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Abstract

We explore the problem of assigning heterogeneous tasks to
workers with different, unknown skill sets in crowdsourcing
markets such as Amazon Mechanical Turk. We first formal-
ize theonline task assignment problem, in which a requester
has a fixed set of tasks and a budget that specifies how many
times he would like each task completed. Workers arrive one
at a time (with the same worker potentially arriving multiple
times), and must be assigned to a task upon arrival. The goal
is to allocate workers to tasks in a way that maximizes the to-
tal benefit that the requester obtains from the completed work.
Inspired by recent research on the online adwords problem,
we present a two-phase exploration-exploitation assignment
algorithm and prove that it is competitive with respect to the
optimal offline algorithm which has access to the unknown
skill levels of each worker. We empirically evaluate this al-
gorithm using data collected on Mechanical Turk and show
that it performs better than random assignment or greedy al-
gorithms. To our knowledge, this is the first work to extend
the online primal-dual technique used in the online adwords
problem to a scenario with unknown parameters, and the first
to offer an empirical validation of an online primal-dual algo-
rithm.

Introduction
Crowdsourcing markets, such as Amazon Mechanical Turk,
are online labor markets in which individuals post short “mi-
crotasks” that workers can complete in exchange for a small
payment. A typical Turk task might involve translating a
paragraph from German into English, verifying the address
of a company, or labeling the content of an image, and pay-
ments are typically on the order of ten cents. Crowdsourcing
markets provide a mechanism for task requesters to inex-
pensively obtain distributed labor and information, and have
recently become popular among researchers who use sites
like Mechanical Turk to conduct user studies (Kittur, Chi,
and Suh 2008), run behavioral experiments (Mason and Suri
2012), and collect data (Horton and Chilton 2010).

Despite the relatively small size of payments, crowd-
sourcing markets attract a diverse pool of workers from
around the world, who participate both to pick up extra cash
and to kill time in a fun way (Ipeirotis 2010). In principle,
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requesters should be able to take advantage of this diversity
by assigning each task to a worker with the proper skills nec-
essary to complete it. However, requesters typically assign
tasks randomly to arriving workers, and often rely on du-
plicated, redundant assignments to boost the quality of the
information they collect (Ipeirotis, Provost, and Wang 2010;
Karger, Oh, and Shah 2011). Random assignment can be
fine when tasks do not require specific skills, but can result
in severely suboptimal performance for human computation
tasks that require specialized training or knowledge, such
as analyzing the nutritional value of food, as proposed by
Noronha et al. (2011), or helping people plan their travel, as
proposed by Law and Zhang (2011).

In this work, we address the challenge that a single re-
quester faces when assigning heterogeneous tasks to work-
ers with unknown, heterogeneous skills. We begin by for-
malizing this challenge, which we call theonline task as-
signment problem. In our formalization, a requester has a
fixed set of tasks and a budget for each task which specifies
how many times he would like the task completed. Workers
arrive online, and must be assigned to a task upon arrival.
Each worker is assumed to have an underlying skill level
for each task; on average, workers with higher skill levels
produce work that is more valuable to the requester. Skill
levels are initially unknown, but can be learned through ob-
servations as workers complete tasks. This leads to a natural
exploration-exploitation trade-off; the requester must sam-
ple the performance of each new worker on different tasks
to estimate her skills, but would prefer to assign a worker to
the tasks at which she excels. The problem is further compli-
cated by the task budgets, which make greedy assignments
based on estimated skill levels suboptimal.

The online task assignment problem is closely related to
several problems that have been studied in the literature. If
we make the simplifying assumption that workers’ skill lev-
els are known, the offline version of our problem becomes
the well-studiedassignment problem, which can be opti-
mally solved using the Hungarian algorithm (Kuhn 1955) or
linear programming. Moving to the online setting but still
assuming known skill levels, our problem can be formulated
in a similar way to theonline adwords problemand the re-
lateddisplay ad allocation problem(Feldman et al. 2010;
Devanur et al. 2011). For these problems, it is possible to
achieve a competitive ratio of(1 − 1/e) in a setting with



adversarial arrivals (Buchbinder, Jain, and Naor 2007) or
(1 − ǫ) for stochastic arrivals, withǫ very small when the
total budget is large (Devanur and Hayes 2009).

Our proposed algorithm, the Dual Task Assigner (DTA),
builds on a central idea from this literature, theonline
primal-dual formulation, but handles the case in which
worker skills are unknown and must be learned through ex-
ploration. We prove that under the assumption of a stochas-
tic worker arrival order, as long as the number of worker ar-
rivals is sufficiently high, DTA is competitive with respectto
the offline optimal algorithm that has access to the unknown
skill levels of each worker.

We empirically evaluate the performance of DTA using
data collected on Amazon Mechanical Turk. We examine
two scenarios. In the “expertise level” setting, tasks can be
classified as easy, medium, and hard. A successful assign-
ment algorithm must learn to assign easy tasks to workers
with relatively low skill levels and save the experts for the
hard tasks. In the “different skills” setting, there are three
types of tasks and each worker is trained to perform only
one of the three. A successful assignment algorithm must
simply learn which of the three tasks each worker is able
to perform. The experiments show that DTA outperforms
greedy algorithms and random assignment on both tasks, but
that the improvement over greedy algorithms is more signif-
icant in the expertise level setting. To our knowledge, this
provides the first published empirical validation of any algo-
rithm based on the online primal-dual formulation.

Related Work
Our algorithm and analysis build on the online primal-
dual framework, which has been used to analyze a vari-
ety of online optimization problems, including online net-
work optimization (Alon et al. 2004), online paging (Bansal,
Buchbinder, and Naor 2007), and the online adwords prob-
lem (Buchbinder, Jain, and Naor 2007). Many of these
analyses assume a worst-case, adversarial selection of in-
put, which often leads to strong impossibility results. More
recently, researchers have considered settings in which the
input satisfies some stochastic properties.

The problem closest to ours is the stochastic online ad-
words problem, in which there is a set of advertisers bidding
on keywords. Each advertiser has a budget. Keywords arrive
online, and advertisers must be assigned to keywords as they
arrive. The goal is to maximize revenue (i.e., the sum of the
bids of the advertisers for the keywords on which their ads
are displayed) without exceeding any advertiser’s budget.
The online primal-dual framework can be used to achieve
near-optimal performance on this problem when the total
budget is sufficiently large (Agrawal, Wang, and Ye 2009;
Feldman et al. 2010; Devanur et al. 2011).

Our work extends these results by considering the situ-
ation in which some parameters (in our case, worker skill
sets, which are analogous to advertiser bids) are unknown
but can be learned from observations. This results in
an exploration-exploitation trade-off, as arises in the well-
studied multi-armed bandit problem (Auer, Cesa-Bianchi,
and Fischer 2002; Auer et al. 2003). Unlike the tradi-
tional bandit problem, we must deal with the budget con-

straint. As our experiments show, this constraint makes it
suboptimal to use greedy selection for exploitation, as most
bandit algorithms do. There has been work on budgeted
variants of the bandit problem (Guha and Munagala 2007;
Goel, Khanna, and Null 2009; Tran-Thanh et al. 2010), but
the budget is typically interpreted as a limit on the number of
rounds that can be used for exploration, whereas our budgets
are on the number of times each arm can be pulled.

The Online Task Assignment Problem
We now describe our problem formulation, which we refer
to as theonline task assignment problem. The problem is
stated from the point of view of a single task requester who
has a fixed set ofn tasks he would like completed, and a
budgetbi for each taski that specifies the maximum num-
ber of times he would like the task to be performed. For
example, the requester might haveb1 = 100 articles that he
would like translated from German to English, andb2 = 200
articles that he would like translated from French to English.

Workers from a pool of sizek arrive one at a time. Ev-
ery time a worker arrives, the requester must assign her a
task. Each workerj has an unknown underlying skill level
ui,j ∈ [0, 1] for each taski, which represents the utility that
the requester obtains on expectation each time the worker
performs that task — after workerj performs the taski that
is assigned to her, the requester receives a benefit in[0, 1]
drawn from a distribution with expectationui,j . We assume
that the requester utility is additive. That is, if a requester
receivesut units of utility at each timet, his total utility at
timeT is ΣT

t=1ut. Once the requester has assigned workers
to any taski at leastbi times, he no longer receives a benefit
from assigning additional workers to that task.

We usem to denote the total number of worker arrivals,
which is assumed to be known by the requester. Typically,
we setm = Σn

i=1bi, i.e.,m is determined by the requester
budget. The goal of the requester is to maximize his cumu-
lative expected utility after timem. We evaluate algorithms
using the notion ofcompetitive ratio, which is a lower bound
on the ratio between the cumulative utility of the algorithm
and the cumulative utility of the optimal offline assignment
(which can be computed using the unknown worker skill lev-
els). For example, a competitive ratio of1/2 would imply
that an algorithm always achieves a utility that is at least half
as good as optimal. We say an algorithm isα-competitiveif
its competitive ratio is at leastα.

We analyze our algorithm in a random permutation
model (Devanur and Hayes 2009). In this model, the number
of workersk, skill levelsui,j of each worker, and number of
times that each worker arrives are all assumed to be chosen
adversarially, and are not known by the requester. However,
the order in which workers arrive is randomly permuted.
Since the adversary chooses the precise number of times
that each worker arrives (as opposed to simply choosing the
probability that a particular worker arrives on any given time
step), the offline optimal allocation is well-defined.

We have implicitly made the simplifying assumption that
the requester is able to quickly and accurately evaluate the
quality of the work that he receives. This assumption is re-
alistic, for example, for retrieval tasks, such as finding the



URL of local businesses in various cities or finding images
of people engaged in various activities. We leave the prob-
lem of task assignment in other settings for future work.

The Primal-Dual Formulation and Algorithm
We formalize our problem in the online primal-dual frame-
work. For intuition, we first discuss the offline problem. We
then discuss the online problem under the assumption that
worker skills are known, and finally move on to the setting
of interest, in which worker skills are unknown.

Primal-Dual Formulation of the Offline Problem
Consider first theofflineversion of the task assignment prob-
lem, in which the sequence of arriving workers and their
skill levels are known in advance. We can formulate this
problem as a linear program. To do this, we define an in-
dicator variableyi,t which is 1 if taski is assigned to the
worker who arrives at timet, and 0 otherwise. We usej(t)
to denote the identity of the worker who arrives at timet.
(Recall that the same worker may arrive many times.) Using
this notation, we can write the offline version of the problem
as an integer program. Since the budgetsbi are integers for
all i and the constraint coefficients are all integers, the offline
problem is equivalent to the following linear program:

Primal Dual
max Σm

t=1Σ
n
i=1ui,j(t)yi,t min Σn

i=1bixi +Σm
t=1zt

s.t. Σn
i=1yi,t ≤ 1, ∀t s.t. xi + zt ≥ ui,j(t), ∀(i, t)

Σm
t=1yi,t ≤ bi, ∀i xi, zt ≥ 0, ∀(i, t)

yi,t ≥ 0, ∀(i, t)

The Online Problem with Known Skill Levels
Consider a simplified version of our problem in which work-
ers arrive online, but the skill levelsui,j(t) for all tasksi are
revealed when thetth worker arrives. This can be mapped
to the online adwords problem; tasks are mapped to adver-
tisers, workers to keywords, and skills to bids. This allows
us to apply the Learn-Weights (LW) algorithm and analysis
of Devanur and Hayes (2009) with minor modifications.1

LW makes use of the dual form of the linear program
above. By strong duality, if we minimize the dual objec-
tive, we maximize the primal objective. We know that in
the optimal dual solution,zt = maxi{ui,j(t) − xi} for all
t; if this were not the case for somet thenzt could be de-
creased without violating any constraint, improving the ob-
jective. Furthermore, by complementary slackness, in the
optimal assignment,yi,t(ui,j(t) − xt − zt) = 0 for all i and
t. This implies that in the optimal solution,yi,t = 1 only if
zt = ui,j(t) − xi, or i = argmaxi{ui,j(t) − xi}.2

The goal then becomes finding the optimal values of the
variablesxi. LW has access to the valuesbi. While it does

1They requireΣm
t=1ui,j(t)yi,t ≤ bi instead ofΣm

t=1yi,t ≤ bi.
2This argument relies on an assumption that there is a unique

taski maximizingui,j(t) − xi. To break ties and ensure a unique
maximizing task, we can add small amounts of random noise as
in Devanur and Hayes (2009).

not have access to theui,j(t) for all t a priori, these val-
ues are revealed over time. LW begins by sampling val-
uesui,j(t) while assigning workers to tasks at random for
the first γm rounds, for someγ ∈ (0, 1). Because we
are in the random permutation model, these samples can
be used to get an accurate estimate of the distribution of
worker skills. LW then uses these samples to estimate the
optimal xi values, i.e., find the valueŝxi that minimize
Σn

i=1γbix̂i + Σγm
j=1 maxi{ui,j(t) − x̂i}. For the remaining

(1− γ)m rounds, workers are assigned to the task that max-
imizesui,j(t) − x̂i.

To summarize, in the exploration phase, worker skills are
observed and the optimal task baseline weightx̂i for each
taski is calculated. In the exploitation phase, each arriving
workerj is assigned the taski that maximizes the marginal
utility ui,j − x̂i. Using a PAC-style analysis, one can derive
the conditions onγ that imply that the assignments in these
rounds will be near-optimal.

Theorem 1. (Devanur and Hayes 2009) Consider the sim-
plified online task assignment problem with revealed skill
levels. LetVopt be the optimal objective value,umax =
maxi,j{ui,j}, and λ = maxi,i′,j{ui′j/ui,j : ui,j 6= 0}.
LW(γ) is (1− γ)-competitive for anyγ satisfying

Vopt

umax

≥ Ω

(

n2 log(λ/γ)

γ3

)

. (1)

Unknown Skills and the Dual Task Assigner

We now turn our attention back to the online task assignment
problem and show how to modify LW to handle unknown
skill levels. We introduce the Dual Task Assigner (DTA),
which estimates unknown worker skill levels and assigns
tasks to online arriving workers based on the estimation.
Note that LW is already split into two phases: an exploration
phase which is used to select the values of the variablesx̂i

based on the observed distribution over worker skills, and
an exploitation phase that aims to optimize the dual objec-
tive. DTA simply uses observations from the exploration
phase to estimate the valuesui,j (in addition to learning the
x̂i), and runs the exploitation phase using the estimated val-
ues. As we will show in Theorem 2, DTA is guaranteed to
have near-optimal performance whenm is large compared
with nk, the number of parameters that must be estimated.
This implies that we do not lose much by not knowing the
skill levels of workers a priori if workers return sufficiently
often. The algorithm is formally stated in Algorithm 1;ri
keeps track of the remaining budget for taski.

We remark that although this algorithm was designed for
the online task assignment problem, it can also be applied
in the online adwords setting if the goal is to maximize ex-
pected clicks (determined by an unknown click-through rate
for each ad-keyword pair) instead of maximizing payments.

Competitive Analysis
In this section, we provide an overview of the derivation of
our main theoretical result, the competitive ratio of DTA,



Algorithm 1 : Dual Task Assigner (γ)

Setsi,j ← 0 ∀(i, j)
Setri ← bi ∀i
for t← 1 to γm do

Seti← argmini:r(i)>0 si,j(t)
Assign workerj(t) to taski
Setsi,j(t) ← si,j(t) + 1
Setri ← ri − 1

Setûi,j ← average observed benefit ofj in taski ∀(i, j)
Set{x̂i}←argmin{xi}Σ

n
i=1γxibi+Σγm

j=1maxi{ûi,j−xi}
for t← γm+ 1 tom do

Seti← argmaxi:r(i)>0 ûi,j(t) − x̂i

Assign workerj(t) to taski
Setri ← ri − 1

which is stated in Theorem 2. We first examine how the per-
formance of an online assignment algorithm that has access
to the worker skill levels degrades when estimates of the skill
levels are used in place of the true values. We then derive a
bound on the error of the skill level estimates obtained using
random sampling as in the exploration phase of DTA. These
results are combined to derive the competitive ratio.

We first define the error measure. Given a valueu and an
estimatêu of u, we say that themultiplicative errorof û is
bounded byǫ if 1− ǫ ≤ û/u ≤ 1/(1− ǫ). Similarly, given
estimateŝui,j of worker skill levelsui,j and an assignment
of workers to tasks in which each workerj completes taski
ni,j times, we say that theaverage multiplicative errorfor
the assignment is bounded byǫ if

1− ǫ ≤ Σi,jni,j ûi,j

Σi,jni,jui,j

≤ 1

(1− ǫ)
.

Lemma 1 shows how the performance of any competitive
online assignment algorithm that has access to worker skill
levels degrades when approximations are used.3

Lemma 1. LetA be anα-competitive algorithm for the on-
line task assignment problem with known worker skills. IfA
is run using approximated worker skill levels such that the
average multiplicative error for any possible assignment is
bounded byǫ, then the ratio of the performance of the algo-
rithm to the offline optimal is bounded byα(1− 2ǫ).

Note that the lemma is true only when the average multi-
plicative error is bounded byǫ for any possible assignment.
If we do not have any restrictions about the assignment,ǫ
would be bounded by the worst estimation ofui,j for all
(i, j). However, since we are considering the random per-
mutation model, we can get a more reasonable bound for
our algorithm. We next derive a bound on the average multi-
plicative error with estimates obtained during the first phase
of DTA. As a first step, we state a bound on the multiplica-
tive error for each worker qualityui,j which follows from a
simple application of the multiplicative Chernoff bounds.

3All proofs appear in an appendix which can be found in the
version of this paper posted on the authors’ websites.

Lemma 2. Suppose we observe workerj completing taski
si,j times and set̂ui,j to the average requester utility. For
anyδ > 0, with probability1− δ, Letǫi,j be the multiplica-
tive error ofûi,j with respect toui,j . We have

ǫi,j ≤
√

3 ln(2/δ)

si,jui,j

.

This bound is small for workers who appear frequently
during the sampling phase, and large for workers who do
not. However, in the random permutation model, we would
expect that any worker who rarely arrives in the sampling
phase should also rarely arrive in the exploitation phase,
so the average multiplicative error in the exploitation phase
should be small as long asm is large compared withk.

Let sj be the number of times workerj arrives in the sam-
pling phase. Defineuavg =

∑

j sj mini ui,j/
∑

j sj , the av-
erage skill level of the workers on their worst tasks, weighted
by how often each appears in the sampling phase (which is
roughly proportional to how often he appears overall).

Lemma 3. Under the random permutation model, given the
first γm rounds are used for uniform sampling, for anyδ >
0, with probability1 − δ, if d := minj sj/

√

γm ln(k/δ) >
1, then for any possible assignment in the exploitation phase,
the average multiplicative errorǫ in the exploitation phase
is bounded as

ǫ ≤ d+ 1

d− 1

√

3 ln(4nk/δ)

√

nk

γm

1

uavg

. (2)

Let’s take a moment to examine this bound. The first term
goes to one asm gets reasonably large. The second term is
a standard logarithmic penalty that we must pay in order to
obtain that the result holds with high probability. The third
term has a familiar form common in many PAC-style bounds
(see, for example, Kearns and Vazirani (1994)). The quan-
tity nk can be viewed as the complexity of the model that we
must learn, captured by the number of unknown parameters
(i.e., ui,j values), while the quantityγm is the number of
examples observed in the first phase of the algorithm, giving
us the familiar square root of complexity divided by sam-
ple size. The final term appears because competitive ratio is
defined in terms of a ratio, requiring the use of multiplica-
tive error in the analysis; by Lemma 2, more examples are
required to obtain a low error for small values ofui,j .

Combining these, we derive the competitive ratio of DTA.

Theorem 2. Under the random permutation model, for
any sampling ratioγ ≤ 1/2 that satisfies the condition
in Equation 1, for anyδ > 0, with probability 1 − δ, if
d := minj sj/

√

γm ln(k/δ) > 1, then the ratio between
the utility obtained by DTA and the offline optimalVopt is at
least(1− γ)(1− 2ǫ), for someǫ satisfying Equation 2.

Strictly speaking, the result in Theorem 2 is not a com-
petitive ratio since it only holds with high probability. How-
ever, one can easily transform the result to a competitive ra-
tio by considering the performance of the algorithm on ex-
pectation. This adds a multiplicative factor of(1− δ) to the



bound. From Equation 2, we can show thatδ can be chosen
to beo(ǫ) if m is sufficiently large. We can then get a com-
petitive ratio of(1−γ)(1−O(ǫ)) (using a similar technique
to Devanur and Hayes (2009)). However, since this result
would sacrifice some preciseness, we keep our theorem in
the current form.

We would also like to remark that the value ofǫ is
O(1/

√
γ). Therefore, increasing the sample ratioγ would

decrease the errorǫ. This results in an exploration-
exploitation trade-off in choosingγ.

This result shows that as the number of arrivalsm grows
large compared withnk, the performance of DTA ap-
proaches the performance of LW in the simplified but unre-
alistic setting in which worker skills are known. One might
ask if it is possible to tighten this bound, or to relax the con-
dition that nosj can be small. We offer the following intu-
itive argument that one should not expect to do much better.
Suppose thatm is small compared withnk. In the extreme,
if a new worker appeared on every time step (m = k), then
any assignment algorithm would effectively be random since
the algorithm would have no information about each worker.
If workers appeared repeatedly but only a small number of
times, then there would not be sufficient data to learn about
the workers’ skills, and assignments would still be essen-
tially random. Even ifmostworkers appeared frequently,
we could still be in trouble if the few who appeared rarely
had much higher skill levels than the rest, since assigning
these workers to tasks suboptimally could have a large (un-
bounded) impact on competitive ratio. Therefore, in order
to achieve a meaningful competitive ratio style bound, it is
necessary that either all workers appear relatively often,or
most workers appear often, and the ones who appear rarely
don’t have unusually high skill levels.

Empirical Evaluation
Theorem 2 shows that DTA is competitive with the offline
optimal when the worker arrival sequence is random and the
number of arrivals is large. These assumptions might not
always hold in the real world. In this section, we empiri-
cally evaluate the performance of DTA on data collected on
Amazon Mechanical Turk.

Tasks and Skill Sets
We create a set of ellipse classification tasks. When a new
worker arrives for the first time, she is randomly assigned to
one of three groups, which determines which set of instruc-
tions she will receive. The text of the instructions for all
three groups is identical, telling them that they will classify
images of ellipses into two groups. However, the sample im-
ages that they see are different. The first group sees sample
images that appear to be classified by the length of their ma-
jor axis, as in Figure 1(a). The second group sees images that
appear to be classified by color. The third sees images that
appear to be classified by angle of rotation. These sample
images prime the workers to look for different characteris-
tics in the ellipses they will later classify, effectively creating
sets of workers with different “skills.”

There are eight different ellipse classification tasks. In
each, the worker is presented with sixteen images of ellipses

1(a) Instructions given to workers in the first group. The sam-
ple images appear to be classified by length.

1(b) A task. This example is easy to classify using color, but
hard using length and the rotation angle. The ellipses in one
of the categories are darker while the others are lighter.

and asked to classify them into two categories. The differ-
ence between the tasks is the way in which the images are
generated. In particular, the generation process has threepa-
rameters: 1) whether or not the two underlying groups are
easy to be classified using the length of the major axis, 2)
whether or not the two groups are easy to be classified using
color, and 3) whether or not the two groups are easy to be
classified using rotation angles. Each of the three parameters
has two settings, leading to eight different parameter values
for the eight tasks. Figure 1(b) shows an example of a task.

The utility of the requester is taken to be the fraction of
images that a worker correctly classifies.

Data Collection for Offline Evaluation

It is notoriously challenging to design empirical evalua-
tion techniques to compare algorithms with exploration-
exploitation components (Langford, Strehl, and Wortman
2008; Li et al. 2011); if we collect data by running a sin-
gle task assignment algorithm, we cannot know what would
have happened if we had instead used a different assignment,
since we only observe workers completing the tasks they are
assigned. We could attempt to compare algorithms (and pa-
rameter settings for each algorithm) by publishing separate
sets of tasks for each, but this would be both time consuming
and costly. Furthermore, because different workers would
complete the tasks, the comparison may be unfair.
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2(a) Hard, medium, and easy tasks.
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2(b) Tasks requiring different type of skills.
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2(c) Dependence on the number of arrivals.

We instead use an offline evaluation methodology. Dur-
ing our data collection phase, rather than running a task as-
signment algorithm to assign tasks to workers online, we
have each worker completeall eight tasksevery time she
accepts a job. This allows us to collect data on the perfor-
mance of the worker on all of the tasks simultaneously. We
can then use this data to evaluate task assignment algorithms
offline. When a task assignment algorithm assigns a worker
to a particular task, we allow the algorithm to observe the
performance of the worker on that task only, and disregard
the information collected about the other seven tasks. In this
way, we can use a single data set to evaluate and compare
several algorithms with a variety of parameter settings with-
out needing to collect new data for each algorithm.

In total, we published 8,000 task sets, each of which con-
sists of an instance of all 8 tasks. We offered $.05 for each
task set. To encourage workers to complete as many sets as
possible, we provided $.40 and $1 bonuses to workers com-
pleting at least 25 and 50 task sets respectively. As a result,
612 workers participated in the experiments. Among these
workers, 268 of them only completed one task set. However,
many workers completed more, with 53 workers completing
more than 50 task sets each. Over half (4,122) of the 8,000
published task sets were completed by these 53 workers.4

The Algorithms
In addition to DTA, we implemented a random assignment
algorithm, which assigns workers to tasks uniformly at ran-
dom, and two greedy algorithms,γ-first andγ-greedy.5 The
γ-first algorithm makes random assignments for the firstγm
rounds, and uses a greedy assignment based on estimates of
worker skill levels on the remaining rounds, no longer as-
signing a particular task once the budget has been used. The
γ-greedy algorithm randomly explores on each round with
probabilityγ, and otherwise assigns a task greedily.

Both of the greedy algorithms and DTA use estimates of
worker skill levels in order to make decisions. In practice,
worker arrivals are not randomly permuted and some work-
ers may arrive late. To handle this, in our implementation of
these algorithms, a worker is assigned to each task once the

4Our success obtaining a high level of worker return suggests
that others might benefit from the use of bonuses to encourage
workers to return many times.

5See, e.g., Sutton and Barto (1998). We useγ instead of the
more traditionalǫ to avoid confusion with the use ofǫ for error.

first n times she arrives, even if the sampling phase is over,
and the observations are used to estimate her skill levels.

Experiments and Results
To simulate real-world scenarios using the collected data,we
modified the budgets of the 8 tasks in two ways, setting some
of the task budgets to zero to effectively produce a smaller
n. In these experiments, the default sampling ratioγ is 0.1 if
not mentioned. To reduce noise, the plots are generated by
averaging results from 10 runs of each algorithm.

Expertise level. The first experiment was designed to sim-
ulate a scenario in which the requester possesses tasks that
require different expertise levels, i.e., hard tasks, medium
tasks, and easy tasks. Hard tasks can only be solved by a
portion of workers, while easy tasks can be solved by any-
one. To simulate this, we set the budget to be non-zero for
three of the tasks: 1) classifying ellipses that are easy to clas-
sify using any of the three criteria, 2) classifying ellipses that
are easy to classify by color or angle, and 3) classifying el-
lipses that are easy to classify using only angle. These three
tasks were each given a budget ofm/3.

Figure 2(a) shows the results of this experiment. Thex-
axis is time and they-axis is the difference between the cu-
mulative utility of each algorithm and the cumulative utility
of the random assignment algorithm. Although the greedy
algorithms perform better in the beginning, their perfor-
mance degrades quickly once budgets are used up; both run
out of budget for easy tasks, and are forced to assign hard
tasks to workers who are not capable of solving them. Be-
cause DTA is explicitly designed to take budget into consid-
eration, it outperforms both greedy algorithms in the end.

Different skills. The second experiment was designed to
simulate a scenario in which the requester possesses tasks
that require different types of skills, such as translatingpara-
graphs from French to English versus translating paragraphs
from Mandarin to English. To simulate this scenario, we set
the budget to be non-zero for a different set of three tasks:
classifying ellipses that are easy only using length, classify-
ing ellipses that are easy only using color, and classifying
ellipses that are easy only using angle of rotation. Each of
these three tasks was given a budget ofm/3.

Because the budgets of the three tasks are equal, one
would expect that a greedy algorithm should be near-optimal
in this setting; to perform well, the assignment algorithm



must simply determine what the specialty of each worker
is and assign each worker accordingly. As we see in Fig-
ure 2(b), the greedy algorithms do perform well in this set-
ting. However, DTA still achieves a small advantage by ex-
plicitly considering budgets.

Choice of sampling ratio. One might ask how sensitive
these results are to the choice of the sampling ratioγ used in
DTA, γ-first, andγ-greedy. To test this, we ran each of the
algorithms in the expertise level setting with a wide range of
sampling ratios to see how their performance would change.
Encouragingly, we found that none of the algorithms were
especially sensitive to the choice of the sampling ratioγ.
DTA consistently performed better than the greedy algo-
rithms except when DTA was given a very small (less than
.005) sampling ratio.

Dependence on the number of arrivals. Given our the-
oretical results, one might expect DTA to perform poorly
when the number of arrivalsm is small. To test this, we
modified the size of data by using only the firstm arrivals
for different values ofm in the expertise level setting. (Note
that this requires running DTA from scratch for each value
of m sincem impacts the budgets.) The results appear in
Figure 2(c). Thex-axis shows the valuem, and they-axis
shows the difference between the utility of each algorithm
and the utility of the random assignment normalized bym,
i.e., the average improvement per time step of each algo-
rithm over random assignment. The performance of DTA
starts to converge after about 2,000 to 3,000 points. This ex-
periment shows that DTA can be applied successfully even
if m is not very large compared withkn.

Conclusion
We introduced theonline task assignment problemin which
heterogeneous tasks must be assigned to workers with dif-
ferent, unknown skill sets. We showed that a simplified ver-
sion of this problem in which skill sets are known is math-
ematically similar to the well-studied online adwords prob-
lem. Exploiting this similarity, we designed the Dual Task
Assigner algorithm by modifying the algorithm of Devanur
and Hayes (2009) to handle and learn unknown parameters,
and showed that DTA is competitive with respect to the of-
fline optimal when the number of worker arrivals is large.
We compared the performance of DTA to random assign-
ment and greedy approaches using data collected on Ama-
zon Mechanical Turk, and showed that DTA outperforms
other algorithms empirically, especially in the scenario in
which “expert” workers must be saved for the most difficult
tasks.
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Appendix
Proof of Lemma 1
Since algorithmA is α-competitive, we expect to get no
worse thanα times the offline optimal when runningA with
estimated worker skill levelsU ′. However, the objective
value we will get is based on true worker skillsU , notU ′.
We need to take into account the estimation error. Since the
average multiplicative error ofU ′ is bounded byǫ, the ob-
jective we will receive is discounted by no more than(1−ǫ).
In addition, we can show that the true offline optimal is also
bounded within(1 − ǫ) times the offline optimal with es-
timated worker skills. Therefore, the competitive ratio is
(1 − ǫ)2α. Since(1 − ǫ)2 ≥ 1 − 2ǫ, we can also say the
competitive ratio is(1− 2ǫ)α.

Formally speaking, letSA(U) be the assignment calcu-
lated by algorithmA based on worker skill levelsU , and
SO(U) be the assignment calculated by offline optimal al-
gorithm with worker skillU . We also defineV (U, S) =
Σi,jui,jsi,j be the objective value of the online assignment
problem with assignmentS and worker skill levelsU .

Denote the true worker skill levels asU and the estimated
worker skill levels asU ′. SA(U

′) is the assignment calcu-
late by algorithmA with estimatedU ′. Since the objective
value the requester will get depends onU , notU ′, the ob-
jective value the requester will get when running algorithm
A would beV (U, SA(U

′)). We also knowV (U, SO(U)) is
the offline optimal solution with known worker skill levels.
Therefore, in this lemma, we need to prove that, if the aver-
age multiplicative error ofU ′ toU is bounded byǫ,

V (U, SA(U
′)) ≥ α(1− 2ǫ)V (U, SO(U)). (3)

SinceA is anα-competitive algorithm, we know that

V (U ′, SA(U
′)) ≥ αV (U ′, SO(U

′)). (4)

Since the average multiplicative error ofU ′ to U is
bounded byǫ, we can get

V (U, SA(U
′)) ≥ (1− ǫ)V (U ′, SA(U

′)). (5)

In addition, by definition of offline optimal, we know that
V (U ′, SO(U

′)) ≥ V (U ′, SO(U)). Again, using the bound
of average multiplicative error, we knowV (U ′, SO(U)) ≥
(1− ǫ)V (U, SO(U)). Therefore,

V (U ′, SO(U
′)) ≥ (1− ǫ)V (U, SO(U)). (6)

Combining Equations 4, 5, and 6, we get

V (U, SA(U
′)) ≥ α(1− ǫ)2V (U, SO(U))

> α(1− 2ǫ)V (U, SO(U))

This completes the proof.

Proof of Lemma 2
By multiplicative Chernoff bound, we have

Pr(ûi,j ≥ (1 + ǫ)ui,j) ≤ exp

(

−ǫ2

3
ni,jui,j

)

and

Pr(ûi,j ≤ (1− ǫ)ui,j) ≤ exp(−ǫ2

2
ni,jui,j)

< exp

(

−ǫ2

3
ni,jui,j

)

.

By the union bound, we can get

Pr

(

1− ǫ ≤ ûi,j

ui,j

≤ 1 + ǫ

)

≤ 2 exp

(

−ǫ2

3
ni,jui,j

)

.

This quantity is upper bounded byδ if ǫ ≤
√

3 ln(2/δ)/(ni,jui,j). By the definition of multiplicative
error, this completes the proof.

Proof of Lemma 3
In this proof, we first bound the value ofΣini,j , which is
the number of times workerj arrives in the testing phase,
for any possible assignments. We then bound the value of
ǫi,j , which is the multiplicative error ofui,j . Combining the
results, we can get the bound of average multiplicative error
ǫ in the testing phase.

Bounding Σini,j Note that we definesj as the number of
times workerj arrives in the sampling phase andni,j as the
number of times workerj is assigned to taski in the test-
ing phase. Definepj as the fraction of the total time steps
that workerj appears. Since we assume the worker arriving
sequence is randomly permuted, and the total number of ar-
rivals ism, we can treatpj as the probability of workerj ap-
pearing in each time step. Note thatsj/(γm) is the fraction
that workerj arrives in the sampling phase. By Hoeffding’s
inequality6, we can get that

Pr

(

pj −
sj
γm
≥ ǫ

)

≤ exp(−2γmǫ2).

Therefore, we can get for some workerj, for any δ, with
probability1− δ,

pj ≤
sj
γm

+

√

ln(1/δ)

2γm
.

Using the same argument for the testing phase, where
Σini,j is the number of times workerj arrives and(1−γ)m
is the total number of arrivals in the testing phase. We can
get for some workerj, for anyδ, with probability1− δ,

pj ≥
Σini,j

(1− γ)m
−

√

ln(1/δ)

2(1− γ)m
.

Combining the above inequalities,

Σini,j ≤
1− γ

γ
sj

+ (1− γ)

√

ln(1/δ)m

2

(

1√
γ
+

1√
1− γ

)

=
1− γ

γ
sj +

√

ln(1/δ)m

2

1− γ√
γ

(

1 +

√

γ

1− γ

)

.

6The standard form of Hoeffding’s inequality still holds in sam-
pling without replacement.



Since0 ≤ γ ≤ 1/2, we have0 ≤
√

γ/(1− γ) ≤ 1.
Thus,

Σini,j ≤
1− γ

γ
sj +

√

2 ln(1/δ)m
1− γ√

γ

= csj + f(δ,m, γ).

In the last step, we setc = (1 − γ)/γ andf(δ,m, γ) =
√

2 ln(1/δ)m 1−γ√
γ

to simplify the expressions. If we want
the results to be simultaneously satisfied by allk workers
(which can be considered ask events), by the union bound,
we get that for anyδ, with probability1−kδ, for any worker
j,

Σini,j ≤ csj + f(δ,m, γ)

Equivalently, we can say that, for anyδ, with probability
1− δ, for any workerj,

Σini,j ≤ csj + f(δ/k,m, γ). (7)

Using the same argument, we can also get

Σini,j ≥ csj − f(δ/k,m, γ). (8)

Bounding ǫi,j Since we are using uniform sampling,
worker j would complete each tasksj/n times in the sam-
pling phase7 From Lemma 2, we can get that, for anyδ, with
probability1− δ, the multiplicative error for estimating the
quality of workerj completing taski is bounded as follows,

ǫi,j ≤
√

3 ln(2/δ)n

sjui,j

.

Again, if we want the bounds to be satisfied for all(i, j),
we will get the following by using the union bound. For any
δ, with probability1− δ, for all (i, j),

ǫi,j ≤
√

3 ln(2nk/δ)n

sjui,j

. (9)

Bounding ǫ The total multiplicative error in the testing
phase is bounded byǫ if

ǫ ≤ Σi,jni,jui,jǫi,j
Σi,jni,jui,j

.

For anyδ, with probability1− 2δ, the bounds onni,j and
ǫi,j hold simultaneously, and we can then get the following
derivations.

• For the denominator:
Using (8), we can get

Σi,jni,jui,j ≥ Σi,jni,j min
i
{ui,j}

= Σj min
i
{ui,j}Σini,j

≥ Σj min
i
{ui,j}[csj − f(δ/k,m, γ)].

7For simplicity, we assumesj/n is integer for allj in the
discussion. Ifsj/n is not integer, since we assumesj ≥

d
√

rm ln(k/δ) for all j, the bound ofǫ would only be slightly
increased. The increasing ratio is no more than

√

t/(t− 1), where
t = d

√

rm ln(k/δ)/n. Note that the ratio approaches 1 whenm
is large.

• For the numerator:
Sinceui,j ≤ 1, using (7) and (9), we can get

Σi,jni,jui,jǫi,j

≤Σi,jni,j max
i
{ui,jǫi,j}

=Σj max
i
{ui,jǫi,j}Σini,j

≤Σj max
i

{

√

3 ln(2nk/δ)n

√

ui,j

sj

}

Σini,j

≤Σj max
i

{

√

3 ln(2nk/δ)n

√

1

sj

}

Σini,j

≤
√

3 ln(2nk/δ)n
1
√
sj

[csj + f(δ/k,m, γ)].

Combining both the denominator and numerator, we get

ǫ ≤
√

3 ln(2nk/δ)n
Σj

1√
sj
[csj + f(δ/k,m, γ)]

Σj mini{ui,j}[csj − f(δ/k,m, γ)]
.

• If sj ≤
√
γm ln k for some workerj:

In this case, we will getcsj ≤ f(δ/k,m, γ). Note that
we only assume the worker arriving sequence is random
permuted, but the worker performance vectorui,j can
be adversarially picked. If the minimum performance
mini{ui,j} of rare-appearing workerj is much higher
than the minimum performance of other workers, we may
not get any meaningful bounds for multiplicative errors.

• If sj ≥ d
√

γm ln(k/δ) for somed > 1 for all workerj:

In this case, we can getcsj ≥ df(δ/k,m, γ) for all j.
Therefore,

ǫ ≤
√

3 ln(2nk/δ)n
Σj

1√
sj

d+1
d

csj

Σj mini{ui,j}d−1
d

csj

=
d+ 1

d− 1

√

3 ln(2nk/δ)n
Σj

1√
sj
csj

Σj mini{ui,j}csj

=
d+ 1

d− 1

√

3 ln(2nk/δ)n
Σj
√
sj

Σj mini{ui,j}sj
.

We know that, for any vectorx with dimensionn, we have
‖x‖1 ≤

√
n‖x‖2. Recall thatk is the number of workers,

if we denotex = (
√
t1,
√
t2, ...,

√
tk), we have

Σj
√
sj ≤

√
k
√

Σjsj =

√
kΣjsj

√

Σjsj
.

By definition,Σjsj = γm. Therefore, we can get

ǫ ≤ d+ 1

d− 1

√

3 ln(2nk/δ)

√

nk

γm

Σjsj
Σjsj mini{ui,j}

.

Recall that the above bounds holds with probability1−2δ
for any δ. Therefore, we can get the following conclusion.
If sj ≥ d

√
γm ln k for somed > 1, then or all workerj, for

anyδ, with probabilityδ,

ǫ ≤ d+ 1

d− 1

√

3 ln(4nk/δ)

√

nk

γm

Σjsj
Σjsj mini{ui,j}

.



Proof of Theorem 2
We first consider the performance of the LW algorithm (De-
vanur and Hayes 2009) in the case when the worker skill
levels are known. LetVLW,1 be the portion of the objec-
tive value obtained by LW in the sampling phase, andVLW,2

be the portion of the objective value obtained by LW in
the testing phase. As long as Equation 1 is satisfied, LW
is (1 − γ)-competitive according to Theorem 1. Therefore
VLW = VLW,1 + VLW,2 is at least(1 − γ) times the offline
optimal.

Note that DTA is a direct extension of LW. We use the
first γm rounds for estimating worker skill levels and calcu-
lating the task weights. LetVDTA,1 andVDTA,2 be the por-
tions of the objective value obtained by DTA in the sampling
and testing phase. Since the assignment is not specified in
LW in the sampling phase, we can assume it uses exactly
the same assignment as DTA. Therefore,VDTA,1 = VLW,1.
From Lemma 1, we know that, for anyδ, with probability
1 − δ, VDTA,2 ≥ (1 − 2ǫ)VLW,2, whereǫ is bounded as in
Lemma 3.

Therefore, for anyδ, with probability1− δ, the objective
value obtained by DTA isVDTA = VDTA,1 + VDTA,2 ≥
(1 − 2ǫ)VLW . Since LW is(1 − γ)-competitive, we can
get that with probability1 − δ, the ratio between the value
obtained by DTA and the optimal value is(1− γ)(1− 2ǫ).


