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Abstract

We study the problem of incentivizing high quality contribu-
tions in user generated content platforms, in which users ar-
rive sequentially with unknown quality. We are interested in
designing a content displaying strategy which decides which
content should be chosen to show to users, with the goal of
maximizing user experience (i.e., the likelihood of users lik-
ing the content). This goal naturally leads to a joint prob-
lem of incentivizing high quality contributions and learning
the unknown content quality. To address the incentive issue,
we consider a model in which users are strategic in decid-
ing whether to contribute and are motivated by exposure, i.e.,
they aim to maximize the number of times their contributions
are viewed. For the learning perspective, we model the con-
tent quality as the probability of obtaining positive feedback
(e.g., like or upvote) from a random user. Naturally, the plat-
form needs to resolve the classical trade-off between explo-
ration (collecting feedback for all content) and exploitation
(displaying the best content).

We formulate this problem as a multi-arm bandit problem,
where the number of arms (i.e., contributions) is increas-
ing over time and depends on the strategic choices of arriv-
ing users. We first show that applying standard bandit algo-
rithms incentivizes a flood of low cost contributions, which
in turn leads to linear regret. We then propose Rand_UCB
which adds an additional layer of randomization on top of the
UCB algorithm to address the issue of flooding contributions.
We show that Rand_UCB helps eliminate the incentives for
low quality contributions, provides incentives for high qual-
ity contributions (due to bounded number of explorations for
the low quality ones), and achieves sub-linear regrets with re-
spect to displaying the current best arms.

Introduction

User generated content (UGC) sites are ubiquitous on the
Web — from online Q&A forums (such as Quora and stack-
overflow), to reviewing sites (such as yelp and tripadvisor),
to content-sharing sites (such as YouTube), and beyond. The
success of UGC platforms relies heavily on user satisfaction.
Ideally, a platform wants to optimize user experience by dis-
playing the best possible content. Naturally, this objective
leads to a joint incentive and learning problem. In particular,
how does the platform incentivize users to contribute high
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quality content, and how does the platform learn the quality
of the contributed content and identify the best one?

Let us first consider a simplified version of our prob-
lem and assume the platform has access to the true qual-
ity of the contributed content. In particular, we employ the
model in which users are strategic and aim to maximize the
exposure of their contributed content (i.e., the number of
times their content are viewed in the future). [[| This sim-
plified problem can then be reduced to a standard mecha-
nism design problem: how to allocate the “rewards” (num-
ber of times we show the content to future users) to incen-
tivize high quality contributions? This problem turns out to
relatively well-studied in the literature (Ghosh and McAfee
20115 |Ghosh and Hummel 2011}; |Ghosh and McAfee 2012;
Ghosh and Hummel 2012)).

However, in practice, the content quality is often not
known in advance. Instead, the platform needs to rely on
user feedback to estimate the content quality, defined as the
probabilities of obtaining positive feedback (e.g., like or up-
vote) from a random user. This leads to a natural exploration-
exploitation trade-off as in the bandit literature; the plat-
form wants to learn the content quality (or the payoffs of
arms in bandit settings) through exploration while optimiz-
ing user satisfaction through exploitation. However, our set-
ting is more complicated than standard bandit settings in two
aspects. First, the number of arms is not fixed and is in-
creasing over time. Second, the quality distribution of arms
is associated with the design of online learning algorithms,
since users’ decisions on whether to contribute is related to
the number of times the learning algorithm will display their
contributions.

In this paper, we explore this joint incentive and learning
problem in user generated content platforms. In our setting,
users arrive at the platform one at a time, providing feedback
(i.e., votes) to the content displayed to them, and deciding
whether to contribute new content. We assume users are un-
biased in providing feedback and are strategic in deciding
whether to contribute (aiming to maximize the exposure of

!"This user incentive model is adopted in the literature (Ghosh
and McAfee 2011} Ghosh and Hummel 2011). It captures the pop-
ular scenario that many online users contribute content to get atten-
tion. In addition, the number of content views could be translated
into monetary rewards through, for example, embedding advertise-
ments in the content.



their contributions). The content quality is unknown to the
platform but can be learned through user feedback. The goal
of the platform is to maximize the overall user satisfaction
(i.e., the likelihood of showing users the content they like) by
choosing a content-displaying strategy that simultaneously
learns the quality of existing content and incentivizes high
quality new contributions.

We first show that directly applying standard bandit algo-
rithms (e.g., UCB1 (Auer, Cesa-Bianchi, and Fischer 2002))
generates bad incentives. The intuition is that, in standard
bandit algorithms, we need to explore each arm enough
number of times to estimate its quality with high confidence.
This unavoidable exploration phase provides incentives for
users to contribute, regardless of the quality of their content.
This will result in a flood of contributed content, increase
the number of arms, and further reduce incentives for con-
tributing high quality content and degrade the performance
of online learning. We call this phenomena the curse of ex-
ploration.

To address this issue, we proposed Rand_UCB, which
randomly “drops” contributed arms with a dropping prob-
ability increasing over time. We show such a randomized
UCB algorithm will de-incentivize low quality contribu-
tions; and further this property will provide incentives for
users with high quality content to contribute, as the algo-
rithm needs only explore a smaller number of arms. As one
may imagine, this mechanism may drop good contributions
as well. However, with carefully chosen dropping probabili-
ties, the algorithm will obtain the near-optimal arm with high
probability.

Related Work

This paper is closely related to the body of work on incen-
tivizing high quality user contributions, in the context of
online Q&A forums (Jain, Chen, and Parkes 2009), Games
with A Purpose (Jain and Parkes 2013)), crowdsourcing mar-
kets (Ghosh and McAfee 2012; Ho et al. 2015]), and general
UGC websites (Ghosh and McAfee 2011} |(Ghosh and Hum-
mel 2011 |Ghosh and Hummel 2012). However, most of the
works along this line assume that the quality of user con-
tributions are immediately observable, while this paper con-
siders the learning perspective and the interaction between
learning and incentives.|Ghosh and Hummel|(2013) has con-
sidered a similar setting as in this paper, in which strate-
gic agents endogenously determines the quality of the arms.
However, they consider a one-shot scenario, in which all
agents need to determine the quality of the contributions si-
multaneously at the beginning of the learning process, with-
out knowing other agents’ actions. In this paper, we consider
a more dynamic setting, in which agents sequentially make
decisions based on what previously arrived agents have done
in the platform.

The techniques we use are largely borrowed from the ban-
dit literature (Lai and Robbins 1985} |Auer, Cesa-Bianchi,
and Fischer 2002; [Bubeck, Cesa-Bianchi, and others 2012).
However, in this paper, we need to address the issue of an
increasing number of arms. Whether new arms will be con-
tributed are determined by strategic agents. There has been
some recent work discussing the incentive elements in learn-

ing. Both|Gonen and Pavlov| (2007) and Frazier et al.|(2014)
consider the setting that arms are pulled by selfish and my-
opic agents. In order to encourage exploration, the princi-
pal needs to provide incentives. A couple of later works are
also on this line (Mansour, Slivkins, and Syrgkanis 2015}
Mansour et al. 2016). [Chakrabarti et al.| (2009) considers
the setting in which the arms can be replaced over time.
In their setting, the arm replacements happen stochastically
and the total number of arms is fixed. In contrast, in our set-
ting, the number of arms is increasing and the arm contribu-
tion/generation is a choice by strategic agents.

Setting

We explore the content displaying problem in user gener-
ated content platforms. In our setting, users randomly ar-
rive at the platform one at a time. When a user arrives, she
first provides feedback (i.e., votes) to content displayed to
her and then decide whether to make new contributions. We
assume users are unbiased in providing feedback || How-
ever, they are strategic in deciding whether to contribute,
aiming to maximize the exposure of their own contributed
content. The content quality is unknown to the platform in
advance but can be learned through user feedback. The plat-
form designer aims to choose a content displaying strategy
to (1) learn the content quality and (2) incentivize high qual-
ity contributions, with the goal of maximizing the overall
user satisfaction.

User and content models. Consider a discrete time set-
ting with ¢ = 1,...,T. Let A(¢) be the set of existing con-
tent at time ¢. Initially, A(¢) = () when ¢ = 1. Each content
has an intrinsic quality g € [0, 1], which represents the prob-
ability of getting positive feedback/vote from a random user.
At each time step ¢, a user randomly drawn from some un-
known distribution arrives, and the platform chooses a set of
content a(t) C A(¢) to display to the arriving user.

We abuse the notation and denote the user arriving at time
t as user t. When user ¢ arrives, she reviews the displayed
content and provides votes to the content. For each content
i € a(t), let ¢; be the quality of content i, user ¢ provides a
vote v;(t) € {0, 1} to the platform, with

v;(t) ~ Bernoullifg].

After voting, user ¢ then decides whether to contribute.
Each user ¢ possesses a content i; of quality ¢; € [0,1] ran-
domly drawn from F'(¢) and incurs a cost ¢; to contribute.
Suppose ¢; has bounded support ¢; € [c,¢|. Further we as-
sume that ¢ > 0: this is to say that even contributing the
least quality content will incur a non-zero cost. In practice,
consider the fact that contributing a random answer to Q&A
platforms requires effort (e.g., passing through several ad-
min and verification steps). We denote F'(-) as the CDF of
the distribution of ¢. We assume that user ¢ observes the true
quality of her content and the quality of existing content on

*We consider the common scenario that the number of visits
from a single user is small with respect to the total number of visits
from all users. Therefore, the benefit a user can gain by strategically
providing feedback is negligible.



the platform. She is also aware of the quality distribution
F(q) and the platform’s content-displaying strategy.

Let w;(t') be the event that the contribution of user ¢ is
displayed at time ¢’ (if user ¢ chooses to contribute her con-
tent 7;):

we(t')={ir €at)},Vt' =t +1,...,T.
The utility for user ¢ to contribute her content writes as
T

Uy ::E[ > ]l(wt(t’))} —c

t'=t+1

where the expectation is over the randomness of the algo-
rithm and the distribution of user quality. Since U; = 0 if
user ¢ chooses not to contribute, we know that when U; > 0,
user ¢ will choose to contribute. We would like to note that
the linear sum is mainly to simplify the presentation. Our
results stay valid as long as the users’ utilities are monotone
in this sum.

Objective of the platform. The goal of the platform is to
choose a displaying strategy A to maximize the user expe-
rience, which can be formulated as the total number of pos-
itive feedback collected from users. Specifically we assess
the performance of strategy A in the following three aspects:

1. We are interested in the time uniform regret in displaying
the so-far best content. A smaller such regret will lead
to better user experience over time. Denote by K*(t) the
top-K arms with the highest quality at any time ¢ (from
A(t)), we define the following regret:

Regret ,(t) = Er [i > )ql} E_A,F|:i > Qi]

t/=11€ K*(t/ t'=11i€a(t’)

Our goal is to then achieve Regret 4(t) = o(t) such that
over time the time-average regret Regret 4(t)/t — 0[}

2. We measure the maximum quality of collected arms at
the end of mechanism: max;c 4(1) ;- A better maximum
quantity implies better incentives for new arm generation.

3. We also analyze the number of contributed low quality
arms (which will be formally defined later). Controlling
the number of low quality arms will help the system run
more efficiently.

In the following discussion, we explore the design of dis-
playing strategies. We focus on the natural design space that
A can display at most K content at every time step, i.e.,
la(t)] < K. Note that this displaying strategy also approx-
imates users’ position biases: users are a lot more likely to
view the content in the top page (say it shows up to K con-
tent) than the content in subsequent pages.

3As an alternative and perhaps a stronger notion, we can de-
fine the regret with respect to the best arms among all arms that
could have been contributed, instead of the ones that have been
contributed. But note that, since we will show later that under our
mechanism, the quality of the best contributed arm approaches 1
when 1" goes large, our regret notion is sensible in characterizing
the algorithm performance.

A Warm-Up Setting: Known Quality

As a warm-up, we start with a simple setting in which the
platform can observe the quality of the content contributed
by arriving users. We demonstrate that the greedy algorithm
(Top-K) incentivizes high quality contributions, while the
random display algorithm incentivizes low cost contribu-
tions regardless of content quality.

To simplify the analysis, we consider the regime when T’
is large. In particular, we assume 7' — oco. We also assume
there is no tie in user quality, i.e., q; # gy for all t # t'. Note
that these assumptions are just used to simplify the presen-
tations.

Let us first consider the random display algorithm, i.e., the
platform randomly chooses K content from A(t) to display
at time ¢. It is easy to show that this algorithm incentivizes
low-cost content, regardless of the content’ true qualityﬂ

Lemma 1. [f the platforms runs the random display algo-
rithm, it is a dominant strategy (which leads to highest ex-
pected utility, regardless of other users’ actions) for user t
to contribute if and only if |A(t)| < k(c;), where k(-) is a
monotonically decreasing function.

Next we consider a simple greedy algorithm, i.e., Top-
K algorithm, which ranks the quality of content in A(¢)
and chooses the top K to display at time ¢. We can show
that the Top- K algorithm incentivizes high quality contribu-
tions, i.e., user ¢ will only contribute if her content will be
ranked top K in the next time step and if her content quality
is higher than some threshold (to make sure her contribution
stays in top K for a long enough period of time).

Lemma 2. Assume the platform runs the Top-K algorithm.
Let j be the rank of q; in A(t + 1) if user t contributes. In
the symmetric equilibrium (as in standard Bayesian Nash
Equilibrium), user t will contribute iff j < K and F;(q;) >
¢t for some function F; monotonically increasing in .

While these results are intuitive and may not seem surpris-
ing, they provide intuitions on the analysis of exploration-
exploration-type algorithms in the following discussion. For
example, when the platform explores to obtain feedback, it
is essentially running random display algorithm. We would
want to carefully limit the amount of explorations as it will
lead to a flood of content regardless of quality.

A Bandit Approach

In practice, full information would be too ideal to assume.
The platform often needs to collect information to learn the
quality of each content. Below we first show that this addi-
tional learning phase creates bad incentives and motivates a
flood of contributions, which in turn makes it infeasible to
achieves sub-linear regrets. We then propose a simple, yet
novel algorithm Rand_UCB to address the problem.

The curse of exploration
Since the quality of the contributed content is not known, the
platform needs to show each contributed content to arriving

“The omitted proofs are included in the supplementary material
available on the authors’ websites.



users some number of times to learn its quality. At the same
time, the platform also wants to only show the best content
to users to maximize their satisfaction. This creates a ten-
sion between exploration and exploitation as in the classi-
cal multi-armed bandit learning. To resolve this exploration-
exploitation trade-off, running standard bandit algorithms
(for example, the well-celebrated UCB1 algorithm (Auer,
Cesa-Bianchi, and Fischer 2002)) seems to be a very nat-
ural solution. However, we show that directly applying stan-
dard bandit algorithms introduces bad incentives and fails to
achieve sub-linear regrets.

Informally, consider a user arriving at time ¢, where t <
const - T for any const < 1.If she decides to contribute, a
bandit-based display algorithm needs to display her content
a high number of times (in the order of Q(logT)) in order
to achieve sub-linear regrets (Lai and Robbins 1985)). This
huge amount of unavoidable exploration creates bad incen-
tives. In particular, for each user ¢, the benefit of explorations
(in the order of Q(logT')) she can obtain will outweigh the
cost of contribution ¢; when 1" goes large, regardless of con-
tent quality. This implies that applying standard bandit al-
gorithms will create a flood of contributions and lead to un-
bounded regrets. We call this phenomenon the curse of ex-
ploration and formally summarize this negative result below.

Lemma 3. Let Ny (A) be the total number of contributed
arms when the platform runs the content-display algorithm
A for T rounds. Also, let Ag be the content-display al-
gorithm that chooses which content to display based on a
bandit algorithm B. When T is large enough, there does
not exist a standard stochastic bandit algorithm B (that
achieves ©(logT') regret with finite number of arms) such

that Np(Ag) = o(T/logT).

Proof. We prove by contradiction. Suppose there exists such
a bandit algorithm. Since the total number of arms is in the
order of o(T/logT) by the contradicting assumption, first
follow standard argument of bandit, we know the number of
times a sub-optimal arm will be selected is at most in the
order of O(log T'), and the total number of sub-optimal arm
selection is bounded by o(T').

Then for any user arriving early, say before const - T,
for any const < 1, he would reason that his arm will be
competing only with the optimal ones for the rest of 77 =
(1 —const)T' — o(T) steps. Apply the standard lower bound
argument to the k steps, the arm will be explored at least
QlogT") = Q(logT) times, which is larger than the cost
of contribution when 7 is large enough. Therefore, when T'
is large enough, every user arriving before const - T for any
const < 1 will choose to contribute, and the total number of
arms will not be bounded as o(7"/log T'). This leads to the
contradiction and finishes the proof. O

The above simple, yet striking result points out the caveat
of directly running bandit algorithms to learn content quality
in user-generated content platforms. Specifically, the num-
ber of arms that will be incentivized will approach the order
of Q(T'/logT), which makes it impossible to achieve sub-
linear regrets. Note that when the number of explorations is
large, the display algorithm based on bandit algorithms will

look similar to a randomized display strategy. Thus this neg-
ative result is also hinted by Lemmal|[I]

Goal: We would like to propose an online algorithm that
not only minimizes the regret in selecting the best arm, but
also is able to incentivize high quality arms. More formally,
recall that ¢; is the quality of content by user ¢ and A(%) is
the set of existing arms at time ¢. Let k; be the rank of ¢;
in A(t) if user ¢ decided to contribute. If k; < K, we call
such an arm arriving at time ¢ a high quality arm (since the
arm will be among the top K arms in the next round), and
we would like to incentivize its contribution. If k;, > K,
we name such an arm as a low quality arm (the arm is not
among the top K arms in the next round), and we would like
to de-incentivize its contribution.

Proposed algorithm: Rand UCB

Intuitively, the curse of explorations occurs because a bandit
algorithm needs to explore most arms (in particular, any arm
arriving at time ¢ < const - T" for any const < 1) a large
number of times. This creates a bad incentive. It is therefore
natural to ask, can we reduce the explorations for some of
the arms without sacrificing the performance of the learning
algorithm too much?

To achieve this goal, we propose Rand_UCB, which adds
an additional layer of randomization on top of the UCBI
algorithm. This additional layer of randomization serves as a
device for us to tune the amount of explorations at each time
step. We show that, with the appropriate choice of the tuning
parameters, we can incentivize better arms and achieve sub-
linear regrets.

Rand_UCB runs in two phases in each time step. In the
first phase, the algorithm selects a subset of content a(t)
from existing ones according to the UCB1 algorithm (Auer,
Cesa-Bianchi, and Fischer 2002). The process is described
as follows.

e Let n;(t) be the number of times arm ¢ € A(t) has been
selected till time ¢. Let v;(n) be the n-th feedback (vote)
user 4 has received, where n = 1, -+, n;(t).

e Select the top K arms from A(t) to add to a(t) according
to the following index rule, with random tie-breaking

g(t)
) +d ) (1)

nly vi(n)

IL(t) = by

Both d and ¢(t) are configurable parameters. In standard
UCBI, dis set tobe 1, and g(t) := 2logt.

The second phase is where our algorithm differs from
standard bandit algorithms. In the second phase, we add
an additional layer of randomization to handle newly con-
tributed arms. In particular, whenever a new arm is con-
tributed at time ¢, our algorithm flips a coin to decide
whether to include the new arm. The newly contributed arm
will only be added to the set of arms A(t) with probability
p¢ and will be droppedﬂwith probability 1 — p;.

5This additional layer of randomization is not the only possible
device to tune the amount of explorations. As discussed later in the
paper, we can combine existing machine learning tools as a device



Algorithm 1: Rand_UCB

Input: {p; : t =1,...,T}
fort=1,--- T do
select arms to display according to UCBI1.
if a new arm is contributed then
add the new arm in A(¢ + 1) with probability p;
end if
end for

How should we choose p;? As discussed previously, ap-
plying UCBI1 will lead to linear regrets due to the large
number of unavoidable explorations when 7' is large. In
Rand_UCB, we propose to decrease p; over time, i.e., to
gradually decrease the chance of adding a newly contributed
arm. The intuition is that we want to obtain good arms
early with high probability (therefore we start with larger
p: when ¢ is small) while not providing too much incentive
for all arms (we decrease p; when ¢ increases). In particu-
lar, we show that when p; = min{1, M/t} for some con-
stant M/ > 0, Rand_UCB has good incentive properties and
achieves sub-linear regrets.

Incentive properties of Rand UCB

We first analyze the incentive properties of Rand_UCB. De-
fine Sp.) = ZtT,:t 41 pr- Intuitively, Si;.7) upper bounds
the number of arms added to the platform after time t.
Denote the action of user arriving at time ¢ as act, €
{contribute, don’t contribute} and H; as the set of histor-
ical statistics. We define dominant strategy as our solution
concept for each incoming user ¢:

Definition 4. For each user arriving at time ¢, action a is
called a dominant strategy if for all ’ # a,

E[Ui|a, He, {qi,i € At)}] > E[Usla’, He, {qi, i € A(t)}].

Below we show that Rand_UCB can incentivize high
quality arms while discouraging low quality arms. Recall
that k; is the rank of the arm ¢ (i.e., the arm possessed by
user t) within the existing arms if it is contributed.

Theorem 5. Assume the platform runs Rand_UCB with
p: = min{1, M/t} for some configurable constant M. Let
d = 1 and g(t) = logt in the UCBI algorithm. When T is
large enough, for any user who arrives at time t < const-T'
with any const < 1, we can characterize whether user t will
contribute based on the following conditions:

o [fusert(t = o(T)) has a high quality arm (i.e., ky < K),

it is a dominant strategy for her to contribute if

Siery - (L= Fqr) < K — Ky + 1.

o [fusert has a low quality arm (i.e., ky > K ), whether she
will contribute depends on her arrival time. In particular,
there exists a f;(T) = O(logT), where the constants in
f+(T) depends on the realization of the top K contribu-
tions, such that

to help reduce the explorations and obtain good learning guarantee.

®We say a content is dropped if it’s not added to the active ex-
ploring set of arms.

— ift < fi(T), it is a dominant strategy to contribute.
— ift > fi(T), it is a dominant strategy to not contribute.

Proof. (Sketch) - We first prove that for a high quality arm
s.t. ky < K, when Sp.p - (1 - F(qr)) < K — k¢ + 1, there is
a positive probability £ > 0 that arm ¢ will stay in the top-K
set until 7. Next we bound (i) selection of ¢, if contributed.
(i1) number of total contributed arms.

The number of contributed arms can be bounded as fol-
lows with high probability

Neontr.(t) := [A(t)| + O(Sir)) = O(log T + Spy.1y).-

Then we can bound n;(T") as follows, using standard three-
way UCBI proof (Auer, Cesa-Bianchi, and Fischer 2002)):

T
E{ > ]l(wt(t/))] >T —t
t/=t+1

8log(T —t)
(@ —aqx)?

where qx denotes the K-th largest quality in the current
A(t). When set p, = M/t and t = o(T), the above bound
is in the order of O(T — ¢t — log® T'). Then agent’s utility
becomes in the order of (T —t) - k- py — O(log? T'- p;) — ¢
Suppose t = O(T?), 0 < 6 < 1. Then the above quantity

p— 9_ 2 .
%) — ¢ > 0, when T is

— Neontr. (t) - — const.,

is lower bounded by O(
large enough.

For a low quality arm, when ¢t = Q(log T'), his utility if
contribute can be upper bounded by U; < O(logT) - p; —
¢t — 0 — ¢; < 0. Therefore there is no incentive to con-
tribute. On the other hand when ¢ = o(log T'), we will know
that Uy > Q(log T') -pt — ¢ > 0, when T is large enough. So
users will contribute. Since a higher quality leads to higher
expected utility, we establish the existence of such a thresh-
old. O

There is a tension in selecting p;: selecting a higher p;
will provide incentives for higher number of contributions,
which leads to the curse of exploration; but setting a low
p: will miss out good arms. Our choice of p; avoids over-
explorations while guaranteeing we obtain good arms with
high probability.

Note that there exists a gray region of users that we
couldn’t characterize their equilibrium strategy: agents who
have good arms but the quality of their arms do not satisfy
the condition we specified in Theorem E} Intuitively, these
agents’ qualities are not high enough to ensure that it will
stay in the top-K set in the long run. This may look like a
concern. However, we show that as long as there are enough
high quality contributed arms, the regret can still be bounded
whether those users contribute or not.

Is Rand_UCB practical?

In Rand_UCB, we propose to randomly drop new contri-
butions with a probability decreasing over time. While this
seems to be an impractical strategy (we might not want to
tell users their contributions may not be viewed at all), in
practice, we can implement a soft version of Rand_UCB:



each arm is guaranteed to be explored a constant number of
times before random dropping. As long as the guaranteed
exploration is small, we can obtain the same incentive prop-
erty and achieves sub-linear regret as stated in the previous
section. In practice, we can even utilize the information from
the guaranteed exploration and drop the arms that receive
bad feedback (instead of random dropping).

The design intuition of Rand_UCB is to reduce the
amount of explorations for later arms. Randomly dropping
new arms is one of the strategies to achieve this. We discuss
another approach that combines existing machine learning
tools later in the paper. The intuition is that, in addition to
user feedback, we might utilize the content features (e.g., the
length of the contribution, the reputation of the contributor,
etc) to help learn the content quality and reduce the amount
of explorations.

Performance Analysis of Rand UCB

In this section, we present a set of results characterizing the
performance of Rand_UCB. In particular, we show that (1)
Rand_UCB achieves sub-linear regrets, (2) the best arm col-
lected by Rand_UCB approaches the best possible arm when
T is large, and (3) the total number of low quality arms col-
lected by Rand_UCB is bounded in the order of O(log T').

Regret analysis. We first state the lemma towards charac-
terizing Regret 4 (¢).

Lemma 6. At any time t, we have

Regret ,(t) < 16V Mtlogt + O(V1).

Compared to standard stochastic bandit regret, we have
an additional v/ term. This is mainly due to the fact that the
arm quality is drawn from a continuous space — so we cannot
differentiate two e-close arms with only O(log ) number of
samples. We are confident that when the quality levels are
discrete, we will be able to bring the regret order back to

poly-log.

Quality of the best contributed arm. We now bound the
quality of the best contributed arm. Bounding this quality
will hint on how well the algorithm can do in incentivizing
high quality arm. We prove the following lemma showing
that when 7" goes large, the highest quality will approach 1
(the highest quality).

Lemma 7. When T' goes large, we have max;ec o(T) ¢: — 1
whp>1—0(1/T).

Proof. (Sketch) - Denote by cj(t) the threshold for con-
tributing a new arm at time ¢, when the new arm’s quality
rank is k < K, for a sub-linear time ¢ = o(T). That is
c;;(t) is the smallest g that satisfies that Sy - (1 - F(q)) <
K — k + 1. When k£ = 1 we have that

F711—- &) if1 — K 0
ci(t) _{ 0 OEV S[t:T])’l Sty ~

We will show that at time ¢, if max;c 4) ¢; < cf(t), there
will be with high probability that an arm that has quality

higher than c¢j (¢) will be contributed in the future. Also we
can find a t = o(T") such that ﬁ > K - this is due to the

selection of py, i.e., setting p; = M/t, we have 0 < Sp.7) <

O(log T - -T~?), for some 0 < § < 1. Therefore there will
be such a time ¢} (¢) — 1. O

Number of contributed low quality arms. We bound the
number of low quality arms contributed in Rand_UCB.

Lemma 8. The number of contributed low quality arms is
bounded at the order of O(logT).

This can be established straightforwardly from Theorem
that after ©(log T') number of rounds, low quality arms
will have no incentive to contribute, due to the diminishing
probability of the contribution being added to the pool of
arms. Though trivially true, this result is of great practical
value: de-incentivizing low quality contributions not only
will reduce system’s load for running and maintaining the al-
gorithm, but also provides fundamental incentives for good
arm contribution.

Simulation

In this section, we provide simulation results to demon-
strate the intuitions of the design of Rand_UCB. Rand_UCB
has two advantages over the standard UCB algorithm. First,
it collects a good amount of content in the early stages
(pr = min{l, M/t}) and gradually decreases the proba-
bility of adding newly contributed content into exploration
phase. This allows the platform to obtain a good enough
content early with high probability, while not sacrificing on
keeping exploring new content. Second, as shown in Theo-
rem [5] Rand_UCB incentivizes high quality contributions.
This naturally improves the algorithm performance, since
the arms are better. Below we use simulations to demon-
strate the effects of these two components.

Decaying p; over time improves performance. We first
examine the effects of different p; choices. We assume users
always contribute and compare the results of decaying p; =
min{1, M/t} and constant p; = {1,0.1,0.01,0.001}. We
set K =1,T = 10,000, and M = 10. We also assume the
quality distribution F' is an uniform distribution in [0, 1]. We
run each algorithm 100 times and plot the mean performance
in Figure[l] The result shows that setting p; = min{1, M /t}
outperforms every other choices. Note that in the figure, the
y-axis is the average utility till time ¢.

Good incentives help. We next examine the effects of
good incentives. We assume each arriving user decide
whether to contribute based on the characterization in The-
orem [5| We compare the results of running Rand_UCB and
UCB on strategic users. For comparison, we also plot the
results of running Rand_UCB on always-contributing users.
As we can see from the results, as shown in Figure[2] provid-
ing good incentives significantly improves the performance.
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Discussions

We hope our work will open the discussion of designing in-
centivize compatible sequential learning methods to collect
high quality contributions for online platforms. Below we
first discuss an alternative approach to random dropping and
then outline a few interesting extensions of our framework.

An alternative to random dropping

In Rand_UCB, we randomly drop newly contributed arms
and use this as a device to control the amount of explo-
rations. In this section we discuss an alternative approach
to get around of the random dropping, via leveraging addi-
tional information and machine learning (ML) techniques.
Our main idea is inspired by the following observation.
User contributions often arrive with features that signal con-
tent quality, e.g., content length, contributor’s reputation,
etc. Can we leverage machine learning techniques to predict
the quality of newly contributed content from its feature vec-

tors, without displaying it extensively? In other words, can
we use machine learning tools as a device to help reduce the
amount of explorations in our problem?

Note that, if there exist a ML algorithm that can perfectly
predict content quality, our setting reduces to the full infor-
mation setting we present earlier on. The best strategy is to
only display top-K contribution. However, if the accuracy
of the ML algorithm is not perfect and is upper bounded by
a constant (not a function of time horizon T'), we still suffer
from the “curse of exploration”. The intuition is, for each
arriving arm, the ML algorithm essentially provides some
number of “free explorations” (based on the ML prediction).
However, to safely drop a low-quality arm, the number of
explorations we need stays in the order of Q(log T').

In this section, we discuss an interesting case when there
exists a ML algorithm whose error decreases in 7" and ap-
proaches 0 when T goes to infinity. For example, if each arm
comes in with a feature vector, via collecting users’ votes,
we can train the ML to predict arms’ quality. If the error
rate gets to 0 as 7' gets large, we might use this to replace
the random dropping mechanic. However, there are many
other challenges, e.g., the training data comes from users’
strategic choices and is not i.i.d. drawn, to design such an
algorithm.

We discuss a simple linear model to demonstrate this idea
(for details please refer to supplementary material): Suppose
the contributed content at time ¢ comes with a feature vector
z; € RP. Consider the following linear model ¢; = 0"z,
where § € RP is the unknown parameter. Therefore we
know as soon as we can learn the 6 correctly, we will be
able to safely predict the quality of a newly arrived content.
To estimate 6, we can collect a set of x; along with its es-
timated qualities ¢; (through displays) at certain randomly
selected time points, and perform linear regression.

Future directions
We outline a few interesting and promising future directions.

Effort sensitive model Effort sensitive models have been
thoroughly studied in (Ghosh and McAfee 201 1;|Ghosh and
McAfee 2012; Witkowski et al. 2013; [Ho et al. 2015) for
modeling the quality of user-generated content. These works
consider the case that the content quality ¢, is endogenously
decided by an effort variable e;. Agents’ strategic decisions
will not only be deciding whether to contribute but also be
deciding which effort level to choose before contribution.
While we think our proposed solution framework can be ex-
tended to this effort sensitive case, the analysis will be much
more complicated; as now when agents reason about their
utilities, they also need to reason about the effort exertion
actions from all future agents. This challenge is also noted
by [Liu and Chen|(2016).

A Dueling bandit approach There is also an interesting
interleave between the incentive design and interface design
problems. In our current set of results, when the mechanism
designer displays a content, each content will receive a feed-
back based on its true quality. We can imagine another way



(i.e., a different interface) of collecting quality information
would be to ask each user to select her preferred content
within two of them (or within a set of content). From the
learning perspective, this falls into the scope of the newly
arising study of dueling bandit (Yue et al. 2012). From the
incentive perspective, how should we choose the set of con-
tent to display to users at each time step, while ensuring
users with high quality arms are incentivized to contribute?
It would be interesting to study how different incentives can
be provided in different interfaces.

Conclusion

We propose a bandit algorithm Rand_UCB for solving the
problem of incentivizing high quality contributions from se-
quentially arriving users with unknown quality. The algo-
rithm builds on the classical UCB1 algorithm, with an addi-
tional layer of “random dropping” to tune the amount of ex-
plorations over time. We show that Rand_UCB helps elimi-
nate the incentives for low quality contributions, provides in-
centives for high quality contributions (due to bounded num-
ber of explorations for the low quality ones), and achieves
sub-linear regrets. We also offer discussions on possible ex-
tensions, including replacing random dropping with existing
machine learning tools for reducing the amount of explo-
rations. We hope this work will open up the discussion of
designing incentive compatible sequential learning methods
to collect high quality contributions for online platforms.
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Supplementary materials

Proof of Lemmalll
Proof. 1f user t contributes, her utility can be written as U; = E[Z?,o 11 Wlt/)l] — ¢¢. The expectation is over the randomness

of the qualities of future arriving users. It is easy to show that if user ¢ chooses to contribute when |A(t)| = k, user ¢ will also
choose to contribute when |A(t)| < k (simply by comparing each term E[1/|A(t')|] for ¢’ > t). Similarly, if user ¢ chooses not
to contribute when |A(t)| = k, she won’t choose to contribute when |A(¢)| > k. Therefore, there exists a threshold &(-) such
that user ¢ will contribute if only if |A(¢)| < k(ct).

Proof of Lemma 2]

Proof. Let U, ;(qy,c:) be the payoff of user ¢ with quality rank j if she contributes and V; ;(q;) be the value she receives from
her contribution being displayed. We can write Uy ;(g¢, ¢¢) = V4 ;(q¢) — c¢. For simplicity, below we use Uy ; and V; ; to denote
Upj(q, ce) and Vi j(qe).

If j > K, user ¢ will not contribute since her contributions won’t be displayed at all. So we need only consider the case
J<K.

Let’s first consider the case j = K. By definition, we have V, i = EZ?,O:tH 1(wi(t')). Define F), = Pr(q < g;¢ > ¢k ),
represents the probability that a random user having quality ¢ < g and cost ¢ > cg, where ck is a constant represents the
minimum value for user to contribute if their rank is K. We can write that

oo , F
Vir = ZF]: - 1—ka.
t'=1

Now consider any 0 < j < K, we have

Vij=Fi(L+ Vi) + (1= F)(1+ Vi) =1+ FVi;+ (1= Fj)Vi i
K—-1

1+(1—-F)V,.,; 1 1 F

( Vi1 _ V=Y 2

1 - F} C1-F 1-1@*1—1?,c

= Vi =
=]

User ¢ will choose to contribute if and only if j < K and Uy ; = V;; — ¢ > 0. Observe from the definition that F; is
monotonically increasing in g;, so we know that V; ; is increasing in g; as well. Observe the definition of V; ;, we can write
Vi.i(qt) = Fj(q:). Therefore, user ¢ chooses to contribute if and only if F;(¢:) > ¢;. O

Proof of Theorem 3

Proof. Consider step t, and shorthand its quality as q. Agent ¢ observes that k; = k, that is the quality of his arm is higher than
the k-th highest one. Denote the following random variable:

Zy(t) == 1g: > q) )
Then E[Z,(t)] = p:(1 — F(q)). The first condition that we will need is

T T
S EZ) = Y pe(l—F(q) = S - (1— F(q) < K —k + 1. 3)
t'=t+1 t'=t4+1

The above condition is saying that the expected number of better arms that arrive in the future in less than K — k + 1. This
condition is easy to understand that if the expected better arms to be arriving is larger than K — k + 1, agent ¢ may drop out of
the top K set. Denote by

Sury(1—F(q)) i= (1 —e)(K —k+1),0 < e < 1. )

For instance, we can set € as € = % and we enforce our first condition that

K—-k+1
Sier(1 = F(q) = —

Using Bernstein’s inequality we have
T T
Pr[ Y Zy(t) = Y E[Z,(t)] > (K — k+1)]
t'=t+1 t'=t+1

; exp( 0.5 (e(K — k+1))? > )

Zz::t-i-l Var(Z,(t)) + %maxt?:m |Z4(t;w) — E[Zy(D)]|e(K — k +1)




Since Var(Zy(t)) < E[Z}(t)] < pi(1 — F(q)) we know

T
D Var(Zy(t) < Spry(1 = F(q)) = (1 - €)(K — k) ©6)

t'=t+1

and | Z,(t;w) — E[Z4(t)]] < 1, we know

5 (e(K —k+1))2 5e(K—k+1
LHSoqun.@Sexp(— 05- (e f;+ ) ) :exp(—o5 < /€1+ )) @)
Denote this event as
T T
We={ Y Z,(t) = Y E[Zt)] > e(K — k+1)}
t'=t+1 t'=t+1
Then under W;, with probability
— 0.5-¢2(K —k+1)
PrW| > 1 — — 8
= exp( (1= +3e ) ®

q will stay in top K quantile from time ¢ to 7. Particularly when € is set to be 0.5, we have the probability become 1 —
e~ 16 (K—ki+1) The rest to prove is the following two aspects:

e Bound on selection of ¢, if contributed.
e Bound on the number of contributed arms.
We first prove that the number of contributed arms is bounded. At time ¢, there are already | A(t)| arms. Suppose from ¢’ = ¢

to T', there is an arm arriving with quality ¢» < ¢, that is the quality is lower than the K -th highest. Then the expected number
of selection of ¢’ can be fairly straightforwardly bounded as follows:

E[nt/ (T)] S m log(T — t/) + const. (9)

This follows by standard three-way argument for proving UCB1’s regret ((Auer, Cesa-Bianchi, and Fischer 2002), details
omitted) in that when

Ty (T) Z

7@]{ — )’ log(T —t'),

the probability of selecting ¢’ over top-K options is bounded. Therefore the expected utility of such arms of contributing is at
most O(@) — ¢p. When t = Q(logT), and ¢ > 0, there is no incentive for such low quality arms to contribute as

O(w) — 0. Then the total number of arm up to time 7" is bounded by

T
A+ D Zget)

t'=t+1

Again I[-E[ZtT,:tJr1 Zgw ()] = S (1 — F(gx)). Using Chernoff bound we know

T
Pr[ S Zan () > (14 6)Sp (1 — Flax)) ; (10)

_ 381 (1-Flag))
<e E
t'=t+1

Take 6 as § := % we know above probability is bounded by 1/7". So w.h.p.,

T
A+ Y Zye () < JA®)] + Sy + 3log T
t/'=t+1

Then follow standard three-way UCB proof (Eqn. (9)) we know
8log(T —t)

Elne(T)] > T —t — (JA(t)| + Sjpr) + 3log T) TErE

— const. (11)



Next we will prove that with probability at least 1 — 2/t2 that
la(t)] + Sier) = O(log T + Spi.1y)-

To prove this, consider ¢ = Q(log T): since E[|A(t)[] < S[1.4, using Chernoff bound we know that w.h.p. that [A(t)|] <
O(S[1.4)- When set p; = C/t, the above bound becomes O(log T' + S}1.77) = O(log T'). Then agent’s utility becomes

(T-t)(1 - e_%(K_’“'H)) “pp — O(log2T-pt) —¢.

When ¢ = o(T), suppose t = O(T?),0 < 6 < 1. Then the above quantity becomes at the order of

T—T9 —log’T
@(T) —Cc > 0
On the other hand, when ¢ = o(log T'), for a low quality arm, it is guaranteed that E[n:(T")] > Q(log T'). Therefore his utility
writes as follows by contributing: p;Q2(logT') — ¢; > 0, when T is large. So contributing will be a better action. O

Proof for Lemma

Proof. First of all, the expected total number of arms up to any time ¢ can be bounded as follows: Zi,zl Py < f:}: LC/tdt’ =
C'logt. Denote event that there is a new arm being added at time ¢ as new;. Use Chernoff bound, we know that

¢ ¢
Pr [Z new; > 8 Z ptl} <e TvaPr = O(1/t%).

t'=1 t'=1

The last equality is due to the fact that Zile = Clogt + O(1). Then with high probability 1 — O(1/¢?) that the number of
arms is at most 8C log t. Supposing that the best arm is ¢/, ¢’ < t. Define e-close arm to ¢y as any arm such that |¢ — ¢ | < e.
Consider the following four cases:

(1) Ift — t' < \/t, that is the best arm is a recently added arm. Regret incurred in this phase is at most v/%.

(2) When t — t’ > \/t. We can prove the following that for any arm k that is contributed before ¢ — /%, and is not € close
(denoting the gap as €, > €), the number of selection is bounded as

8logt
€k

E[ng(t)] < + const.

This follows from standard UCB1 three way argument with noting that

2log(t—t

o1 )] R0 <

n(t)
where t;, denotes the arrival time of arm k. The first inequality is due to Chernoff bound, and the last inequality is due to the
fact that ¢ — ¢, > v/t. When set 2,/ %it_)tk) = €y, we bound E[ny (t)]. Further the regret is bounded by

Pr[uk(t) —al>

8logt

€L

8logt
€

—+ const. < -+ const.

(3) For the sub-optimal arm k that is contributed between [t — /%, t], the regret can be similarly argued as the first case (1), which
is on the order of /7.
(4) For e-close arms, the regret is at most €t.

Adding up, the regret is bounded as

log ¢ 4C'log” t
Vt+ et +8Clogt - (8% + const.) = et + GC% +0(V1) (12)

Set € := 8/Ct~'/% - log t we have
4log?t
L N N
€



Proof for Lemma/[7l

Proof. Denote by cj(t) the threshold for contributing a new arm at time ¢, when the new arm’s quality rank is £ < K, for a
sub-linear time ¢ = o(T'). That is ¢ (t) is the smallest ¢ that satisfies that Sy.7) - (1 — F(q)) < K —k + 1. When k = 1 we
have that . X ) K

F~1(1- S ), if 1 — Som 0

0={ 5 o

Again consider a time ¢ that is sub-linear in T, denoting as t = O(T?) for some 0 < § < 1. Consider the following two cases.
When max;cq ) ¢ > ci(t), we have proved a lower bound (i.e., ¢j(t)). When max;c 4 ¢; < ¢ (t), we know the following
two facts:

e For o(T) = t' > t, if max;c vy @i < ci(t), and g > cj(t), and arm ¢’ is selected to add, then agent ¢’ is willing to
contribute.

o(T
o EY0) Zow (8] > 1.

The first proof can be easily adapted from our proof for Theorem [5that if an agent has incentive to contributed an arm with
g > c¢;(t) at time ¢ (according to our definition of ¢} (t)), he will also have incentives to do so at t' > t. As we can show that
with ¢ > ¢, the probability of the agent staying in the top-K set will increase.

The second argument can also be adapted from the proof for Theorem 5] First we know from the proof of Theorem [5]that

T

Pr [Z Zery(t') > K — 2} -1,
t/=t

at the order of 1 — O(1/T). This is because for the threshold case, is it allowed to have K — 1 better arms to arrive in the future.

Next we need to prove that E[Zf@ Zerry(t)]/ E[Zgzt Zer(1y(t')] is non-negligible. Note the following fact that

T T'-° T1-6

=13 < T*"/ 1/tdt < O((1 — ) logT - T~7)
t'=T" t=1 =1
and ZtT,:;lfngl/t’ — O(logT - T~%). Then we assert E[> 0 Ze-y(t')] takes a non-negligible fraction of

E[ZtT,:t Zery(t)]ift" = T?, and we appropriately select such a 6. Further from ¢’ = T to another sub-linear time, there will
be at least one better arm with ¢, > ¢} (¢) will be added. Also we can find a t = o(7T’) such that ﬁ > K - this is due to the

selection of py, i.e., setting p, = C//t, we have 0 < Sj.7] < O(log T-T~?). Therefore there will be such a time ¢ (¢) — 1. O

A linear model for predicting content quality using ML

Suppose the contributed content at time ¢ comes with a feature vector z; € R%. For simplicity of analysis, we assume that z;
is drawn from a unit ball such that ||z;|| < 1. Consider the following linear model ¢; = 6" z;, where # € R? is the unknown
parameter. Therefore we know as soon as we can learn the 6 correctly, we will be able to safely predict the quality of a newly
arrived content. To learn such 6 we use the following regression procedure

Algorithm 2: A linear regression procedure for predicting qualities of newly arrived contents

e Randomly sample a certain number of time points (to ensure i.i.d. samples). Denote such time points up to time ¢ as E(t),
such that |E(t)| = Cg - logt, for some constant Cr > 0.

e Promise a constant number T > 0 of displays for contents contributed at time points in E(t), to ensure those contents
will be contributed.

e Use the information collected from the constant number of displayed to estimate noisy quality ¢,, n € E(t). Denote this
collected set of training data as {(=n, Gn) }ner(t)-
e Linear regress over above set of data: §, := argmaxy, o<1 Qnep() 0Tz, — Gn)%

e Use the estimated 6, to predict the quality of newly arrived contents ¢; := é; Tt.
e Pre-set a threshold € > 0. When ¢t = Q(7"%), 0 < § < 1, only add newly contributed contents to the active exploration set
if ¢ > qx + 3e.

Without repeating all the analysis, we provide intuition on why the above system works: first it is very easy to verify that

G = 0z, + €



where €, is zero mean and has bounded support. Then applying standard linear regression results (Liu and Chen 2016) to obtain

that with high probability 1 — O(1/t) that ||6; — 0|| < O(locé_t). When ¢ and T are large enough such that O(é) < e, with
high probability, only the content with quality ¢; > qx + € would be willing to contribute. Further since there will be at most
1/e arms being contributed before gx reaches the maximum 1 (bounded number of arms), there will be incentives for the high
quality arms to contribute.

It is worth to note that, when ¢ is large that the error in estimating 6 is sufficiently small, for arriving agents with low quality
contents, they know with high probability that their contributed contents will be accurately predicted and thus not displayed. So
they will have no incentives to contribute. Furthermore, we would like to note that as time ¢ goes large that ||0; — 0|| becomes
negligible, this setting reduces to the full information setting we detailed earlier on.




	Introduction
	Related Work

	Setting
	A Warm-Up Setting: Known Quality
	A Bandit Approach
	The curse of exploration
	Proposed algorithm: Rand_UCB
	Incentive properties of Rand_UCB
	Is Rand_UCB practical?

	Performance Analysis of Rand_UCB
	Simulation
	Discussions
	An alternative to random dropping
	Future directions

	Conclusion

