for (real forms of) sl(2). This construction works for the multinomial case as
well.
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1.1.4 Associativity construction

Corresponding to associativity of the convolution family, we form

K(x− y,−z, A+A′)K(y, z, A′′) , and K(x− y,−z, A)K(y, z, A′ + A′′)

These both integrate to K(x, 0, A + A′ + A′′). The corresponding Hn(x, y;A + A′, A′′),
Hn(x, y;A,A′ + A′′) provide two orthogonal families for L2(dy). The question is to find
the unitary transformation between the two bases, analogous to the construction of Racah
coefficients.

For Bernoulli systems, denote the squared norms

γn(A,B) =

∫ ∞

−∞
φn(x, y;A,B)2 pA(x− y)pB(y) dy

Then we have the generating function for the unitary matrix Umn connecting the combined
systems corresponding to A+B+C = (A+B)+C = A+(B+C), via equations (1.1.3.2),
(1.1.3.3),

∫ ∞

−∞
ωA(−z, x− y)ωB+C(z, y)ωA+B(−w, x− y)ωC(w, y)

×
√

pA(x− y)pB+C(y)pA+B(x− y)pC(y) dy

=
∑

m,n

zmwn
√

γm(A,B + C)Umn

√

γn(A+B,C)

For the binomial distributions, these will yield the usual Racah coefficients and connections
with Wilson polynomials.

II. Appell states

This provides a unified picture of classes of orthogonal polynomials connected with integral
transforms. The Fourier-Laplace transform leads to the Meixner classes which give the
Bernoulli systems in one dimension.

2.1 DEFINITION OF GENERAL APPELL STATES

Given a probability measure, p(dx), we take a family of square-integrable functions F (s, x).
As usual, we denote integration with respect to p as the expected value, and we set, for
the given family F (s, ·)

M(s) = 〈F (s,X)〉
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2.1.1 Definition. The Appell states with respect to the measure p and the family F
are the functions

Ψs(x) = F (s, x)/M(s)

That is, the Ψs are the functions F normalized to have unit expectation. The term states
comes from physics denoting a function of unit norm in L2 of p. The idea is that the state
is a line or ray in the vector space, an equivalence class of functions up to multiplication
by scalars. Note here that the Ψs remain invariant if the functions F are multiplied by
scalars.

Typical choices of the family F are F (s, x) = esx , corresponding to Fourier-Laplace trans-
forms, and F (s, x) = (1−sx)−1, corresponding to Stieltjes transforms. More precisely, the
Stieltjes transforms arise from the family 1/(s − x). If X is an element in a Lie algebra
and ψ0 is an element in a representation space of the algebra, the states corresponding to
esX ψ0 are generalized coherent states. The coherent state representation is thus in the
spirit of the Appell transform for the family esx .

The Appell states are used to define transforms of operators acting on functions of x,
typically L2 of p.

2.1.2 Definition. The Appell transform of an operator Q is the function of a, b given
by

〈Q〉ab =
〈Ψa, QΨb〉
〈Ψa,Ψb〉

Thus, these are the normalized matrix elements of the operator Q with respect to the
Appell states.

2.2 APPELL STATES AND ORTHOGONAL POLYNOMIALS

The main feature is that the family F (s, x) has the property of being the eigenfunctions
of an operator Xs acting on functions of x:

Xs F (s, x) = xF (s, x)

Denote the family of orthogonal polynomials with respect to p by {φn } with squared
norms γn = ‖φn‖2. We define the transforms

〈φn,Ψs〉 = Vn(s) (2.2.1)

Thus, we have the expansion (in general, under assumption of completeness of the φn)

Ψs =
∑

n≥0

Vn(s)φn(x)/γn
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In terms of the family F , we have

F (s, x) = M(s)
∑

n≥0

Vn(s)φn(x)/γn

The orthogonal polynomials satisfy a three-term recurrence of the form

xφn = cnφn+1 + anφn + bnφn−1

with initial conditions φ−1 = 0, φ0 = 1. Observe that the recurrence relation implies
φ1(x) = (x− a0)/c0. We have

2.2.1 Theorem. Let F (s, x) satisfy F (0, x) = 1, XsF (s, x) = xF (s, x). Then

M(s)−1Xs(M(s)Vn(s)) = cnVn+1 + anVn + bnVn−1

with the initial conditions V0 = 1, V1 = c−1
0 (M−1XsM − a0).

Proof: With φ0 = 1, setting n = 0 in eq. (2.2.1) yields V0 = 1. For general n, write eq.
(2.2.1) in the form

〈φn, F (s,X)〉 = M(s)Vn(s)

and apply Xs to get

〈φn, X F (s,X)〉 = Xs(M(s)Vn(s))

Dividing out M(s) yields

〈φn, X Ψs〉 = M(s)−1Xs(M(s)Vn(s))

Now use the recurrence formula for ψn on the left-hand side and apply eq. (2.2.1) to get
the result. For n = 0, this procedure yields

〈X Ψs〉 = M(s)−1XsM(s)

But eq. (2.2.1) for n = 1 says 〈φ1,Ψs〉 = V1. Writing X = c0φ1 + a0 and taking inner
products with Ψs thus gives

M(s)−1XsM(s) = c0V1(s) + a0 (2.2.2)

and the result follows.

We illustrate for the Meixner case.
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2.2.1 Fourier-Laplace transforms and Meixner systems

Taking the family F (s, x) = esx , we have M(s) = 〈esX 〉 is the usual moment generating
function or Fourier-Laplace transform. The operator Xs here is d/ds, the first derivative
operator. We have

2.2.1.1 Theorem. The exponential function esx has the expansion in orthogonal poly-
nomials

esx = M(s)
∑

n≥0

Vn(s)φn(x)/γn

where the coefficients Vn, n ≥ 1, satisfy the recurrence formula

V ′
n + c0V1Vn = cnVn+1 + (an − a0)Vn + bnVn−1

with V0(s) = 1 and

V1(s) = c−1
0

(

M ′(s)

M(s)
− a0

)

Proof: In the proof of Theorem 2.2.1, eq. (2.2.2), yields, with Xs = d/ds,

M ′(s)/M(s) = c0V1(s) + a0

This gives the formula for V1. As well, for the left-hand side of the recurrence, we have

M(s)−1Xs(M(s)Vn(s)) = (M ′(s)/M(s))Vn(s) + V ′
n(s)

and substituting back in the expression in terms of V1, the result follows.

Meixner systems arise when we have the special form

Vn(s) = V (s)n

where, in particular, V1(s) = V (s). From the above theorem we have

2.2.1.2 Theorem. For Meixner systems we have the expansion

esx = M(s)
∑

n≥0

V (s)nφn(x)/γn

where

V (s) = c−1
0

(

M ′(s)

M(s)
− a0

)

satisfies the Riccati differential equation

V ′ = γ + 2αV + βV 2

and the recurrence formula for the orthogonal polynomials is of the form

xφn = (c0 + βn)φn+1 + (a0 + 2αn)φn + γnφn−1
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Proof: Substituting Vn = V n into the recurrence given by the theorem above yields

nV n−1V ′ + c0V
n+1 = cnV

n+1 + (an − a0)V
n + bnV

n−1

Dividing out V n−1, rewrite this in the form

V ′ =
cn − c0
n

V 2 +
an − a0

n
V +

bn
n

Since these coefficients are independent of n, we set

cn = c0 + nβ, an = 2nα+ a0, bn = nγ

and the result follows.

We will look in more detail at these systems in the next section.

2.3 MEIXNER CLASSES

The Meixner polynomials are special families of orthogonal polynomials closely related
to operator calculus and Lie algebras. We present the basic facts concerning Meixner
polynomials and their connection with operator calculus.

2.3.1 Meixner polynomials and operator calculus

The Meixner polynomials are orthogonal polynomials such that V is expressed by an
analytic function of D = d/dx, where x is the variable in which the polynomials are given.
After suitable normalizations, one finds six families of orthogonal polynomials as follows
with the corresponding functions V (z) and H(z) as for canonical Appell systems.

2.3.1.1 Proposition. For the Meixner classes of polynomials the V and H operators
take the form:

Meixner V (z) =
tanh qz

q − α tanh qz

Meixner − Pollaczek V (z) = tan z

Krawtchouk V (z) = tanh z

Charlier V (z) = ez − 1

Laguerre V (z) = z/(1 − z)

Hermite V (z) = z

H(z) = −α
β
z − log

qV (z)

sinh qz

H(z) = log sec z

H(z) = log cosh z

H(z) = ez − 1 − z

H(z) = − log(1 − z) − z

H(z) = z2/2

where, for the general case, α, β are given parameters and q2 = α2 − β.

(Note the normalizations V (0) = H ′(0) = 0, V ′(0) = 1.)

We will see how these arise by specialization from families of canonical polynomials arising
via Lie algebras. They come from some basic Lie algebras, namely, sl(2), HW, and osc.
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III. Canonical polynomials from Lie algebras

Let’s recall the left dual and double dual representation for a Lie algebra. The left dual

form of X , X‡ = αµξ
‡
µ, generates the flow of the group law

exp(tX‡)f(A) = f(A(αt) ⊙A)

Setting t = 1 we have

eX‡
f(A) = f(A(α) ⊙A)

Let X̂ = αµξ̂µ be the double dual realization of X . In terms of (x,D) variables, it is the

dvf to X‡. Therefore, we get

eX̂eax = e(A(α)⊙a)x

Compare with

eαµYµ eax = exµUµ(V (a)+α)

our main formula for dvf’s.

Setting a = 0 yields the main

3.1 Theorem. Acting on the vacuum state 1, the group elements generated by the
double dual X̂ and the canonical variable αµYµ give the same result

eX̂1 = exp(x ·A(α)) = eαµYµ1 = exp(x · U(α))

under the correspondence of the momentum variables with the coordinates

D ↔ A , V ↔ α

I.e., the canonical operators Yi are given as xµWµi(D) where W is the inverse Jacobian
matrix of the coordinate map A→ α, equivalently, the Jacobian matrix of the coordinate
map α → A expressed in the A variables, then replacing every Ai by the corresponding
partial differentiation operator Di.

So for any Lie algebra, with a specified basis, we have the Lie canonical system of poly-
nomials {yn}

ex·A(α) =
∑

n≥0

αn

n!
yn(x)
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3.1 LIE CANONICAL SYSTEMS AND QUANTUM OBSERVABLES

The idea is to find representations where a family of commuting self-adjoint operators
occur as elements of g. Then these are the quantum observables for the system.

Here we show how this works for one observable that we interpret as a generalized position
coordinate. We want the Lie algebra to be a symmetric Lie algebra where we have sets
of raising operators P and lowering operators L in one-to-one correspondence such that g

has a direct sum decomposition of the form

g = L ⊕K ⊕ P

with the relations
[L,P] ⊂ K, [K,L] ⊂ L, [K,P] ⊂ P

We assume that L and P are abelian subalgebras that generate g as a Lie algebra. This
splitting is called a Cartan decomposition. If we have an inner product where elements
Ri and Li are in correspondence as operators adjoint to each other, L∗

i = Ri, g becomes
a “Lie∗-algebra”. And we can construct self-adjoint operators of the general form Xi =
Ri +Ki + Li. An interesting problem is to find such operators explicitly that generate an
abelian algebra.

We will study three basic algebras to illustrate how it goes.

Example. HW. We have the coordinate map

A1 = α1, A2 = α2 + 1
2α1α3, A3 = α3

Thus, we have from the double dual

exp(α1R1 + α2R2 + α3(R3 +R2V1)) 1 = exp(α1R1 + (α2 + 1
2α1α3)R2 + α3R3) 1

Note that R3 and α2R2 drop out. Setting R2 = t, α1 = α3 = z, we get, using R = R1 as
our raising operator,

exp(z(R + tV )) 1 = ezR+z2t/2 1

We have X = R + tV as our quantum observable with spectral variable x. Thus, with
v = z,

evR1 = evx−v2t/2

the generating function for the Hermite polynomials for the corresponding Gaussian dis-
tribution. We have recovered our example of Chapter 1.

Example. sl(2). First, set δ =
√

α2
2 − α1α3. Then we have the coordinate map

A1 =
α1 tanh δ

δ − α2 tanh δ
, A2 = log

δ sech δ

δ − α2 tanh δ
, A3 =

α3 tanh δ

δ − α2 tanh δ
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The double dual is

ξ̂1 = R1, ξ̂2 = R2 + 2R1V1, ξ̂3 = R3e
2V2 +R2V1 +R1V

2
1

Now take α1 → z, α2 → αz, α3 → βz, and δ → qz, q2 = α2 − β. Noting that R3 drops
out, send R2 → t, and use R = R1 as our raising operator to yield

ezX1 =

(

q sech qz

q − α tanh qz

)t

exp

(

tanh qz

q − α tanh qz
R

)

1

where
X = R + αt+ 2αRV + β(tV +RV 2)

is our quantum random variable. With spectral variable x, this is of the form

ezx = etH(z)eV (z)R1

and solving for evR1 gives the generating function for the corresponding class of poly-
nomials in general Bernoulli form. Various specializations lead to the Meixner classes
for Bernoulli, negative binomial and continuous binomial (hyperbolic) distributions. The
gamma/exponential family is an interesting limiting case where q → 0. We get, then, with
β = α2,

ezX1 = (1 − αz)−t exp

(

R
z

1 − αz

)

1

and solving for z = U(v) yields the generating function for Laguerre polynomials in an
appropriate normalization.

Example. For the oscillator algebra we have the coordinate map

A1 =
α1

α4
(eα4 − 1), A2 = α2 +

α1α3

α2
4

(eα4 − 1 − α4), A3 =
α3

α4
(1 − e−α4), A4 = α4

The double dual is

ξ̂1 = R1, ξ̂2 = R2, ξ̂3 = R3 +R2V1, ξ̂4 = R4 +R1V1 −R3V3,

We take α4 → αz, α1 → z, α3 → βz, with R4 dropping out and get, setting R2 = t,

ezX+zY 1 = exp(R1(e
αz − 1)/α) exp(βt(eαz − 1 − αz)/α2) exp(R3β(1 − e−αz)/α) 1

where
X = R1 + αR1V1 + βtV1, Y = βR3 − αR3V3

The R3 term gives an independent aff(2). The X term gives, with R→ R1,

evR1 = (1 + αv)x/α+βt/α2

exp(−vβt/α)

which is the generating function for Poisson-Charlier polynomials for a scaled Poisson
process with drift.

Finally, observe that in each case, the formula for X in terms of R and V gives the three-
term recurrence relation for the corresponding orthogonal polynomials.
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IV. References

The Lie algebra approach in its initial development was presented in [9].

The original article of Meixner is [18].

Askey-Wilson polynomials give an umbrella approach from the classical analysis point of
view, see [1].
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5 Jacobians

I. Adjoint group

Recalling the pi-matrices:

we denote the transpose of π‡ by π̂ and the transpose of π∗ by π̂∗.

We will calculate the exponential of the adjoint representation in terms of the π matrices.
First we remark that the exponential of the adjoint representation connects the right and
left duals:

gξj = gξjg
−1g = ξ∗j g = Adg(ξj)g = Adg(ξ

‡
j )g (1.1)

where Adg denotes the exponential of the adjoint representation, conjugation by g. It
is given explicitly as the matrix g(A, ξ̌) (acting on the row vector formed from the basis
vectors). Now solving for ∂i shows that

1.1 Proposition. The left and right duals are related by

ξ∗ = π∗π‡
−1
ξ‡

where ξ∗ (resp. ξ‡) denotes the column array with entries ξ∗i (resp. ξ
‡
i ).

1.2 Definition. Define the matrix

π̌ = g(A, ξ̌)

the exponential of the adjoint representation.

Now for the main result of this section.

1.3 Theorem. The exponential of the adjoint representation, g(A, ξ̌), is given by

π̌ = π̂−1π̂∗
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Proof: From equation (1.1), we have the matrix of Adg, acting on the basis, given by the
transpose of g(A, ξ̌). I.e.,

ξ∗ = π̌†ξ‡ (1.2)

Comparing with Proposition 1.1, we have π̌† = π∗π‡
−1

. And the result follows by
definition of the matrices π̂, π̂∗ as transposes.

Example. For the affine group we have

ξ̌1 =

(

0 −1
0 0

)

, ξ̌2 =

(

1 0
0 0

)

Calculating exponentials gives

eA1 ξ̌1eA2ξ̌2 =

(

1 −A1

0 1

) (

eA2 0
0 1

)

=

(

eA2 −A1

0 1

)

Recalling the pi-matrices

π‡ =

(

1 0
A1 1

)

, π∗ =

(

eA2 0
0 1

)

it is readily checked that this is the transpose of π∗π‡
−1

.

II. Jacobians of the group law

Now we will see the pi-matrices arising as Jacobians of the group law, showing yet another
aspect of their nature.

Write g = g(A)g(B) = g(C), with C = A⊙B. Differentiating with respect to Ai we get

Π
‡
iµ(A) ξ‡µ(A)g =

∂g

∂Cλ

∂Cλ

∂Ai

And

Π∗
iµ(B) ξ∗µ(B)g =

∂g

∂Cλ

∂Cλ

∂Bi

since we can differentiate and pull the ξj’s through without interference to the correspond-
ing side.

In other words, Π
‡
iµ(A) ξ

‡
µ(A)g = Π

‡
iµ(A) ξµg and Π∗

iµ(B) ξ∗µ(B)g = Π∗
iµ(B) gξµ. And we

have
∂g

∂Ci
= Π

‡
iµ(C) ξ‡µ(C)g = Π

‡
iµ(C) ξµg = Π∗

iµ(C) ξ∗µ(C)g = Π∗
iµ(C) gξµ
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Solving, writing C = A⊙B, we find

∂(A⊙B)

∂A
= π̂(A⊙B) π̂−1(A)

∂(A⊙B)

∂B
= π̂∗(A⊙B) π̂∗−1(B)

Letting A = 0 in the first equation, B = 0 in the second yields

∂(A⊙B)

∂A

∣

∣

∣

∣

A=0

= π̂(B)

∂(A⊙B)

∂B

∣

∣

∣

∣

B=0

= π̂∗(A)

We know that
π̌(A) = π̂−1(A)π̂∗(A)

So, for example,
∂B

∂(B ⊙A)

∂(A⊙B)

∂B

∣

∣

∣

∣

B=0

= π̌(A)

Example. Recall the HW group law

C1 = A1 +B1

C2 = A2 +B2 +A3B1

C3 = A3 +B3

and the pi-matrices

π‡(A) =





1 0 0
0 1 0
0 A1 1



 , π∗(A) =





1 A3 0
0 1 0
0 0 1





Calculating the Jacobians, we find

∂Ci

∂Aj
=





1 0 0
0 1 B1

0 0 1



 ,
∂Ci

∂Bj
=





1 0 0
A3 1 0
0 0 1





Note that in this case the pi-matrices are a representation of the group, i.e.

π̂(A⊙B) = π̂(A)π̂(B), π∗(A⊙B) = π∗(A)π∗(B)

so we get the pi-matrices regardless of evaluations at 0.
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Example. For aff(2) we have

C1 = A1 +B1e
A2

C2 = A2 +B2

and the pi-matrices

π‡(A) =

(

1 0
A1 1

)

, π∗(A) =

(

eA2 0
0 1

)

Calculating the Jacobians, we find

∂Ci

∂Aj
=

(

1 B1e
A2

0 1

)

,
∂Ci

∂Bj
=

(

eA2 0
0 1

)

We readily verify the corresponding relations.

III. Three classes of operators for any Lie algebra

Here is an outline of the elements of the theory relating to LCS — Lie canonical systems.

1. Start with a given basis for the Lie algebra.

2. Find the coordinate map via the characteristic equations for the left dual flow:

Ȧ = απ‡(A). With initial conditions A(0) = A, this yields A(αt)⊙A, and hence the map
α→ A, evaluating at A = 0, t = 1.

3. Interpret A as momentum variables, α as canonical momenta.
Dual variables are x to A, Y to α.

4. Jacobians:

(i)
∂A

∂α
, expressed in terms of A is used for the raising operators Y .

(ii)
∂α

∂A
in terms of α computed as the algebraic inverse is used to express the variables x

in terms of raising and lowering operators. The x variables in that form are the
recursion operators.

5. Generic formulae Y = xW (D) = xU ′(V (D)), x = Y V ′(D) = Y U ′(V )−1 become

Y = xA′(α(A))

∣

∣

∣

∣

A→D

, x = Y A′(α)−1

∣

∣

∣

∣

Y →R

α→V
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6. Canonical polynomials yn(x) = Y n1. Abstract raising and lowering operators on the basis
yn are

Ri yn = Yi yn = yn+ei

Vi yn = ni yn−ei

Acting on the basis yn, x’s yield recursion formulas.

Basic expressions are (row vector times matrix) :

Y = xA′(α(D))

x = RA′(V )−1

with D = (D1, . . . , DN ) operators of partial differentiation with respect to x-variables.

7. We can include the change-of-variables in ξ‡ yielding the general

ξ̂i = xνWνλ(D)π
‡
iλ(V (D))

with
eαµξ̂µ1 = exµUµ(A(α))

8. In particular,

ξ̂i = xνA
′(D)−1

νλ π
‡
iλ(A(D))

yields

eαµ ξ̂µ1 = eαµxµ .

Since the coherent state is the same as for an abelian algebra, we call these the
ACS operators.

3.1 JACOBIAN OF THE COORDINATE MAP

To get the canonical variables requires the Jacobian of the map α→ A. Since one has the
differential equations for A, namely the characteristic equations Ȧ = απ(A), one would
think it possible to find A′(α) = ∂A/∂α directly in terms of the π-matrices. This turns
out to be the case and is the subject of an interesting theorem stated without proof.

3.1.1 Theorem.

Let J = ∂A/∂α denote the Jacobian of the coordinate map α→ A. Then

J(α) = π̂(A(α))

∫ 1

0

π̌(A(s)) ds

Alternatively, we have

J(α) = π̂∗(A(α))

∫ 1

0

π̌−1(A(s)) ds
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Note that in our application to dual vector fields, we really want J as a function of A.
The factor outside the integral is naturally given in terms of the Ai, but the integral is
evaluated by expressing A(s) in terms of the αi scaled by s. On the other hand, J−1,
expressed in terms of α immediately gives us what we need for the corresponding recursion
operators.

3.2 CANONICAL VARIABLES IN THE NONABELIAN CASE

Let’s see how points #7 and #8 work. We combine the two fundamental constructions:
i.e., we use canonical variables in the Lie case.

3.2.1 Proposition. Let Y = xναµπ
‡
µλ(V (D))Wνλ(D). Then

etY ea·x = exp

(

x · U
(

A(αt) ⊙ V (a)
)

)

Proof: Acting on ea·x we have

Y ea·x = xναµπ
‡
µλ(V (a))Wνλ(a)ea·x = αµπ

‡
µλ(V (a))Wνλ(a)

∂

∂aν
ea·x

This latter is a vector field in the a-variables. The characteristic equations are

ȧi = αµπ
‡
µλ(V (a))Wiλ(a)

Multiplying by V ′(a) yields

V ′(a)kλȧλ = αµπ
‡
µk(V (a))

Now the left-hand side is an exact derivative,
d

dt
V (a(t)). So these are characteristic equa-

tions for the left dual flow in the V -variables. Integrating, we have, with A(α) denoting
the coordinate map on the group,

V (a(t)) = A(tα) ⊙ V (a)

In other words,
a(t) = U(A(tα) ⊙ V (a))

which gives the stated result.

And
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3.2.2 Theorem. To the vector fields

ξ
‡
i (V (x)) = π

‡
iλ(V (x))Wνλ(x)Dν

correspond the dvf’s

ξ̂i = xνWνλ(D)π
‡
iλ(V (D))

And with X̂ = αµξ̂µ,

eX̂1 = ex·U(A(α))

Note that the ξ̂i are the double dual in the canonical variables (Y, V ).

Now choose U and A to be inverse maps, i.e., V (z) = A(z). Then we have the nonabelian
Lie algebra yielding the same result on the vacuum state, 1, as the abelian one, namely

exp(X̂)1 = exp(α · x) .

How do these work for some Lie algebras of particular interest?

Example. Let’s look at HW in detail.

We have the coordinate map

A1 = α1, A2 = α2 + α1α3/2, A3 = α3

The Jacobians are

∂A

∂α
=





1 0 0
α3/2 1 α1/2

0 0 1



 and
∂α

∂A
=





1 0 0
−α3/2 1 −α1/2

0 0 1





with the latter calculated as

(

∂A

∂α

)−1

. In terms of A,

∂A

∂α
(A) =





1 0 0
A3/2 1 A1/2

0 0 1





Contracting with x and replacing A by D yields the raising operators

Y1 = x1 + 1
2x2D3 , Y2 = x2 , Y3 = x3 + 1

2x2D1
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These are commuting variables. The basic expansion is

eαµYµ1 = eα1x1ex2(α2+α1α3/2)eα3x3 =
∑

n≥0

αn

n!
yn(x)

Contracting with R and replacing α by V in ∂α/∂A yields the x-variables as recursion
operators

x1 = R1 −R2V3/2 , x2 = R2 , x3 = −R2V1/2 +R3

On the basis yn, we thus have

x1 yn = yn+e1 − 1
2 n3 yn+e2−e3

x2 yn = yn+e2

x3 yn = yn+e3 − 1
2 n1 yn−e1+e2

Finally, replacing R by x, V by D and contracting with the transpose of π‡(A(D)), yields
the ACS representation of the Lie algebra

ξ̂1 = x1 − 1
2x2D3 , ξ̂2 = x2 , ξ̂3 = x3 + 1

2x2D1

which satisfy the commutation relations for the Heisenberg algebra while satisfying

exp (αµξ̂µ)1 = expαµxµ

Example. aff(2)

We have the coordinate map

A1(α) =
α1

α2
(eα2 − 1) , A2(α) = α2

and

π‡ =

(

1 0
A1 1

)

The Jacobians are

∂A

∂α
=

(

α1 (eα2 − 1)/α2 −α1 (eα2 − 1 − α2)/α
2
2

0 1

)

and
∂α

∂A
=

( α2
eα2 − 1

α1
α2

− α1
1

1 − e−α2

0 1

)

from these the raising operators, recursion operators and ACS representation are found as
prescribed.
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IV. Conclusion

There are many points for continued study. By specializing the coordinates one can find
certain elements of the Lie algebra that generate classically interesting polynomials, such
as Hermite polynomials via the Heisenberg algebra. In any case, the polynomials found
in the approach indicated here have particular structure depending on their associated
Lie algebra. Exactly how these, the polynomials and the structure of the Lie algebra, are
related in some deeper way has not been clarified.

Another source of interest is, of course, the Jacobians. One can look at Jacobians of the

form
∂A(t)

∂A(s)
, for s < t. As the Jacobians form a multiplicative family along paths, there are

some possibilities for interesting dynamical systems, or perhaps, matrix-valued stochastic
processes.

Generally speaking, it looks challenging and interesting to get some detailed information
for classes of higher-dimensional Lie algebras. Certain classes of Lie algebras, such as
symmetric Lie algebras, may allow for general structural results.

V. References

The idea of quantum observables as we use it appears in Berceanu-Gheorghe [3].
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