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ABSTRACT
AI-driven training systems have gained popularity across various
disciplines, including disaster response, pilot training, and med-
ical education. Many such systems use "hints," leveraging AI to
identify key decision points and suggest actions to aid trainees.
Some hint-based AI-driven training systems have been shown to
improve trainee performance in deployment when conditions are
similar to those in training. However, when conditions in deploy-
ment substantially differ from those in training, trainees often fail to
generalize the hints to unseen scenarios, resulting in a decrease in
performance. Meanwhile, the recent development of explainable AI
has provided opportunities to address the generalization challenge
by providing explanations to improve humans’ understanding of AI
hints. In this work, we explore the effect of providing explanations
alongside hints in AI-driven training in a simple navigation task.
As an exploratory investigation, we utilize large language models
(LLMs) to generate explanations about which features of the task led
to the given hint. Our preliminary results suggest that, in our simple
navigation task with LLM-generated explanations, while providing
explainable hints improves trainee performance in environments
similar to training, it promotes over-reliance on the AI-provided
hints. This results in decreased performance in environments un-
seen during training. Future work would include examining other
mechanisms of explanation generation and investigating the effects
in other tasks.
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1 INTRODUCTION
As AI becomes increasingly powerful, it offers unprecedented op-
portunities to enhance human decision-making capabilities, par-
ticularly in complex and challenging environments. One common
approach for AI to augment human intelligence is to provide sug-
gestions to human decision-makers in the form of hints, where a
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hint is implemented as a suggestion of what action to take at a given
time point. In particular, prior works have shown that it is possible
to leverage AI techniques to identify effective hints to provide to
human decision-makers [3, 7, 18].

While leveraging AI hints to assist humans is promising, offering
these hints in deployment is not always practical. It can become too
cumbersome or distracting, especially in situations that require fo-
cused attention from decision-makers. For example, a pilot evading
enemy fire may not be able to process advice from an AI system in
deployment due to the need to concentrate on immediate threats. In
such scenarios, an alternative is to utilize AI hints during training
rather than in deployment, helping trainees learn to avoid poten-
tial mistakes in deployment. However, similar to the sim-to-real
challenge in robotics [19], there is often an unavoidable gap be-
tween the training environments and deployment environments.
To effectively utilize AI hints for training, one major challenge is
to ensure that humans can generalize what they have learned to
environments they have not encountered during training.

To achieve generalization, human decision-makers need to un-
derstand the AI hints and selectively apply the concepts learned in
training to tasks during deployment, as directly mimicking train-
ing actions and decisions might result in negative outcomes in
previously unseen environments. Given this goal is similar to the
recent development of explainable AI [17], in this work, we explore
whether providing explanations alongside AI hints during training
can help trainees to generalize the hints from training to deploy-
ment. In particular, during training time, in addition to providing
trainees with AI hints, suggestions on what actions to take at given
time points, we also provide explanations that suggest why the
hints are generated.

As an exploratory study, we conducted experiments on the
Mouselab game developed by Callaway [7]. We leverage their
methodologies in generating AI hints. To generate explanations, we
utilized recent advancements in large language models (LLMs). We
provided ChatGPT with the task and the corresponding hint, asking
it to generate explanations about which features of the task led to
the given hint. Our results demonstrate that, in our experimental
setting, providing explainable hints improves trainee performance
in environments similar to training. However, it also promotes
over-reliance on the AI-provided hints, resulting in decreased per-
formance in environments not encountered during training. While
our preliminary results are discouraging, they highlight the im-
pact of explanations on trainee performance in AI-driven training
systems. Moreover, our findings align with existing literature on
explainable AI, which often shows that providing explanations can
lead to over-reliance on AI outputs [5, 6, 16]. This suggests a po-
tential direction for future research: leveraging insights from the
explainable AI literature to mitigate over-reliance and enhance the
generalization abilities of trainees.
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2 RELATEDWORK
Our work builds on the work by Callaway [7], who usedmetacogni-
tive feedback (i.e., hints aimed at improving a user’s decision-making
rather than simply judging their decisions) to enhance users’ plan-
ning strategies in a simple game. One of the experiments conducted
by Callaway [7] involved placing users in a new environment after
training (with hints) in a different one, which caused these trainees
to perform worse than those in the control group. In other words,
the trainees were learning how to play a single specific version of
the game and seemingly failed to generalize their new knowledge.
In this work, we aim to explore whether this phenomenon could
be mitigated by offering explainable hints during training.

In the context of AI-assisted decision-making, using explainable
AI has been shown to improve human trust [8], and in some cases,
performance [11, 14], across a variety of environments [12]. This
improvement is partially due to increased engagement with the
task [1]. However, explainability can also lead participants to over-
apply the AI’s advice when it is not relevant, especially when the
hints presented are convincingly wrong [4], wrong too often [15],
or too cognitively expensive to engage with [16].

Another related line of work is in the sutudy of far transfer [2],
where we look to see if knowledge is transferred from training
in one environment to performance in a related, albeit different
(in terms of optimal decision-making policy) environment. In this
light, hints have been shown to be effective at assisting transferring
knowledge between contexts, but only when they assist individuals
in making connections between them [2]. However, when viewed
as a task switch, hints may very likely cause an over-application
of ideas from one task to another, in line with findings on over-
reliance [13]. Generally speaking, there are conflicting theories in
the literature on how explainable AI would impact knowledge trans-
fers between tasks. Meanwhile, there is relatively limited empirical
work to measure the transfers in the presence of explainable AI,
which is what our paper aims to explore.

3 EXPERIMENTS AND RESULTS
3.1 Experiment Setup
Our experiments extend the Mouselab game by Callaway [7]. In the
Mouselab game, users are ask to control a spider to navigate across
themap to collect rewards, as demonstrated. The rewards associated
with each node are initially hidden, but users can choose to incur a
cost to reveal the reward associated with a given node. The user’s
planning strategy is to figure out ways to reveal the rewards and
ways to navigate the map to maximize the total collected rewards.

At the beginning of the game, the player is placed at the center
node. Each non-starting node offers a reward (in coins) indicated
by the number on the node, with all rewards initially hidden to
the player. At each time step, the player can choose to reveal the
reward of a node, incurring a cost of 2 coins or choose to move the
spider towards one of the allowable direction. When the spider pass
through a node, it collects the associated rewards. When the spider
reaches the leaf node, the game ends. The goal of the player is to
maximize the total collected rewards, and the player can receive a
bonus based on the rewards they collected throughout the game. A
dissection of the game interface can be found in Figure 1.

In the training environment, node reward variance increases as a
function of distance from the center, i.e., the rewards for the nodes
close to the center are close to 0, while the rewards for the nodes
far away from the center are larger in magnitude. Therefore, during
training, the AI hints would lead users to reveal the rewards for the
nodes far away from the center first to identify some high-reward
nodes, and then navigate to those nodes to collect the rewards. The
LLM-generated explanations provide additional information about
the variance of reward distribution not included in hints, e.g., it
explains that the reason the AI hints lead users to reveal the nodes
far away from the center first is the high-variance property.

To create differences between the training and deployment en-
vironments, we vary the reward distributions of the nodes in the
deployment environments. Specifically, we separate the deployment
environments into "similar-to-training" and "dissimilar-to-training"
environments. The "similar-to-training" environments are gener-
ated in the same way as the training environments. However, in
the "dissimilar-to-training" environments, the nodes closer to the
center exhibit higher variance in realized rewards, while the nodes
farther away from the center exhibit lower variance in realized
rewards. Since participants will not receive AI hints and/or expla-
nations during deployment, we conjecture that participants who
only receive AI hints are more likely to continue adopting incorrect
strategies for a longer period. In contrast, participants who receive
explanations alongside AI hints are likely to adjust more quickly to
the change in reward distribution during deployment.

Figure 1: A round of the Mouselab game with explained hint.

For the implementation of AI hints, we leverage the samemethod-
ology as Callaway [7], which uses reinforcement learning to de-
termine the optimal policy and generate AI hints based on it. For
the generation of explanations, we provide the environment de-
scription and the actions from the AI hint to GPT-4 to generate
explanations in an offline manner.
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3.2 Experiment Procedure
We conducted our experiments using the above experimental setup.
Participants in each experiment were placed into one of three treat-
ments: Control, Unexplained Hints, and Explained Hints. The treat-
ments differed in the type of hints participants received during the
training phase. All participants experienced the same experimen-
tal structure. After agreeing to the informed consent and reading
through the instructions, participants proceeded through a training
block followed by two deployment blocks. Each block consisted of
eight rounds. In the training block and the first deployment block,
participants completed tasks in environments similar to the training
environments. In the second deployment block, participants com-
pleted tasks in "dissimilar-to-training" environments as described
above. Before the start of the second deployment block, participants
were informed that the environment would change, but they were
not provided with specific information on how it would change or
what the new optimal strategy would be.

We conducted our experiments by recruiting participants from
Prolific. A total of 300 participants were recruited for the exper-
iments, which were approved by the IRB at our institution. We
assessed the performance of participants based on the difference
between their achieved reward and the maximum possible reward
for each round. We refer to this difference as "loss," where a lower
loss equates to superior performance.

3.3 Experiment Results
The results are shown in Figure 2. We first found that providing AI
hints AI hints increase the performance of participants both during
training and during deployment when the deployment environ-
ments are similar to those in training. Moreover, when providing
explanations alongside AI hints, this performance gain further in-
creases, demonstrating that explanations help humans understand
AI hints and improve their performance.

Figure 2: The average loss for each of the three treatments
over training and deployment. The loss is defined as the
the performance of the participants minus the performance
of the performance of the optimal strategy. The error bars
represent standard errors.

However, when the deployment environments are different from
the training environments, participants receiving AI hints during
training significantly underperform participants not receiving AI
hints, although these effects dissipate over time (as shown in the
second half of the environments in the dissimilar-to-training block).
This observation replicates the work by Callaway [7]. Probably
more surprisingly, for participants receiving explanations along-
side AI hints during training, the performance drop is even more
significant than the participants receiving only AI hints during
training. This result indicates that participants might have devel-
oped over-reliance on the AI hints when provided explanations.
Even when the explanations are supposed to help them understand
the reasoning of the hints, participants do not internalize the expla-
nations and seemingly developed more reliance on them in their
decision-making.

4 CONCLUSION AND DISCUSSION
In this work, we examine the effects of explanations for AI hints
in AI-driven training systems. Our results replicate prior findings,
showing that providing AI hints during training improves partici-
pant performance when the deployment environments are similar
to those in training, but it might hurt participant performance
when the deployment environments are dissimilar to training. Ad-
ditionally, when we introduce LLM-generated explanations to AI
hints during training, it further enhances participants’ performance
in similar-to-training deployment environments. However, it also
exacerbates the decline in participant performance in dissimilar-
to-training environments. These findings suggest that while ex-
planations can be beneficial in familiar contexts, they may lead
to over-reliance in novel situations. This highlights the need for
further research in the design of AI-driven training systems.

Our work includes a number of limitations, many of which could
be grounds for future research. The first limitation concerns the
task environments. The game we used is relatively simple and does
not cover multiple types of deviations from the training environ-
ment. Examining to what extent our results generalize to other
environments is a natural next step. Second, in our setting, explana-
tions are always presented alongside AI hints. Literature suggests
that showing only the explanations without explicit suggestions on
what to do [10] or phrasing the explanation as a question [9] can
increase interaction with the hint system and improve performance.
Therefore, it would be interesting to explore whether this could be
a more effective way of utilizing explanations in AI-driven training.
Third, there has been a flourishing line of research in explainable
AI, and we have only adopted LLM-generated explanations in our
study. It would be important and useful to examine the effects of
different ways of implementing explanations. Finally, our results
suggest that participants might develop potential over-reliance on
AI hints during training when explanations are provided. This find-
ing aligns with recent empirical results that explanations often
induce over-reliance in the context of AI-assisted decision mak-
ing [5, 6, 16]. It is therefore important and interesting to bridge
the results and findings of using explanations in the context of
AI-driven training and AI-assisted decision making, with the goal
of improving our understanding of best leveraging AI to improve
human decisions.
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