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Abstract

Representing the world as objects is core to human intelligence. It is the basis of
people’s sophisticated capacities for reasoning, imagining, planning, and learning.
Artificial intelligence typically assumes human-defined representations of objects,
and little work has explored how object-based representations can arise through
unsupervised learning. Here we present an approach for learning probabilistic,
object-based representations from data, called the “multi-entity variational au-
toencoder” (MVAE), whose prior and posterior distributions are defined over a
set of random vectors. We demonstrate that the model can learn interpretable
representations of visual scenes that disentangle objects and their properties.

1 Introduction

Human intelligence is object-oriented. Infants begin parsing the world into distinct objects within
their first months of life [13], and our sophisticated capacities for reasoning, imagining, planning, and
learning depend crucially on our representation of the world as dynamic objects and their relations.
Though the human notion of an object is rich, and exists in an even richer continuum of non-solids,
non-rigids, object parts, and multi-object configurations, here we use the term “object” simply as a
discrete visual entity localized in space.

Many important domains of artificial intelligence use representations of objects that were chosen
ahead of time by humans, based on subjective knowledge of what constitutes an object (e.g. patches in
images that can be categorized, or geometric meshes for physical control). This core object knowledge
was learned through evolution and experience, and is very useful. It can be shared across object
instances, provides a means for some properties of the world to be highly dependent and others to be
relatively independent, and allows objects to be composed to form abstractions and hierarchies whose
wholes are greater than the sums of their parts. Given the importance of such representations, and the
high cost of manually translating it from the engineer’s mind into AI datasets and architectures, this
work asks: How can an artificial system learn, without supervision, an object-based representation?

Our contributions are: (1) a probabilistic model that can learn object-based representations from data,
(2) a visual attention mechanism for inferring a sparse set of objects from images.

2 Multi-entity VAE

The multi-entity VAE (MVAE) is a latent variable model of data x in which the latent space is factored
into a set of N independent ‘object’ representations {z1, . . . , zN}. The MVAE defines a generative
process in which each zn (n = 1, ..., N ) is sampled independently from a prior distribution, p(z),
and data examples are sampled from a decoder distribution p(x|z).
In our visual experiments, the MVAE model assumes p(zn) is a D-dimensional Gaussian with
zero mean and unit variance. The conditional data distribution is implemented as a three-step

∗Work done during an internship at DeepMind

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



Figure 1: Multi-entity VAE. The encoder takes input images and produces a spatial map of posterior
parameters. The KL-divergence of the posterior distribution against the prior is computed in each
spatial location. The top-N posterior parameters by KL-divergence are selected from the spatial
map, removing the spatial structure. These distributions are sampled, and the samples are passed
independently through a shared convolution / upsampling network. The resulting object feature maps
are aggregated using an element-wise operation, and a final convolutional network produces the
output parameters.

deterministic decoding function, f , which first maps each latent object representation to a processed
object representation using a shared function, aggregates the processed object representations together,
and deterministically transforms the result into the parameters of a Bernoulli distribution over pixel
values. Crucially, f is permutation invariant with respect to the set of object representations. This
encourages the model to learn object representations that are consistent and interchangeable.

Shared object processing. In the first stage of the decoder a shared function g : RD → RK is
applied independently to each latent object representation, resulting in a set of processed object
descriptions on = g(zn), n = 1, . . . , N . These deterministic transformations of the prior latent
variables are themselves random variables, which have dependencies induced by the prior latents.
The K-dimensional object descriptions could be of any shape, but in this work we used 3D tensors
as a structural bias towards representations of visual attributes. We implement g as a network that
transforms each latent vector to a 3D tensor via reshaping, convolutions and upsampling.

Aggregation. The processed object descriptions o1:N are aggregated using a symmetric pooling
function, to form opool, a tensor with the same shape as each of o1:N . In our experiments we used
element-wise sum or max as aggregation functions.

Rendering. After pooling, the resulting opool is mapped (i.e. rendered) to the element-wise parameters
of the decoder distribution θ = h(opool). In our experiments opool is a 3D tensor, and h is a
convolutional, upsampling network which outputs pixel-wise Bernoulli logits.

2.1 Maximal information attention

We employ amortized variational inference and learn a parameterized approximate posterior q(zn|x)
for each latent object representation. Unlike prior work [3, 4], we do not employ a learned attention
mechanism in order to localise objects, but instead generate a large collection of candidate object
inferences, from which N objects are selected. This inference method has the advantage that it
circumvents the need for an explicitly learned attention mechanism, which may require a large
number of recurrent passes over the image. This enables us to model scenes with large numbers of
objects, something that was challenging in prior work.

Candidate generation. We generate candidate object inferences for visual scenes using a
convolutional-network which maps input images to a grid of posterior parameters. Each spatial
location in this output feature map is treated as an object, and we perform candidate sub-selection
of this set as described in the next section. After sub-selection the spatial structure present in the
convolutional grid is destroyed, so we tag each object with its relative spatial coordinates at an
intermediate feature map in the convolutional network.

Candidate sub-selection. Given a collection of candidate posteriors {q(zs|x)}s we compute the
KL divergence Ds

kl = Dkl[q(zs|x)|p(z)] for each candidate s. Approximate posteriors for the N
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Figure 2: Training. (a) Training curves with exponential moving averages for the MVAE and a
standard convolution VAE. (b) Model reconstructions and KL-divergence spatial maps at early and
late stages of training. The KL maps are diffuse early in training and become increasingly sharp
during optimization.

(a) (b)

Figure 3: Entity exchange. (a) For a pair of input images, we encode to a set of latent objects before
exchanging the representations of one objects in each pair. (b) Input pairs, model reconstructions,
and reconstruction with exchanged entities. Here the objects in each input image with highest KL
divergence are swapped.

latent objects are obtained by choosing the top-N objects by KL divergence. The intuition for this
process is as follows: In order to reconstruct the input the network must encode lots of information in
locations where objects exist like their shapes, colours, etc., whereas much less information is needed
to encode background information; simply that there is no object present there. As such the "object"
and "non-object" locations will have high and low KL-divergence respectively, and by choosing the
top locations by KL-divergence we encode information only in the most informative regions of the
image. We call this process maximal-information attention, and note that it can be used for any data
modality where a superset of candidate inferences can be generated.

The candidate generation and sub-selection results in approximate posteriors for the N object
representations, which we then sample from and pass to the decoder as in a standard VAE.

3 Related work

Our MVAE builds on previous neural probabilistic generative models, especially variational au-
toencoders (VAEs) [6, 10]. The DC-IGN [7], beta-VAE [5], and InfoGAN [1] are extensions and
alternatives that promote learning latent codes whose individual features are “disentangled” [14, 2],
i.e. correlated exclusively with underlying axes in the data-generating process. Other work has
developed attention mechanisms for sampling subsets of visual scenes [9, 4, 15], which promotes
learned representations that are spatially localized. Recurrent neural networks have been used in
combination with spatial attention to allow for unsupervised learning of object locations and counts
[3]. And several recent approaches allow object-like representations to be learned in supervised
settings for visual question-answering and physical prediction [12, 16]. Another related strand of
work focuses on explicit representations of multiple objects in visual scenes, making use of graphics
engines as a known decoding function [17, 11].
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Figure 4: (a)Within-object latent traversals. Decoded scenes for traversals from -2.25 to 2.25 for
a selection of latent dimensions for a single object. The latent variables associated with different
objects are held fixed during the process. (b) Decoding objects sequentially. (left) Data examples.
(right) Reconstructions of the data where one latent object is added at each step. Here the latent
objects z1, . . . , z5 are ordered by the KL-divergence of the encoding distributions.

4 Experiments

We evaluate our model on a multiple object variant of the dSprites dataset [8]. This dataset consists
of 64× 64 images of sprite shapes with random colours, orientations and locations. Figure 2 shows
training curves, model reconstructions and the development of KL-divergence attention maps over
the course of training. For more experimental detail including model architectures see appendix A.

4.1 Between-object disentangling

In order to check whether the MVAE has learned a factored representation of objects we use the
following qualitative tasks:

Entity exchange. One of the main motivations for learning disentangled representations of objects
in a scene is that it facilitates compositional reasoning. We should be able to imagine an object in
different contexts, independent of the original context in which we observed it. We examine our
model’s capacity to transfer objects into new contexts by encoding a pair of scenes, swapping the
representations for one one object in each of the scenes, and then decoding both of the altered scenes.
Figure 3 shows some example results for the MVAE. We note that entire objects are cleanly swapped
between scenes, even in the presence of overlap or clutter, indicating that objects in the input image
are cleanly partitioned into separate object representations.

Sequential decoding. Another qualitative indicator of the representations learned by the MVAE is to
encode an input scene, then decode one object a time. As the MVAE’s decoder performs object-wise
aggregation, we can decode variable numbers of latent object representations. Figure 4a shows
example decoded scenes in which we sequentially add one latent object representation at a time to
the decoder. At each step a single object is introduced to the scene until all the objects present in
the input scene have been decoded, and beyond this point the reconstructions are unaltered by the
additional latent object representations. This indicates that the surplus latent object slots encode a
’Null’ object, which decodes to nothing.

4.2 Within-object disentangling

To investigate the extent to which MVAE learns a representation that is disentangled within particular
objects, we perform latent traversals for one object at a time, while keeping the other latent variables
fixed. If the model has been successful we should expect to see that the underlying generative factors
of the data are captured by single latent variables. Figure 4b shows a number of example latent
traversals. The figure shows that the MVAE achieves a good degree of disentangling, e.g. with
location factored from colour. This contrasts with the representations learned by a standard VAE
(Appendix B), which are entangled across objects, with latent traversals causing multiple objects to
deform and change colour simultaneously.
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4.3 Unsupervised object counting

Here we demonstrate that the MVAEs spatial KL-divergence maps are a good proxy for object
counting. We searched over KL-divergence thresholds on a training set of size 6400, and using the
best training threshold tested on a 12800 newly sampled data examples. The chosen threshold gets
74.4% and 72.6% object count accuracy on the training and test sets respectively.

5 Discussion

Here we introduced a probabilistic model for learning object-based representations of visual scenes,
which performs efficient inference using a novel one-shot informational attention mechanism that
scales to large numbers of objects. Our results showed that our MVAE model can learn discrete,
self-contained, interchangeable representations of multiple objects in a scene. We also found that the
learned latent features of each object representation formed a disentangled code that separated the
underlying factors of variation.

One limitation of this work is that the latent objects are assumed to be independent, which is obviously
inconsistent with the tremendous statistical structure among objects in real scenes. Future work will
tackle the task of learning not just about objects, but about their relations, interactions, and hierarchies
in a unsupervised setting.

This work opens new directions for learning efficient and useful representations of complex scenes
that may benefit question-answering and image captioning systems, as well as reinforcement learning
agents. Moreover, this work may also help cognitive science explain why object-based representations
are central to biological intelligence, as well as their evolutionary and experiential origins.
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Appendix

A Experimental details

Data generation: Sprites are sampled independently, including whether or not they exist, up to some fixed
upper bound on the number of sprites. We blend the colours of overlapping sprites by summing their RGB
values and clipping at one. During training we generate these images dynamically, such that the MVAE always
sees newly sampled data.

Encoder: The MVAE encoder is a convolutional network that starts with four convolutional layers with max-
pooling. The resulting feature maps are concatenated with two channels of relative x,y co-ordinates followed by
two further convolutional layers with a final channel dimensionality of 24. The output channels are split to form
the means and log-variances of 12-dimensional diagonal Gaussian posteriors.

Decoder: Latent object representations are processed with a shared network g. This network has two fully
connected layers, the outputs of which are reshaped into a feature maps of shape 8× 8× 16, followed by two
convolutional layers with bilinear up-sampling. We aggregate across object representations using max-pooling,
and then process the resulting feature map with a convolutional network h. This network consists of three
convolutional layers and one bilinear up-sampling layer. The network outputs a 64× 64× 3 image of Bernoulli
logits.

Standard VAE: We trained a baseline VAE with a comparable architecture to the MVAE. We match the latent
dimensionality, using 60 latent dimensions. The encoder is identitical to the MVAE encoder, but the output
feature maps are projected to the parameters of a 60-dimensional Gaussian using a linear layer. The decoder is
equivalent to applying the shared object network g from the MVAE to the latent variables, and then passing the
outputs into the rendering network h.

Training: We train the MVAE using first-order gradient methods to maximize the variational lower bound on
the log-probability of the data as in a standard VAE. All Models used elu non-linearities and were trained with
Adam optimizer with scheduled learning rate annealing from 10−3 to 10−5 over the course of 3 ∗ 106 training
steps.

B VAE latent traversals

As a comparison to the MVAE latent traversals in figure 4, we show traversals of latent dimensions for a trained
VAE baseline in figure 5. Latent dimensions were hand-chosen as examples of variables that have a significant
impact on the decoded results.

Figure 5: VAE latent traversals. Decoded scenes for traversals from -2.25 to 2.25 for a selection of
latent dimensions for a standard VAE. All other latent variables are held fixed during the process.

C Reconstructions and samples

Figure 6 shows reconstructions for 3-sprite and 8-sprite datasets. We note that in the 3-sprite data that both the
VAE and MVAE achieve good reconstructions, however the MVAE samples are of a higher quality, with more
distinctly defined and coherent objects. The MVAE achieves good reconstructions and samples for the highly
cluttered scenes in the 8-sprite data.
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Figure 6: Reconstructions and samples. Data images, model reconstructions and model samples
on the 3-sprite and 8-sprite datasets.
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