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Abstract

Crowdsourcing markets have emerged as a popular platform for matching available workers
with tasks to complete. The payment for a particular task is typically set by the task’s requester,
and may be adjusted based on the quality of the completed work, for example, through the use
of “bonus” payments. In this paper, we study the requester’s problem of dynamically adjusting
quality-contingent payments for tasks. We consider a multi-round version of the well-known
principal-agent model, whereby in each round a worker makes a strategic choice of the effort
level which is not directly observable by the requester. In particular, our formulation significantly
generalizes the budget-free online task pricing problems studied in prior work.

We treat this problem as a multi-armed bandit problem, with each “arm” representing a
potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a
new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of
regions, effectively treating each region as a single arm. This discretization is adaptively refined,
so that more promising regions of the contract space are eventually discretized more finely.
We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and
substantially improves over non-adaptive discretization (which is the only competing approach
in the literature).

Our results advance the state of art on several different topics: the theory of crowdsourcing
markets, principal-agent problems, multi-armed bandits, and dynamic pricing.
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1 Introduction

Crowdsourcing harnesses human intelligence and common sense to complete tasks that are difficult
to accomplish using computers alone. Crowdsourcing markets, such as Amazon Mechanical Turk
and Microsoft’s Universal Human Relevance System, are platforms designed to match available
human workers with tasks to complete. Using these platforms, requesters may post tasks that they
would like completed, along with the amount of money they are willing to pay. Workers then choose
whether or not to accept the available tasks and complete the work.

Of course not all human workers are equal, nor is all human-produced work. Some tasks, such as
proofreading English text, are easier for some workers than others, requiring less effort to produce
high quality results. Additionally, some workers are more dedicated than others, willing to spend
extra time to make sure a task is completed properly. To encourage high quality results, requesters
may set quality-contingent “bonus” payments on top of the base payment for each task, rewarding
workers for producing valuable output. This can be viewed as offering workers a “contract” that
specifies how much they will be paid based on the quality of their output.1

We examine the requester’s problem of dynamically setting quality-contingent payments for
tasks. We consider a setting in which time evolves in rounds. In each round, the requester posts
a new contract, a performance-contingent payment rule which specifies different levels of payment
for different levels of output. A random, unidentifiable worker then arrives in the market and
strategically decides whether to accept the requester’s task and how much effort to exert; the
choice of effort level is not directly observable by the requester. After the worker completes the
task (or chooses not to complete it), the requester observes the worker’s output, pays the worker
according to the offered contract, and adjusts the contract for the next round. The properties of a
random worker (formally: the distribution over the workers’ types) are not known to the requester,
but may be learned over time. The goal of the requester is to maximize his expected utility, the
value he receives from completed work minus the payments made. We call it the dynamic contract
design problem.

For concreteness, consider a special case in which a worker can strategically choose to perform
a task with low effort or with high effort, and the task may be completed either at low quality or at
high quality. The low effort incurs no cost and results in low quality, which in turn brings no value
to the requester. The high effort leads to high quality with some positive probability (which may
vary from one worker to another, and is unknown to the requester). The requester only observes
the quality of completed tasks, and therefore cannot infer the effort level. This example captures
the two main tenets of our model: that the properties of a random worker are unknown to the
requester and that workers’ strategic decisions are unobservable.

We treat the dynamic contract design problem as a multi-armed bandit (MAB) problem, with
each arm representing a potential contract. Since the action space is large (potentially infinite)
and has a well-defined real-valued structure, it is natural to consider an algorithm that uses dis-
cretization. Our algorithm, AgnosticZooming, divides the action space into regions, and chooses
among these regions, effectively treating each region as a single “meta-arm.” The discretization is
defined adaptively, so that the more promising areas of the action space are eventually discretized
more finely than the less promising areas. While the general idea of adaptive discretization has

1For some tasks, such as labeling websites as relevant to a particular search query or not, verifying the quality of
work may be as difficult as completing the task. These tasks can be assigned in batches, with each batch containing
one or more instances in which the correct answer is already known. Quality-contingent payments can then be based
on the known instances.
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appeared in prior work on MAB [Kleinberg et al., 2008, Bubeck et al., 2011a, Slivkins, 2011b,a],
our approach to adaptive discretization is new and problem-specific. The main difficulty, compared
to this prior work, is that an algorithm is not given any information that links the observable
numerical structure of contracts and the expected utilities thereof.

To analyze performance, we propose a concept called “width dimension” which measures how
“nice” a particular problem instance is. We show that AgnosticZooming achieves regret sublinear
in the time horizon for problem instances with small width dimension. In particular, if the width
dimension is d, it achieves regret O(log T ·T (d+1)/(d+2)) after T rounds. For problem instances with
large width dimension, AgnosticZooming matches the performance of the naive algorithm which
uniformly discretizes the space and runs a standard bandit algorithm. We illustrate our general
results via some corollaries and special cases, including the high-low example described above. We
support the theoretical results with simulations.

Further, we consider a special case of our setting where each worker only chooses whether to
accept or reject a given task. This special case corresponds to a dynamic pricing problem previously
studied in the literature. Our results significantly improve over the prior work on this problem.

Our contributions can be summarized as follows. We define a broad, practically important
setting in crowdsourcing markets; identify novel problem-specific structure, for both the algorithm
and the regret bounds; distill ideas from prior work to work with these structures; argue that our
approach is productive by deriving corollaries and comparing to prior work; and identify and analyze
specific examples where our theory applies. The main conceptual contributions are the model itself
and the adaptive discretization approach mentioned above. Finally, this paper prompts further
research on dynamic contract design along several directions that we outline in the conclusion.

Related work. Our work builds on three areas of research. First, our model can be viewed
as a multi-round version of the classical principal-agent model from contract theory [Laffont and
Martimort, 2002]. A single round of our model corresponds to the basic principal-agent setting,
with adverse selection (unknown worker’s type) andmoral hazard (unobservable worker’s decisions).
Unlike much of the prior work in contract theory, the prior over worker types is not known to the
principal, but may be learned over time. Accordingly, our techniques are very different from those
employed in contract theory.

Second, our methods build on those developed in the rich literature on MAB with continuous
outcome spaces. The closest line of work is that on Lipschitz MAB [Kleinberg et al., 2008], in
which the algorithm is given a distance function on the arms, and the expected rewards of the
arms are assumed to satisfy Lipschitz-continuity (or a relaxation thereof) with respect to this
distance function, [Agrawal, 1995, Kleinberg, 2004, Auer et al., 2007, Kleinberg et al., 2008,
Bubeck et al., 2011a, Slivkins, 2011b]. Most related to our techniques is the idea of adaptive
discretization [Kleinberg et al., 2008, Bubeck et al., 2011a, Slivkins, 2011b], and in particular,
the zooming algorithm [Kleinberg et al., 2008, Slivkins, 2011b]. However, the zooming algorithm
cannot be applied directly in our setting because the required numerical similarity information is
not immediately available. This problem also arises in web search and advertising, where it is
natural to assume that an algorithm can only observe a tree-shaped taxonomy on arms [Kocsis and
Szepesvari, 2006, Munos and Coquelin, 2007, Pandey et al., 2007] which can be used to explicitly
reconstruct relevant parts of the underlying metric space [Slivkins, 2011a, Bull, 2013]. We take a
different approach, using a notion of “virtual width” to estimate similarity information. Explicit
comparisons between our results and prior MAB work are made throughout the paper.

Finally, our work follows several other theoretical papers on pricing in crowdsourcing markets.
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The problem closest to ours which has been studied in this context is dynamic task pricing, which
is essentially the special case of our setting where in each round a worker is offered to perform a
task at a specified price, and can either accept or reject this offer [Kleinberg and Leighton, 2003a,
Badanidiyuru et al., 2012, Singer and Mittal, 2013, Singla and Krause, 2013, Badanidiyuru et al.,
2013].2 In particular, in this setting the worker’s strategic choice is directly observable.

A more thorough literature review can be found in Section 9.

2 Our setting: the dynamic contract design problem

In this section, we formally define the problem that we set out to solve. We start by describing
a static model, which captures what happens in a single round of interaction between a requester
and a worker. As described above, this is a version of the standard principal-agent model [Laffont
and Martimort, 2002]. We then define our dynamic model, an extension of the static model to
multiple rounds, with a new worker arriving each round. We then detail the objective of our
pricing algorithm and the simplifying assumptions that we make throughout the paper. Finally,
we compare our setting to the classic multi-armed bandit problem.

Static model. We begin with a description of what occurs during each interaction between the
requester and a single worker. The requester first posts a task which may be completed by the
worker, and a contract specifying how the worker will be paid if she completes the task. If the task
is completed, the requester pays the worker as specified in the contract, and the requester derives
value from the completed task; for normalization, we assume that the value derived is in [0, 1]. The
requester’s utility from a given task is this value minus the payment to the worker.

When the worker observes the contract and decides whether or not to complete the task, she
also chooses a level of effort to exert, which in turn determines her cost (in terms of time, energy, or
missed opportunities) and a distribution over the quality of her work. To model quality, we assume
that there is a (small) finite set of possible outcomes that result from the worker completing the
task (or choosing not to complete it), and that the realized outcome determines the value that
the requester derives from the task. The realized outcome is observed by the requester, and the
contract that the requester offers is a mapping from outcomes to payments for the worker.

We emphasize two crucial (and related) features of the principal-agent model: that the mapping
from effort level to outcomes can be randomized, and that the effort level is not directly observed
by the requester. This is in line with a standard observation in crowdsourcing that even honest,
high-effort workers occasionally make errors.

The worker’s utility from a given task is the payment from the requester minus the cost corre-
sponding to her chosen effort level. Given the contract she is offered, the worker chooses her effort
level strategically so as to maximize her expected utility. Crucially, the chosen effort level is not
directly observable by the requester.

The worker’s choice not to perform a task is modeled as a separate effort level of zero cost
(called the null effort level) and a separate outcome of zero value and zero payment (called the null
outcome) such that the null effort level deterministically leads to the null outcome, and it is the
only effort level that can lead to this outcome.

The mapping from outcomes to the requester’s value is called the requester’s value function.
The mapping from effort levels to costs is called the cost function, and the mapping from effort levels

2In Badanidiyuru et al. [2013], this problem is called “dynamic procurement”.
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to distributions over outcomes is called the production function. For the purposes of this paper,
a worker is completely specified by these two functions; we say that the cost function and the
production function comprise the worker’s type. Unlike some traditional versions of the principal-
agent problem, in our setting a worker’s type is not observable by the requester, nor is any prior
given.

Dynamic model. The dynamic model we consider in this paper is a natural extension of the
static model to multiple rounds and multiple workers. We are still concerned with just a single
requester. In each round, a new worker arrives. We assume a stochastic environment in which the
worker’s type in each round is an i.i.d. sample from some fixed and unknown distribution over
types, called the supply distribution. The requester posts a new task and a contract for this task.
All tasks are of the same type, in the sense that the set of possible effort levels and the set of
possible outcomes are the same for all tasks. The worker strategically chooses her effort level so as
to maximize her expected utility from this task. Based on the chosen effort level and the worker’s
production function, an outcome is realized. The requester observes this outcome (but not the
worker’s effort level) and pays the worker the amount specified by the contract. The type of the
arriving worker is never revealed to the requester. The requester can adjust the contract from one
round to another, and his total utility is the sum of his utility over all rounds. For simplicity, we
assume that the number of rounds is known in advance, though this assumption can be relaxed
using standard tricks.

The dynamic contract design problem. Throughout this paper, we take the point of view of the
requester interacting with workers in the dynamic model. The algorithms we examine dynamically
choose contracts to offer on each round with the goal of maximizing the requester’s expected utility.
A problem instance consists of several quantities, some of which are known to the algorithm, and
some of which are not. The known quantities are the number of outcomes, the requester’s value
function, and the time horizon T (i.e., the number of rounds). The latent quantities are the number
of effort levels, the set of worker types, and the supply distribution. The algorithm adjusts the
contract from round to round and observes the realized outcomes but receives no other feedback.

We focus on contracts that are bounded (offer payments in [0, 1]), and monotone (assign equal
or higher payments for outcomes with higher value for the requester). Let X be the set of all
bounded, monotone contracts. We compare a given algorithm against a given subset of “candidate
contracts”Xcand ⊂ X. Letting OPT(Xcand) be the optimal utility over all contracts inXcand, the goal
is to minimize the algorithm’s regret R(T |Xcand), defined as T × OPT(Xcand) minus the algorithm’s
expected utility.

The subset Xcand may be finite or infinite, possibly Xcand = X. The most natural example of a
finite Xcand is the set of all bounded, monotone contracts with payments that are integer multiples
of some ψ > 0; we call it the uniform mesh with granularity ψ, and denote it Xcand(ψ).

Notation. Let v(·) be the value function of the requester, with v(π) denoting the value of outcome
π. Let O be the set of all outcomes and let m be the number of non-null outcomes. We will index
the outcomes as O = {0, 1, 2 , . . . ,m} in the order of increasing value (ties broken arbitrarily),
with a convention that 0 is the null outcome.

Let ci(·) and fi(·) be the cost function and production function for type i. Then the cost of
choosing effort level e is ci(e), and the probability of obtaining outcome π having chosen effort e is
fi(π|e). Let Fi(π|e) =

∑
π′≥π fi(π

′|e).
Recall that a contract x is a function from outcomes to (non-negative) payments. If contract
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x is offered to a worker sampled i.i.d. from the supply distribution, V (x) is the expected value to
the requester, P (x) ≥ 0 is the expected payment, and U(x) = V (x)− P (x) is the expected utility
of the requester. Let OPT(Xcand) = supx∈Xcand

U(x).

Assumption: First-order stochastic dominance (FOSD). Given two effort levels e and e′,
we say that e has FOSD over e′ for type i if Fi(π|e) ≥ Fi(π|e′) for all outcomes π, with a strict
inequality for at least one outcome.3 We say that type i satisfies the FOSD assumption if for any
two distinct effort levels, one effort level has FOSD over the other for type i. We assume that all
types satisfy this assumption.

Assumption: Consistent tie-breaking. If multiple effort levels maximize the expected utility
of a given worker for a contract x, we assume the tie is broken consistently in the sense that
this worker chooses the same effort level for any contract that leads to this particular tie. This
assumption is minor; it can be avoided (with minor technical complications) by adding random
perturbations to the contracts. This assumption is implicit throughout the paper.

2.1 Discussion

Number of outcomes. Our results assume a small number of outcomes. This regime is important
in practice, as the quality of submitted work is typically difficult to evaluate in a very fine granu-
larity. Even with m = 2 non-null outcomes, our setting has not been studied before. The special
case m = 1 is equivalent to the dynamic pricing problem from Kleinberg and Leighton [2003a]; we
obtain improved results for it, too.

The benchmark. Our benchmark OPT(·) only considers contracts that are bounded and monotone.
In practice, restricting to such contracts may be appealing to all human parties involved. However,
this restriction is not without loss of generality: there are problem instances in which monotone
contracts are not optimal; see Appendix A for an example. Further, it is not clear whether bounded
monotone contracts are optimal among monotone contracts.

Our benchmark OPT(Xcand) is relative to a given set Xcand, which is typically a finite discretiza-
tion of the contract space. There are two reasons for this. First, crowdsourcing platforms may
require the payments to be multiples of some minimum unit (e.g., one cent), in which case it is
natural to restrict our attention to contracts satisfying the same constraint. Second, achieving
guarantees relative to OPT(X) for the full generality of our problem appears beyond the reach of
our techniques. As in many other machine learning scenarios, it is useful to consider a restricted
“benchmark set” – set of alternatives to compare to.4 In such settings, it is considered important
to handle arbitrary benchmark sets, which is what we do.

One known approach to obtain guarantees relative to OPT(X) is to start with some finiteXcand ⊂
X, design an algorithm with guarantees relative to OPT(Xcand), and then, as a separate result, bound
the discretization error OPT(X)− OPT(Xcand). Then the choice of Xcand drives the tradeoff between
the discretization error and regret R(T |Xcand), and one can choose Xcand to optimize this tradeoff.
However, while one can upper-bound the discretization error in some (very) simple special cases
(see Section 5), it is unclear whether this can be extended to the full generality of dynamic contract
design.

3This mimics the standard notion of FOSD between two distributions over a linearly ordered set.
4A particularly relevant analogy is contextual bandits with policy sets, e.g., Dudik et al. [2011].
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Alternative worker models. One of the crucial tenets in our model is that the workers maxi-
mize their expected utility. This “rationality assumption” is very standard in Economics, and is
often used to make the problem amenable to rigorous analysis. However, there is a considerable
literature suggesting that in practice workers may deviate from this “rational” behavior. Thus, it
is worth pointing out that our results do not rely heavily on the rationality assumption. The FOSD
assumption (which is also fairly standard) can be circumvented, too. In fact, all our assumptions
regarding worker behavior serve only to enable us to prove Lemma 3.1, and more specifically to
guarantee that the collective worker behavior satisfies the following natural property (which is used
in the proof of Lemma 3.1): if the requester increases the “increment payment” (as described in
the next section) for a particular outcome, the probability of obtaining an outcome at least that
good also increases.

Minimum wage. For ethical or legal reasons one may want to enforce some form of minimum
wage. This can be expressed within our model as a minimal payment θ for a completed task, i.e.,
for any non-null outcome. Our algorithm can be easily modified to accommodate this constraint.
Essentially, it suffices to restrict the action space to contracts that pay at least θ for a completed
task. Formally, the “increment space” defined in Section 3 should be [θ, 1]× [0, 1]m−1 rather than
[0, 1]m, and the “quadrants” of each “cell” are defined by splitting the cell in half in each dimension.
All our results easily carry over to this version (restricting Xcand to contracts that pay at least θ
for a completed task). We omit further discussion of this issue for the sake of simplicity.

Comparison to multi-armed bandits (MAB). Dynamic contract design can be modeled as
special case of the MAB problem with some additional, problem-specific structure. The basic MAB
problem is defined as follows. An algorithm repeatedly chooses actions from a fixed action space
and collects rewards for the chosen actions; the available actions are traditionally called arms.
More specifically, time is partitioned into rounds, so that in each round the algorithm selects an
arm and receives a reward for the chosen arm. No other information, such as the reward the
algorithm would have received for choosing an alternative arm, is revealed. In an MAB problem
with stochastic rewards, the reward of each arm in a given round is an i.i.d. sample from some
distribution which depends on the arm but not on the round. A standard measure of algorithm’s
performance is regret with respect to the best fixed arm, defined as the difference in expected total
reward between a benchmark (usually the best fixed arm) and the algorithm.

Thus, dynamic contract design can be naturally modeled as an MAB problem with stochastic
rewards, in which arms correspond to monotone contracts. The prior work on MAB with large
/ infinite action spaces often assumes known upper bounds on similarity between arms. More
precisely, this prior work would assume that an algorithm is given a metric D on contracts such
that expected rewards are Lipschitz-continuous with respect to D, i.e., we have upper bounds
|U(x) − U(y)| ≤ D(x, y) for any two contracts x, y.5 However, in our setting such upper bounds
are absent. On the other hand, our problem has some supplementary structure compared to the
standard MAB setting. In particular, the algorithm’s reward decomposes into value and payment,
both of which are determined by the outcome, which in turn is probabilistically determined by the
worker’s strategic choice of the effort level. Effectively, this supplementary structure provides some
“soft” information on similarity between contracts, in the sense that numerically similar contracts
are usually (but not always) similar to one another.

5Such upper bound is informative if and only if D(x, y) < 1.
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3 Our algorithm: AgnosticZooming

In this section, we specify our algorithm. We call it AgnosticZooming because it “zooms in” on
more promising areas of the action space, and does so without knowing a precise measure of the
similarity between contracts. This zooming can be viewed as a dynamic form of discretization.
Before stating the algorithm itself, we discuss the discretization of the action space in more detail,
laying the groundwork for our approach.

3.1 Discretization of the action space

In each round, the AgnosticZooming algorithm partitions the action space into several regions and
chooses among these regions, effectively treating each region as a “meta-arm.” In this section, we
discuss which subsets of the action space are used as regions, and introduce some useful notions
and properties of such subsets.

Increment space and cells. To describe our approach to discretization, it is useful to think
of contracts in terms of increment payments. Specifically, we represent each monotone contract
x : O → [0,∞) as a vector x ∈ [0,∞)m, where m is the number of non-null outcomes and
xπ = x(π) − x(π − 1) ≥ 0 for each non-null outcome π. (Recall that by convention 0 is the null
outcome and x(0) = 0.) We call this vector the increment representation of contract x, and denote
it incr(x). Note that if x is bounded, then incr(x) ∈ [0, 1]m. Conversely, call a contract weakly
bounded if it is monotone and its increment representation lies in [0, 1]m. Such a contract is not
necessarily bounded.

We discretize the space of all weakly bounded contracts, viewed as a multi-dimensional unit
cube. More precisely, we define the increment space as [0, 1]m with a convention that every vector
represents the corresponding weakly bounded contract. Each region in the discretization is a closed,
axis-aligned m-dimensional cube in the increment space; henceforth, such cubes are called cells. A
cell is called relevant if it contains at least one candidate contract. A relevant cell is called atomic
if it contains exactly one candidate contract, and composite otherwise.

In each composite cell C, the algorithm will only use two contracts: themaximal corner, denoted
x+(C), in which all increment payments are maximal, and the minimal corner, denoted x−(C), in
which all increment payments are minimal. These two contracts are called the anchors of C. In
each atomic cell C, the algorithm will only use one contract: the unique candidate contract, also
called the anchor of C.

Virtual width. To take advantage of the problem structure, it is essential to estimate how similar
the contracts within a given composite cell C are. Ideally, we would like to know the maximal
difference in expected utility:

width(C) = supx,y∈C |U(x)− U(y)| .

We estimate the width using a proxy, called virtual width, which is expressed in terms of the anchors:

VirtWidth(C) =
(
V (x+(C))− P (x−(C))

)
−

(
V (x−(C))− P (x+(C))

)
. (1)

This definition is one crucial place where the problem structure is used. (Note that it is not the
difference in utility at the anchors.) It is useful due to the following lemma (proved in Section 3.3).

Lemma 3.1. If all types satisfy the FOSD assumption and consistent tie-breaking holds, then
width(C) ≤ VirtWidth(C) for each composite cell C.
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Recall that the proof of this lemma is the only place in the paper where we use our assumptions
on worker behavior. All further developments hold for any model of worker behavior which satisfies
Lemma 3.1.

3.2 Description of the algorithm

With these ideas in place, we are now ready to describe our algorithm. The high-level outline
of AgnosticZooming is very simple. The algorithm maintains a set of active cells which cover
the increment space at all times. Initially, there is only a single active cell comprising the entire
increment space. In each round t, the algorithm chooses one active cell Ct using an upper confidence
index and posts contract xt sampled uniformly at random among the anchors of this cell. After
observing the feedback, the algorithm may choose to zoom in on Ct, removing Ct from the set of
active cells and activating all relevant quadrants thereof, where the quadrants of cell C are defined
as the 2m sub-cells of half the size for which one of the corners is the center of C. In the remainder
of this section, we specify how the cell Ct is chosen (the selection rule), and how the algorithm
decides whether to zoom in on Ct (the zooming rule).

Let us first introduce some notation. Consider cell C that is active in some round t. Let U(C)
be the expected utility from a single round in which C is chosen by the algorithm, i.e., the average
expected utility of the anchor(s) of C. Let nt(C) be the number of times this cell has been chosen
before round t. Consider all rounds in which C is chosen by the algorithm before round t. Let
Ut(C) be the average utility over these rounds. For a composite cell C, let V +

t (C) and P+
t (C) be

the average value and average payment over all rounds when anchor x+(C) is chosen. Similarly, let
V −
t (C) and P−

t (C) be the average value and average payment over all rounds when anchor x−(C)
is chosen. Accordingly, we can estimate the virtual width of composite cell C at time t as

Wt(C) =
(
V +
t (C)− P−

t (C)
)
−

(
V −
t (C)− P+

t (C)
)
. (2)

To bound the deviations, we define the confidence radius as

radt(C) =
√
crad log(T )/nt(C), (3)

for some absolute constant crad; in our analysis, crad ≥ 16 suffices. We will show that with high
probability all sample averages defined above will stay within radt(C) of the respective expectations.
If this high probability event holds, the width estimate Wt(C) will always be within 4 radt(C) of
VirtWidth(C).

Selection rule. Now we are ready to complete the algorithm. The selection rule is as follows. In
each round t, the algorithm chooses an active cell C with maximal index It(·). It(C) is an upper
confidence bound on the expected utility of any candidate contract in C, defined as

It(C) =

{
Ut(C) + radt(C) if C is an atomic cell,

Ut(C) +Wt(C) + 5 radt(C) otherwise.
(4)

Zooming rule. We zoom in on a composite cell Ct if

Wt+1(Ct) > 5 radt+1(Ct),

9



ALGORITHM 1: AgnosticZooming

Inputs: subset Xcand ⊂ X of candidate contracts.
Data structure: Collection A of cells. Initially, A = { [0, 1]m }.
For each round t = 1 to T

Let Ct = argmaxC∈A It(C), where It(·) is defined as in Equation (4).
Sample contract xt u.a.r. among the anchors of Ct. \\ Anchors are defined in Section 3.1.
Post contract xt and observe feedback.
If |C ∩Xcand| > 1 and 5 radt+1(Ct) < Wt+1(Ct) then

A ← A∪ {all relevant quadrants of Ct} \ {Ct}. \\ C is relevant if |C ∩Xcand| ≥ 1.

i.e., the uncertainty due to random sampling, expressed by the confidence radius, becomes suffi-
ciently small compared to the uncertainty due to discretization, expressed by the virtual width.
We never zoom in on atomic cells. The pseudocode is summarized in Algorithm 1.

Integer payments. In practice it may be necessary to only allow contracts in which all payments
are integer multiples of some amount ψ, e.g., whole cents. (In this case we can assume that candidate
contracts have this property, too.) Then we can redefine the two anchors of each composite cell: the
maximal (resp., minimal) anchor is the nearest allowed contract to the maximal (resp., minimal)
corner. Width can be redefined as a sup over all allowed contracts in a given cell. With these
modifications, the analysis goes through without significant changes. We omit further discussion
of this issue.

3.3 Proof of Lemma 3.1 (virtual width)

For two vectors x,x′ ∈ ℜm, write x′ ⪰ x if x′ pointwise dominates x, i.e., if x′
j ≥ xj for all j. For

two monotone contracts x, x′, write x′ ⪰ x if incr(x′) ⪰ incr(x).

Claim 3.2. Consider a worker whose type satisfies the FOSD assumption and two weakly bounded
contracts x, x′ such that x′ ⪰ x. Let e (resp., e′) be the effort levels exerted by this worker when he
is offered contract x (resp., x′). Then e does not have FOSD over e′.

Proof. For the sake of contradiction, assume that e has FOSD over e′. Note that e ̸= e′.
Let i be the worker’s type. Recall that Fi(π|e) denotes the probability of generating an outcome

π′ ≥ π given the effort level e. Define F = ( Fi(1|e) , . . . , Fi(m|e) ), and define F′ similarly for e′.
Let x and x′ be the increment representations for x and x′. Given contract x, the worker’s

expected utility for effort level e is Ui(x|e) = x · F− ci(e). Since e is the optimal effort level given
this contract, we have Ui(x|e) ≥ Ui(x|e′), and therefore

x · F− x · F′ ≥ ci(e)− ci(e′).

Similarly, since e′ is the optimal effort level given contract x′, we have

x′ · F′ − x′ · F ≥ ci(e′)− ci(e).

Combining the above two inequalities, we obtain

(x− x′) · (F− F′) ≥ 0. (5)
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Note that if Equation (5) holds with equality then Ui(x|e) = Ui(x|e′) and Ui(x′|e) = Ui(x
′|e′),

so the worker breaks the tie between e and e′ in a different way for two different contracts. This
contradicts the consistent tie-breaking assumption. However, Equation (5) cannot hold with a
strict equality, either, because x′ ⪰ x and (since e has FOSD over e′) we have F ⪰ F′ and Fπ > F′

π

for some outcome π > 0. Therefore we obtain a contradiction, completing the proof.

The proof of Claim 3.2 is the only place in the paper where we directly use the consistent
tie-breaking assumption. (But the rest of the paper relies on this claim.)

Claim 3.3. Assume all types satisfy the FOSD assumption. Consider weakly bounded contracts
x, x′ such that x′ ⪰ x. Then V (x′) ≥ V (x) and P (x′) ≥ P (x).

Proof. Consider some worker, let i be his type. Let e and e′ be the chosen effort levels for contracts
x and x′, respectively. By the FOSD assumption, either e = e′, or e′ has FOSD over e, or e has
FOSD over e′. Claim 3.2 rules out the latter possibility.

Define vectors F and F′ as in the proof of Claim 3.2. Note that F′ ⪰ F.
Then P = x · F and P ′ = x′ · F′ is the expected payment for contracts x and x′, respectively.

Further, letting v denote the increment representation of the requester’s value for each outcome,
V = v · F and V ′ = v · F′ is the expected requester’s value for contracts x and x′, respectively.
Since x′ ⪰ x and F′ ⪰ F, it follows that P ′ ≥ P and V ′ ≥ V . Since this holds for each worker, this
also holds in expectation over workers.

To finish the proof of Lemma 3.1, fix a contract x ∈ C and observe that V (x+) ≥ V (x) ≥ V (x−)
and P (x+) ≥ P (x) ≥ P (x−), where x+ = x+(C) and x− = x−(C) are the two anchors.

4 Regret bounds and discussion

We present the main regret bound for AgnosticZooming. Formulating this result requires some
new, problem-specific structure. Stated in terms of this structure, the result is somewhat difficult
to access. To explain its significance, we state several corollaries, and compare our results to prior
work.

The main result. We start with the main regret bound. Like the algorithm itself, this regret
bound is parameterized by the set Xcand of candidate contracts; our goal is to bound the algorithm’s
regret with respect to candidate contracts.

Recall that OPT(Xcand) = supx∈Xcand
U(x) is the optimal expected utility over candidate con-

tracts. The algorithm’s regret with respect to candidate contracts is R(T |Xcand) = T OPT(Xcand)−
U , where T is the time horizon and U is the expected cumulative utility of the algorithm.

Define the badness ∆(x) of a contract x ∈ X as the difference in expected utility between an
optimal candidate contract and x: ∆(x) = OPT(Xcand)− U(x). Let Xϵ = {x ∈ Xcand : ∆(x) ≤ ϵ}.

We will only be interested in cells that can potentially be used by AgnosticZooming. Formally,
we recursively define a collection of feasible cells as follows: (i) the cell [0, 1]m is feasible, (ii) for
each feasible cell C, all relevant quadrants of C are feasible. Note that the definition of a feasible
cell implicitly depends on the set Xcand of candidate contracts.

Let Fϵ denote the collection of all feasible, composite cells C such that VirtWidth(C) ≥ ϵ. For
Y ⊂ Xcand, let Fϵ(Y ) be the collection of all cells C ∈ Fϵ that overlap with Y , and let Nϵ(Y ) =
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|Fϵ(Y )|; sometimes we will write Nϵ(Y |Xcand) in place of Nϵ(Y ) to emphasize the dependence on
Xcand.

Using the structure defined above, the main theorem is stated as follows. We prove this theorem
in Section 6.

Theorem 4.1. Consider the dynamic contract design problem with all types satisfying the FOSD
assumption and a constant number of outcomes. Consider AgnosticZooming, parameterized by
some set Xcand of candidate contracts. Assume T ≥ max(2m+1, 18). There is an absolute constant
β0 > 0 such that for any δ > 0,

R(T |Xcand) ≤ δT +O(log T )
∑

ϵ=2−j≥δ: j∈N

Nϵ β0(Xϵ|Xcand)

ϵ
. (6)

Remark 1. As discussed in Section 2.1, we target the practically important case of a small number
of outcomes. The impact of larger m is an exponential dependence on m in the O() notation, and,
more importantly, increased number of candidate policies (typically exponential in m for a given
granularity).

Remark 2. Our regret bounds do not depend on the number of worker types, in line with prior
work on dynamic pricing. Essentially, this is because bandit approaches tend to depend only on
expected reward of a given “arm” (and perhaps also on the variance), not the finer properties of
the distribution.

Equation (6) has a shape similar to several other regret bounds in the literature, as discussed
below. To make this more apparent, we observe that regret bounds in “bandits in metric spaces”
are often stated in terms of covering numbers. (For a fixed collection F of subsets of a given ground
set X, the covering number of a subset Y ⊂ X relative to F is the smallest number of subsets
in F that is sufficient to cover Y .) The numbers Nϵ(Y |Xcand) are, essentially, about covering Y
with feasible cells with virtual width close to ϵ. We make this point more precise as follows. Let
an ϵ-minimal cell be a cell in Fϵ which does not contain any other cell in Fϵ. Let Nmin

ϵ (Y ) be
the covering number of Y relative to the collection of ϵ-minimal cells, i.e., the smallest number of
ϵ-minimal cells sufficient to cover Y . Then

Nϵ(Y ) ≤ ⌈log 1
ψ ⌉ N

min
ϵ (Y ) for any Y ⊂ Xcand and ϵ ≥ 0, (7)

where ψ is the smallest size of a feasible cell.6 Thus, Equation (6) can be easily restated using the
covering numbers Nmin

ϵ (·) instead of Nϵ(·).

Corollary: Polynomial regret. Literature on regret-minimization often states “polynomial”
regret bounds of the form R(T ) = Õ(T γ), γ < 1. While covering-number regret bounds are
more precise and versatile, the exponent γ in a polynomial regret bound expresses algorithms’
performance in a particularly succinct and lucid way.

For “bandits in metric spaces” the exponent γ is typically determined by an appropriately
defined notion of “dimension”, such as the covering dimension,7 which succinctly captures the
difficulty of the problem instance. Interestingly, the dependence of γ on the dimension d is typically

6To prove Equation (7), observe that for each cell C ∈ Fϵ(Y ) there exists an ϵ-minimal cell C′ ⊂ C, and for each
ϵ-minimal cell C′ there exist at most ⌈log 1

ψ
⌉ cells C ∈ Fϵ(Y ) such that C′ ⊂ C.

7Given covering numbers Nϵ(·), the covering dimension of Y is the smallest d ≥ 0 such that Nϵ(Y ) = O(ϵ−d) for
all ϵ > 0.
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of the same shape; γ = (d + 1)/(d + 2), for several different notions of “dimension”. In line with
this tradition, we define the width dimension:

WidthDimα = inf
{
d ≥ 0 : Nϵ β0(Xϵ|Xcand) ≤ α ϵ−d for all ϵ > 0

}
, α > 0. (8)

Note that the width dimension depends on Xcand and the problem instance, and is parameterized by
a constant α > 0. By optimizing the choice of δ in Equation (6), we obtain the following corollary.

Corollary 4.2. Consider the the setting of Theorem 4.1. For any α > 0, let d = WidthDimα. Then

R(T |Xcand) ≤ O(α log T ) T (1+d)/(2+d). (9)

The width dimension is similar to the “zooming dimension” in Kleinberg et al. [2008] and
“near-optimality dimension” in Bubeck et al. [2011a] in the work on “bandits in metric spaces”.

4.1 Comparison to prior work

Non-adaptive discretization. One approach from prior work that is directly applicable to
the dynamic contract design problem is non-adaptive discretization. This is an algorithm, call it
NonAdaptive, which runs an off-the-shelf MAB algorithm, treating a set of candidate contracts
Xcand as arms.8 For concreteness, and following the prior work [Kleinberg and Leighton, 2003a,
Kleinberg, 2004, Kleinberg et al., 2008], we use a well-known algorithm UCB1 [Auer et al., 2002] as
an off-the-shelf MAB algorithm.

To compare AgnosticZooming with NonAdaptive, it is useful to derive several “worst-case”
corollaries of Theorem 4.1, replacing Nϵ(Xϵ) with various (loose) upper bounds.9

Corollary 4.3. In the setting of Theorem 4.1, the regret of AgnosticZooming can be upper-bounded
as follows:

(a) R(T |Xcand) ≤ δT +
∑

ϵ=2−j≥δ: j∈N Õ(|Xϵ| /ϵ), for each δ ∈ (0, 1).

(b) R(T |Xcand) ≤ Õ(
√
T |Xcand|).

Here the Õ() notation hides the logarithmic dependence on T and δ.

The best known regret bounds for NonAdaptive coincide with those in Corollary 4.3 up to
poly-logarithmic factors. However, the regret bounds in Theorem 4.1 may be significantly better
than the ones in Corollary 4.3. We further discuss this in the next section, in the context of a
specific example.

Bandits in metric spaces. Consider a variant of dynamic contract design in which an algorithm
is given a priori information on similarity between contracts: a function D : Xcand ×Xcand → [0, 1]
such that |U(x) − U(y)| ≤ D(x, y) for any two candidate contracts x, y. If an algorithm is given
this function D (call such algorithm D-aware), the machinery from “bandits in metric spaces”
Kleinberg et al. [2008], Bubeck et al. [2011a] can be used to perform adaptive discretization and
obtain a significant advantage over NonAdaptive. We argue that we obtain similar results with
AgnosticZooming without knowing the D.

8To simplify the proofs of the lower bounds, we assume that the candidate contracts are randomly permuted when
given to the MAB algorithm.

9We use the facts that Xϵ ⊂ Xcand, Nϵ(Y ) ≤ N0(Y ), and N min
0 (Y ) ≤ |Y | for all subsets Y ⊂ X.
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In practice, the similarity information D would be coarse, probably aggregated according to
some predefined hierarchy. To formalize this idea, the hierarchy can be represented as a collection
F of subsets of Xcand, so that D(x, y) is a function of the smallest subset in F containing both
x and y. The hierarchy F should be natural given the structure of the contract space. One such
natural hierarchy is the collection of all feasible cells, which corresponds to splitting the cells in
half in each dimension. Formally, D(x, y) = f(Cx,y) for some f with f(Cx,y) ≥ width(Cx,y), where
Cx,y is the smallest feasible cell containing both x and y.

Given this shape of D, let us state the regret bounds for D-aware algorithms in Kleinberg et al.
[2008] and Bubeck et al. [2011a]. To simplify the notation, we assume that the action space is
restricted to Xcand. The regret bounds have a similar “shape” as that in Theorem 4.1:

R(T |Xcand) ≤ δT +O(log T )
∑

ϵ=2−j≥δ: j∈N

N∗
Ω(ϵ)(Xϵ)

ϵ
, (10)

where the numbers N∗
ϵ (·) have a similar high-level meaning as Nϵ(·), and nearly coincide with

Nmin
ϵ (·) when D(x, y) = VirtWidth(Cx,y). One can use Equation (10) to derive a polynomial regret

bound like Equation (9).
For a more precise comparison, we focus on the results in Kleinberg et al. [2008] . (The regret

bounds in Bubeck et al. [2011a] are very similar in spirit, but are stated in terms of a slightly
different structure.) The “covering-type” regret bound in Kleinberg et al. [2008] focuses on balls
of radius at most ϵ according to distance D, so that N∗

ϵ (Y ) is the smallest number of such balls
that is sufficient to cover Y . In the special case D(x, y) = VirtWidth(Cx,y) balls of radius ≤ ϵ are
precisely feasible cells of virtual width ≤ ϵ. This is very similar (albeit not technically the same)
as the ϵ-minimal cells in the definition of Nmin

ϵ (·).
Further, the covering numbers N∗

ϵ (Y ) determine the “zooming dimension”:

ZoomDimα = inf
{
d ≥ 0 : N∗

ϵ/8(Xϵ) ≤ α ϵ−d for all ϵ > 0
}
, α > 0. (11)

This definition coincides with the covering dimension in the worst case, and can be much smaller for
“nice” problem instances in which Xϵ is a significantly small subset of Xcand. With this definition,
one obtains a polynomial regret bound which is version of Equation (9) with d = ZoomDimα.

We conclude that AgnosticZooming essentially matches the regret bounds for D-aware algo-
rithms, despite the fact that D-aware algorithms have access to much more information.

5 A special case: the “high-low example”

We apply the machinery in Section 4 on a special case, and we show that AgnosticZooming signif-
icantly outperforms NonAdaptive.

The most basic special case is when there is just one non-null outcome. Essentially, each worker
makes a strategic choice whether to accept or reject a given task (where “reject” corresponds to the
null effort level), and this choice is fully observable. This setting has been studied before [Kleinberg
and Leighton, 2003a, Badanidiyuru et al., 2012, Singla and Krause, 2013, Badanidiyuru et al., 2013];
we will call it dynamic task pricing. Here the contract is completely specified by the price p for the
non-null outcome. The supply distribution is summarized by the function S(p) = Pr[accept|p], so
that the corresponding expected utility is U(p) = S(p)(v− p), where v is the value for the non-null
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outcome. This special case is already quite rich, because S(·) can be an arbitrary non-decreasing
function. By using adaptive discretization, we achieve significant improvement over prior work; see
Section 8 for further discussion.

We consider a somewhat richer setting in which workers’ strategic decisions are not observable;
this is a salient feature of our setting, called moral hazard in the contract theory literature. There
are two non-null outcomes (low and high), and two non-null effort levels (low and high). Low

outcome brings zero value to the requester, while high outcome brings value v > 0. Low effort
level inflicts zero cost on a worker and leads to low outcome with probability 1. We assume that
workers break ties between effort levels in a consistent way: high better than low better than null.
(Hence, as low effort incurs zero cost, the only possible outcomes are low and high.) We will call
this the high-low example; it is perhaps the simplest example that features moral hazard.

In this example, the worker’s type consists of a pair (ch, θh), where ch ≥ 0 is the cost for high
effort and θh ∈ [0, 1] is the probability of high outcome given high effort. Note that dynamic task
pricing is equivalent to the special case θh = 1.

The following claim states a crucial property of the high-low example.

Claim 5.1. Consider the high-low example with a fixed supply distribution. Then the proba-
bility of obtaining high outcome given contract x Pr[high outcome | contract x] depends only on
p = x(high) − x(low); denote this probability by S(p). Moreover, S(p) is non-decreasing in p.
Therefore:

• expected utility is U(x) = S(p)(v − p)− x(low).
• discretization error OPT(X)− OPT(Xcand(ψ)) is at most 3ψ, for any ψ > 0.

Recall that Xcand(ψ), the uniform mesh with granularity ψ > 0, consists of all bounded, mono-
tone contracts with payments in ψN.

For our purposes, the supply distribution is summarized via the function S(·). Denote Ũ(p) =
S(p)(v − p). Note that U(x) is maximized by setting x(low) = 0, in which case U(x) = Ũ(p).
Thus, if an algorithm knows that it is given a high-low example, it can set x(low) = 0, thereby
reducing the dimensionality of the search space. Then the problem essentially reduces to dynamic
task pricing with the same S(·).

However, in general an algorithm does not know whether it is presented with the high-low
example (because the effort levels are not observable). So in what follows we will consider algorithms
that do not restrict themselves to x(low) = 0.

“Nice” supply distribution. We focus on a supply distribution D that is “nice”, in the sense
that S(·) satisfies the following two properties:
• S(p) is Lipschitz-continuous: |S(p)− S(p′)| ≤ L|p− p′| for some constant L.
• Ũ(p) is strongly concave, in the sense that Ũ ′′(·) exists and satisfies Ũ ′′(·) ≤ C < 0.

Here L and C are absolute constants. We call such D strongly Lipschitz-concave.
The above properties are fairly natural. For example, they are satisfied if θh is the same for

all worker types and the marginal distribution of ch is piecewise uniform such that the density is
between 1

λ and λ, for some absolute constant λ ≥ 1.
We show that for any choice Xcand ⊂ X, AgnosticZooming has a small width dimension in this

setting, and therefore small regret.

Lemma 5.2. Consider the high-low example with a strongly Lipschitz-concave supply distribution.
Then the width dimension is at most 1

2 , for any given Xcand ⊂ X. Therefore, AgnosticZooming

with this Xcand has regret R(T |Xcand) = O(log T )T 3/5.
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We contrast this with the performance of NonAdaptive, parameterized with the natural choice
Xcand = Xcand(ψ). We focus on R(T |X): regret w.r.t. the best contract in X. We show that
AgnosticZooming achieves R(T |X) = Õ(T 3/5) for a wide range of Xcand, whereas NonAdaptive

cannot do better than R(T |X) = O(T 3/4) for any Xcand = Xcand(ψ), ψ > 0.

Lemma 5.3. Consider the setting of Lemma 5.2. Then:
(a) AgnosticZooming with Xcand ⊃ Xcand(T

−2/5) has regret R(T |X) = O(T 3/5 log T ).
(b) NonAdaptive with Xcand = Xcand(ψ) cannot achieve regret R(T |X) < o(T 3/4) over all
problem instances, for any ψ > 0. 10

5.1 Proofs

Proof of Claim 5.1. Consider a contract x with x(low) = b and x(high) = b + p, and a worker
of type (ch, θh). If the worker exerts high effort, she pays cost ch and receives expected payment
θh(p+ b) + (1− θh)b, for a total expected payoff pθh + b− ch. Her expected payoff for exerting low

effort is b. Therefore she will choose to exert high effort if and only if pθh + b − ch ≥ b, i.e., if
ch/θh ≤ p, and choose to exert low effort otherwise. Therefore

Pr[high outcome | contract x] = E
(ch,θh)

[
θh 1{ch/θh≤p}

]
.

This is a function of p, call it S(p). Moreover, this is a non-decreasing function simply because the
expression inside the expectation is non-decreasing in p.

It trivially follows that U(x) = S(p)(v − p)− x(low).
We can upper-bound the discretization error using a standard approach from the work on

dynamic pricing Kleinberg and Leighton [2003b]. Fix discretization granularity ψ > 0. For any
ϵ > 0, there exists a contract x∗ ∈ X such that OPT(X)−U(x∗) < ϵ. Round x∗(high) and x∗(low)
up and down, respectively, to the nearest integer multiple of ψ; let x ∈ Xcand(ψ) be the resulting
contract. Denoting p = x(high)−x(low) and p∗ = x∗(high)−x∗(low), we see that p∗ ≤ p ≤ p∗+2ψ.
It follows that

U(x) ≥ U(x∗)− 3ψ ≥ OPT(X)− ϵ− 3ψ.

Since this holds for any ϵ > 0, we conclude that OPT(X)− OPT(Xcand(ψ)) ≤ 3ψ.

Proof of Lemma 5.2. To calculate the width dimension, we need to count the number of feasible
cells in the increment space which (i) has virtual width larger than or equal to O(ϵ) and (ii) overlaps
with Xϵ, the set of contracts with badness smaller than ϵ.

We first characterizeXϵ. We use xp,b to denote the contract with x(high) = p+b and x(low) = b.
The benefit of this representation is that, p and b would then be the two axis in the increment space.
Let xp∗,0 be an optimal contract. Since U(xp,b) is strongly concave in p, we know that for any b, there
exists constants C1 and C2 such that for any p ∈ [0, 1], C1(p

∗−p)2 ≤ U(xp∗,b)−U(xp,b) ≤ C2(p
∗−p)2.

Also we know that U(xp∗,b) = U(xp∗,0)− b. Therefore.

Xϵ = {xp,b : (p− p∗)2 + b ≤ O(ϵ)}
10This lower bound holds even if UCB1 in NonAdaptive is replaced with any other MAB algorithm.

16



We can also write it as

Xϵ = {xp,b : p∗ − θh(
√
ϵ) ≤ p ≤ p∗ + θh(

√
ϵ) and b ≤ O(ϵ)}

Intuitively, Xϵ contains contracts {xp,b} with p not O(
√
ϵ) away from p∗ and b not O(ϵ) away

from b∗ = 0.
Next we characterize the virtual width of a cell. We use Cp,b,d to denote the cell with size d

and with anchors {xp,b, x(p+d),(b+d)}. We can derive the expected payment and value on the two
anchors as:

• P+(Cp,b,d) = (p+ d)S(p+ d) + b+ d
• V +(Cp,b,d) = vS(p+ d)
• P−(Cp,b,d) = pS(p) + b
• V −(Cp,b,d) = vS(p)

By definition, we can get that (we use dF to represent S(p+ d)− S(p) for simplification)

VirtWidth(Cp,b,d) = (v + p)dF + dS(p) + d dF + d.

Now we can count the number of feasible cells with virtual width larger than θh(ϵ) which overlaps
with Xϵ. Note that since the total number of feasible cells Cp,b,d with large d is small, we can treat
the number of cells with large d as a constant. Also, for any relevant cell Cp,b,d, we have p ≈ p∗.
Therefore, we only care about feasible cells Cp,b,d with small d and when p is close to p∗.

Since S(p) is Lipschitz, we have dF = O(d). Therefore, for any relevant cell Cp,d,

VirtWidth(Cp,b,d) = O(d)

Given the above two arguments, we know that the number of cells with virtual width larger
than ϵ which also overlaps with Xϵ is O(ϵ/ϵ)×O(

√
ϵ/ϵ) = O(ϵ−1/2). Therefore the width dimension

is 1/2.

Proof Sketch of Lemma 5.3(b). Consider a version of NonAdaptive that runs an off-the-shelf MAB
algorithm ALG on candidate contracts Xcand = Xcand(ψ). For ALG, the “arms” are the candidate
contracts; recall that the arms are randomly permuted before they are given to ALG.

Fix ψ > 0. It is easy to construct a problem instance with discretization error Error ≜
OPT(X)−OPT(Xcand(ψ)) ≥ Ω(ψ). Note that Xcand contains N = Ω(ψ−2) suboptimal contracts that
are suboptimal w.r.t. OPT(Xcand). (For example, all contracts x with x(low) > 0 are suboptimal.)

Fix any problem instance I of MAB with N suboptimal arms. Using standard lower-bound
arguments for MAB, one can show that if one runs ALG on a problem instance obtained by
randomly permuting the arms in I, then the expected regret in T rounds is at least Ω(

√
NT ).

Therefore, R(T |Xcand) ≥ Ω(
√
NT ). It follows that

R(T |X) ≥ Ω(
√
NT ) + Error · T ≥ Ω(

√
T/ψ + ψT ) ≥ Ω(T 3/4).

6 Proof of the main regret bound (Theorem 4.1)

We now prove the main result from Section 4. Our high-level approach is to define a clean execution
of an algorithm as an execution in which some high-probability events are satisfied, and derive
bounds on regret conditional on the clean execution. The analysis of a clean execution does not
involve any “probabilistic” arguments. This approach tends to simplify regret analysis.

We start by listing some simple invariants enforced by AgnosticZooming:
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Invariant 6.1. In each round t of each execution of AgnosticZooming:
(a) All active cells are relevant,
(b) Each candidate contract is contained in some active cell,
(c) Wt(C) ≤ 5 radt(C) for each active composite cell C.

Note that the zooming rule is essential to ensure Invariant 6.1(c).

6.1 Analysis of the randomness

Definition 6.2 (Clean Execution). An execution of AgnosticZooming is called clean if for each
round t and each active cell C it holds that

|U(C)− Ut(C)| ≤ radt(C), (12)

|VirtWidth(C)−Wt(C)| ≤ 4 radt(C) (if C is composite). (13)

Lemma 6.3. Assume crad ≥ 16 and T ≥ max(1 + 2m, 18). Then:
(a) Pr [ Equation (12) holds ∀ rounds t, active cells C ] ≥ 1− 2T−2.
(b) Pr [ Equation (13) holds ∀ rounds t, active composite cells C ] ≥ 1− 16T−2.

Consequently, an execution of AgnosticZooming is clean with probability at least 1− 1/T .

Lemma 6.3 follows from the standard concentration inequality known as “Chernoff Bounds”.
However, one needs to be careful about conditioning and other details.

Proof of Lemma 6.3(a). Consider an execution of AgnosticZooming. Let N be the total number
of activated cells. Since at most 2m cells can be activated in any one round, N ≤ 1 + 2mT ≤ T 2.
Let Cj be the min(j,N)-th cell activated by the algorithm. (If multiple “quadrants” are activated
in the same round, order them according to some fixed ordering on the quadrants.)

Fix some feasible cell C and j ≤ T 2. We claim that

Pr [ |U(C)− Ut(C)| ≤ radt(C) for all rounds t | Cj = C ] ≥ 1− 2T−4. (14)

Let n(C) = n1+T (C) be the total number of times cell C is chosen by the algorithm. For each
s ∈ N: 1 ≤ s ≤ n(C) let Us be the requester’s utility in the round when C is chosen for the s-th
time. Further, let DC be the distribution of U1, conditional on the event n(S) ≥ 1. (That is, the
per-round reward from choosing cell C.) Let U ′

1 , . . . , U
′
T be a family of mutually independent

random variables, each with distribution DC . Then for each n ≤ T , conditional on the event
{Cj = C} ∧ {n(C) = n}, the tuple (U1 , . . . , Un) has the same joint distribution as the tuple
(U ′

1 , . . . , U
′
n). Consequently, applying Chernoff Bounds to the latter tuple, it follows that

Pr
[ ∣∣U(C)− 1

n

∑n
s=1 Us

∣∣ ≤√
1
n crad log(T )

∣∣∣ {Cj = C} ∧ {n(C) = n}
]

≥ 1− 2T−2crad ≥ 1− 2T−5.

Taking the Union Bound over all n ≤ T , and plugging in radt(Cj), nt(Cj), and Ut(Cj), we obtain
Equation (14).

Now, let us keep j fixed in Equation (14), and integrate over C. More precisely, let us multiply
both sides of Equation (14) by Pr[Cj = C] and sum over all feasible cells C. We obtain, for all
j ≤ T 2:

Pr [ |U(Cj)− Ut(Cj)| ≤ radt(Cj) for all rounds t ] ≥ 1− 2T−4. (15)
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(Note that to obtain Equation (15), we do not need to take the Union Bound over all feasible cells
C.) To conclude, we take the Union Bound over all j ≤ 1 + T 2.

Proof Sketch of Lemma 6.3(b). We show that

Pr
[ ∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C) ∀ rounds t, active composite cells C

]
≥ 1− 4

T 2 , (16)

and similarly for V −(), P+() and P−(). Each of these four statements is proved similarly, using
the technique from Lemma 6.3(a). In what follows, we sketch the proof for one of the four cases,
namely for Equation (16).

For a given composite cell C, we are only interested in rounds in which anchor x+(C) is selected
by the algorithm. Letting n+t (C) be the number of times this anchor is chosen up to time t, let us
define the corresponding notion of “confidence radius”:

rad+t (C) =
1

2

√
crad log T

n+t (C)
.

With the technique from the proof of Lemma 6.3(a), we can establish the following high-
probability event: ∣∣V +(C)− V +

t (C)
∣∣ ≤ rad+t (C). (17)

More precisely, we can prove that

Pr [ Equation (17) holds ∀ rounds t, active composite cells C ] ≥ 1− 2T−2.

Further, we need to prove that w.h.p. the anchor x+(C) is played sufficiently often. Noting
that E[n+t (C)] = 1

2 nt(C), we establish an auxiliary high-probability event:11

n+t (C) ≥ 1
2 nt(C)−

1
4 radt(C). (18)

More precisely, we can use Chernoff Bounds to show that, if crad ≥ 16,

Pr [ Equation (18) holds ∀ rounds t, active composite cells C ] ≥ 1− 2T−2. (19)

Now, letting n0 = (crad log T )1/3, observe that

nt(C) ≥ n0 ⇒ n+t (C) ≥ 1
4 nt(C) ⇒ rad+t (C) ≤ radt(C),

nt(C) < n0 ⇒ radt(C) ≥ 1 ⇒
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C).

Therefore, once Equations (17) and (18) hold, we have
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C). This com-

pletes the proof of Equation (16).

11The constant 1
4
in Equation (18) is there to enable a consistent choice of n0 in the remainder of the proof.

19



6.2 Analysis of a clean execution

The rest of the analysis focuses on a clean execution. Recall that Ct is the cell chosen by the
algorithm in round t.

Claim 6.4. In any clean execution, I(Ct) ≥ OPT(Xcand) for each round t.

Proof. Fix round t, and let x∗ be any candidate contract. By Invariant 6.1(b), there exists an
active cell, call it C∗

t , which contains x∗.
We claim that It(C

∗
t ) ≥ U(x∗). We consider two cases, depending on whether C∗

t is atomic.
If C∗

t is atomic then the anchor is unique, so U(C∗
t ) = U(x∗), and It(C

∗
t ) ≥ U(x∗) by the clean

execution. If C∗
t is composite then

It(C
∗
t ) ≥ U(C∗

t ) + VirtWidth(C∗
t ) by clean execution

≥ U(C∗
t ) + width(C∗

t ) by Lemma 3.1

≥ U(x∗) by definition of width, since x∗ ∈ C∗
t .

We have proved that It(C
∗
t ) ≥ U(x∗). Now, by the selection rule we have It(Ct) ≥ It(C∗

t ) ≥ U(x∗).
Since this holds for any candidate contract x∗, the claim follows.

Claim 6.5. In any clean execution, for each round t, the index It(Ct) is upper-bounded as follows:
(a) if Ct is atomic then I(Ct) ≤ U(Ct) + 2 radt(Ct).
(b) if Ct is composite then I(Ct) ≤ U(x) +O(radt(Ct)) for each contract x ∈ Ct.

Proof. Fix round t. Part (a) follows because It(Ct) = Ut(Ct) + radt(Ct) by definition of the index,
and Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution.

For part (b), fix a contract x ∈ Ct. Then:

Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution

≤ U(x) + width(Ct) + radt(Ct) by definition of width

≤ U(x) + VirtWidth(Ct) + radt(Ct) by Lemma 3.1

≤ U(x) +Wt(Ct) + 5 radt(Ct) by clean execution. (20)

It(Ct) = Ut(Ct) +Wt(Ct) + 5 radt(Ct) by definition of index

≤ U(x) + 2Wt(Ct) + 10 radt(Ct) by Equation (20)

≤ U(x) + 20 radt(Ct) by Invariant 6.1(c).

For each relevant cell C, define badness ∆(C) as follows. If C is composite, ∆(C) = supx∈C ∆(x)
is the maximal badness among all contracts in C. If C is atomic and x ∈ C is the unique candidate
contract in C, then ∆(C) = ∆(x).

Claim 6.6. In any clean execution, ∆(C) ≤ O(radt(C)) for each round t and each active cell C.

Proof. By Claims 6.4 and 6.5, ∆(Ct) ≤ O(radt(Ct)) for each round t. Fix round t and let C
be an active cell in this round. If C has never be selected before round t, the claim is trivially
true. Else, let s be the most recent round before t when C is selected by the algorithm. Then
∆(C) ≤ O(rads(C)). The claim follows since rads(C) = radt(C).

Claim 6.7. In a clean execution, each cell C is selected ≤ O(log T/(∆(C))2) times.
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Proof. By Claim 6.6, ∆(C) ≤ O(radT (C)). The claim follows from the definition of radT in
Equation (3).

Let n(x) and n(C) be the number of times contract x and cell C, respectively, are chosen by
the algorithm. Then regret of the algorithm is

R(T |Xcand) =
∑

x∈X n(x) ∆(x) ≤
∑

cells C n(C)∆(C). (21)

The next result (Lemma 6.8) upper-bounds the right-hand side of Equation (21) for a clean execu-
tion. By Lemma 6.3, this suffices to complete the proof of Theorem 4.1

Lemma 6.8. Consider a clean execution of AgnosticZooming. For any δ ∈ (0, 1),∑
cells C n(C)∆(C) ≤ δT +O(log T )

∑
ϵ=2−j≥δ: j∈N

|Fϵ(X2ϵ)|
ϵ .

The proof of Lemma 6.8 relies on some simple properties of ∆(·), stated below.

Claim 6.9. Consider two relevant cells C ⊂ Cp. Then:
(a) ∆(C) ≤ ∆(Cp).
(b) If ∆(C) ≤ ϵ for some ϵ > 0, then C overlaps with Xϵ.

Proof. To prove part (a), one needs to consider two cases, depending on whether cell Cp is
composite. If it is, the claim follows trivially. If Cp is atomic, then C is atomic, too, and so
∆(C) = ∆(Cp) = ∆(x), where x is the unique candidate contract in Cp.

For part (b), there exists a candidate contract x ∈ C. It is easy to see that ∆(x) ≤ ∆(C)
(again, consider two cases, depending on whether C is composite.) So, x ∈ Xϵ.

Proof of Lemma 6.8. Let Σ denote the sum in question. Let A∗ be the collection of all cells ever
activated by the algorithm. Among such cells, consider those with badness on the order of ϵ:

Gϵ := { C ∈ A∗ : ∆(C) ∈ [ϵ, 2ϵ) } .

By Claim 6.7, the algorithm chooses each cell C ∈ Gϵ at most O(log T/ϵ2) times, so n(C)∆(C) ≤
O(log T/ϵ).

Fix some δ ∈ (0, 1) and observe that all cells C with ∆(C) ≤ δ contribute at most δT to Σ.
Therefore it suffices to focus on Gϵ, ϵ ≥ δ/2. It follows that

Σ ≤ δT +O(log T )
∑

ϵ=2−i≥δ/2
|Gϵ|
ϵ . (22)

We bound |Gϵ| as follows. Consider a cell C ∈ Gϵ. The cell is called a leaf if it is never zoomed
in on (i.e., removed from the active set) by the algorithm. If C is activated in the round when cell
Cp is zoomed in on, Cp is called the parent of C. We consider two cases, depending on whether or
not C is a leaf.

(i) Assume cell C is not a leaf. Since ∆(C) < 2ϵ, C overlaps with X2ϵ by Claim 6.9(b). Note
that C is zoomed in on in some round, say in round t− 1. Then

5 radt(C) ≤Wt(C) by the zooming rule

≤ VirtWidth(C) + 4 radt(C) by clean execution,

so radt(C) ≤ VirtWidth(C). Therefore, using Claim 6.6, we have

ϵ ≤ ∆(C) ≤ O(radt(C)) ≤ O(VirtWidth(C)).

It follows that C ∈ FΩ(ϵ)(X2ϵ).
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(ii) Assume cell C is a leaf. Let Cp be the parent of C. Since C ⊂ Cp, we have ∆(C) ≤ ∆(Cp)
by Claim 6.9(a). Therefore, invoking case (i), we have

ϵ ≤ ∆(C) ≤ ∆(Cp) ≤ O(VirtWidth(Cp)).

Since ∆(C) < 2ϵ, C overlaps with X2ϵ by Claim 6.9(b), and therefore so does Cp. It follows
that Cp ∈ FΩ(ϵ)(X2ϵ).

Combing these two cases, it follows that |Gϵ| ≤ (2m + 1)
∣∣FΩ(ϵ)(X2ϵ)

∣∣. Plugging this into (22)
and making an appropriate substitution ϵ → Θ(ϵ) to simplify the resulting expression, we obtain
the regret bound in Theorem 4.1

7 Simulations

We evaluate the performance of AgnosticZooming through simulations. AgnosticZooming is com-
pared with two versions of NonAdaptive that use, respectively, two standard bandit algorithms:
UCB1 [Auer et al., 2002] and Thompson Sampling [Thompson, 1933] (with Gaussian priors). For
both UCB1 and AgnosticZooming, we replace the logarithmic confidence terms with small constants.
(We find such changes beneficial in practice, for both algorithms; this observation is consistent
with prior work [Radlinski et al., 2008, Slivkins et al., 2013].) All three algorithms are run with
Xcand = Xcand(ψ), where ψ > 0 is the granularity of the discretization.

Setup. We consider a version of the high-low example, as described in Section 5. We set the
requester’s values to V (high) = 1 and V (low) = .3. The probability of obtaining high outcome
given high effort is set to θh = .8. Thus, the worker’s type is characterized by the cost ch for high
effort. We consider three supply distributions:

• Uniform Worker Market : ch is uniformly distributed on [0, 1].

• Homogeneous Worker Market : ch is the same for every worker.

• Two-Type Market : ch is uniformly distributed over two values, c′h and c′′h.

These first two markets represent the extreme cases when workers are extremely homogeneous
or extremely diverse, and the third market is one way to represent the middle ground. For each
market, we run each algorithm 100 times. For Homogeneous Worker Market, ch is drawn uniformly
at random from [0, 1] for each run. For Two-Type Market, c′h and c′′h are drawn independently and
uniformly from [0, 1] on each run.

Overview of the results. Across all simulations, AgnosticZooming performs comparably to or
better than NonAdaptive. Its performance does not appear to suffer from large “hidden constants”
that appear in the analysis. We find that AgnosticZooming converges faster than NonAdaptive

when ψ is near-optimal or smaller; this is consistent with the intuition that AgnosticZooming

focuses on exploring the more promising regions. When ψ is large, AgnosticZooming converges
slower than NonAdaptive, but eventually achieves the same performance. Further, we find that
AgnosticZooming with small ψ performs well compared to NonAdaptive with larger ψ: not much
worse initially, and much better eventually.

Our simulations suggest that if time horizon T is known in advance and one can tune ψ to
T , then NonAdaptive can achieve similar performance as AgnosticZooming. However, in real
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applications approximately optimal ψ may be difficult to compute, and the T may not be known
in advance.

Detailed results. Recall that in both UCB1 and AgnosticZooming, the logarithmic confidence
terms are replaced with small constants. For UCB1, the confidence term is 1, so that if a given arm a
has been played na times, its index is simply the average reward plus 1/

√
na. For AgnosticZooming,

we set radt(·) = 1 in the selection rule, and radt(·) = .6 in the zooming rule. For both algorithms,
we tried several values and picked those that performed well across all three markets; we found that
the performance of both algorithms is not very sensitive to the particular choice of these constants,
as long as they are on the order of 1.

For each algorithm, we compute the time-averaged cumulative utility after T rounds given
granularity ψ, denote it Û(T, ψ), for various values of T and ψ.

First, we fix the time horizon T to 5K rounds, and study how Û(T, ψ) changes with ψ (see
Figure 1). We observe that AgnosticZooming either matches or outperforms both versions of
NonAdaptive, across all markets and all values of ψ. AgnosticZooming has a huge advantage when
ψ is small.
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Figure 1: The requester’s payoff after 5, 000 rounds vs. the choice of initial discretization ψ.
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Second, we study how the three algorithms perform over time. Specifically, we plot Û(T, ψ)
vs. T , for three values of ψ, namely 0.02, 0.8, and 0.2. Since setting to 0.08 is close to optimal in
our examples, these values of ψ represent, resp., too small, adequate, and too large. The results
are shown in Figure 2. We find that AgnosticZooming converges faster than NonAdaptive when
ψ is adequate or small; this is consistent with the intuition that AgnosticZooming focuses on
exploring the more promising regions. When ψ is large, AgnosticZooming converges slower than
NonAdaptive, but eventually achieves the same performance.

Our simulations suggest that if time horizon T is known in advance and one can optimize the ψ
given this T , then NonAdaptive can achieve similar performance as AgnosticZooming. However,
in real applications approximately optimal ψ may be difficult to calculate; further, the T may be
unknown in advance.

Third, we argue that AgnosticZooming performs well with a small ψ: we compare its perfor-
mance against that for NonAdaptive with different values of ψ. For each algorithm and each choice
of ψ, we plot Û(T, ψ) vs. T , see Figure 3. 12 We find that for small T , AgnosticZooming with
small ψ converges nearly as fast as NonAdaptive with larger ψ. When T is large, AgnosticZooming
with small ψ converges to a better payoff than NonAdaptive with larger ψ.

Fourth, we confirm the intuition that OPT(Xcand(ψ)) decreases with the granularity ψ. To this
end, we run AgnosticZooming for 50K rounds, and take the average utility over the last 5K rounds,
see Figure 4.

The standard errors in all plots are in the order of 0.001 or less. (Note that each point is not
only the average of 100 runs but also the average of all previous rounds.)

8 Application to dynamic task pricing

We discuss dynamic task pricing, which can be seen as the special case of dynamic contract design in
which there is exactly one non-null outcome. We identify an important family of problem instances
for which AgnosticZooming out-performs NonAdaptive.

Some background. The dynamic task pricing problem, in its most basic version, is defined as
follows. There is one principal (buyer) who sequentially interacts with multiple agents (sellers). In
each round t, an agent arrives, with one item for sale. The principal offers price pt for this item,
and the agent agrees to sell if and only if pt ≥ ct, where ct ∈ [0, 1] is the agent’s private cost for
this item. The principal derives value v for each item bought; his utility is the value from bought
items minus the payment. The time horizon T (the number of rounds) is known. Each private
cost ct is an independent sample from some fixed distribution, called the supply distribution. We
are interested in the prior-independent version, where the supply distribution is not known to the
principal. The algorithm’s goal is to choose the offered prices pt so as to maximize the expected
utility of the principal.

Dynamic task pricing can be seen as the special case of dynamic contract design in which there
is exactly one non-null outcome (which corresponds to a sale). Indeed, in this special case there
is exactly one non-null effort level e without loss of generality (because any non-null effort levels
deterministically lead to the non-null outcome).

12We only show the results for Uniform Worker Market; the results for Homogeneous Worker Market are very
similar. We only show the version of NonAdaptive with UCB1, because in our experiments it performs better that
Thompson Sampling. (We conjecture that this is because we replaced the logarithmic confidence term in UCB1 with
1.)
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Figure 2: Algorithm performance over time under different discretization size.
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One crucial simplification compared to the full generality of dynamic contract design is that
the discretization error can now be easily bounded from above: 13

OPT(X)− OPT(Xcand(ψ)) ≤ ψ for each ψ > 0.

Worst-case regret bounds are implicit in prior work on dynamic inventory-pricing [Kleinberg and
Leighton, 2003a].14 Let NonAdaptive(ψ) denote algorithm NonAdaptive with Xcand = Xcand(ψ).
Then, by the analysis in Kleinberg and Leighton [2003a], NonAdaptive(ψ) achieves regret R(T ) =
Õ(ψT + ψ−2). This is optimized to R(T ) = Õ(T 2/3) if and only if ψ = Õ(T−1/3). Moreover, there
is a matching lower bound: R(T ) = Ω(T 2/3) for any algorithm.

Further, it is a folklore result that NonAdaptive(ψ) achieves regret R(T ) = Õ(T 2/3) if and only
if ψ = Θ̃(T−1/3). (We sketch a lower-bounding example in the proof of Lemma 8.4, to make the
paper more self-contained.)

Preliminaries. Each contract is summarized by a single number: the offered price p for the
non-null outcome. Let F (p) be the probability of a worker accepting a task at price p, and let
U(p) = F (p) (v − p) be the corresponding expected utility of the algorithm.

Note that all contracts are trivially monotone and any optimal contract is bounded without loss
of generality. It follows that OPT(X) = supp≥0 U(p), the optimal expected utility over all possible
prices.

A cell C is just a price interval C = [p, p′] ⊂ [0, 1], and its virtual width is

VirtWidth(C) =
(
v F (p′)− pF (p)

)
−

(
v F (p)− p′ F (p′)

)
.

Our results: the general case. We will be using AgnosticZooming with Xcand = X.
First, let us prove that this is a reasonable choice in the worst case: namely, that we achieve

the optimal Õ(T 2/3) regret.

Lemma 8.1. Consider the dynamic task pricing problem. AgnosticZooming with Xcand = X
achieves regret O(T 2/3 log T ).

Proof Sketch. Fix ϵ > 0. The key observation is that if VirtWidth(C) ≥ ϵ then either p′ − p ≥ ϵ
4 ,

or F (p′) − F (p) ≥ ϵ
4 . Call C a red cell if the former happens, and blue cell otherwise. Therefore

in any collection of mutually disjoint cells of virtual width ≥ ϵ there can be at most O(1ϵ ) red cells
and at most O(1ϵ ) blue cells, hence at most O(1ϵ ) cells total. It follows that there can be at most
O(1ϵ ) active cells of virtual width ≥ ϵ.

So, in the notation of Theorem 4.1 we have Nϵ(·) ≤ O(1ϵ ). It follows that the width dimension
is at most 1, which in turn implies the desired regret bound.

Our results: “nice” problem instances. We focus on problem instances with piecewise-uniform
costs and bounded density. Formally, we say that an instance of dynamic task pricing has k-
piecewise-uniform costs if the interval [0,1] is partitioned into k ∈ N sub-intervals such that the

13Recall that Xcand(ψ) denotes the set of all prices in [0, 1] that are integer multiples of a given ψ > 0; call this set
the additive ψ-mesh.

14The algorithmic result for dynamic task pricing is an easy modification of the analysis in Kleinberg and Leighton
[2003a] for dynamic inventory-pricing. The lower bound in in Kleinberg and Leighton [2003a] can also be “translated”
from dynamic inventory-pricing to dynamic task pricing without introducing any new ideas. We omit the details
from this version.
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supply distribution is uniform on each sub-interval. A problem instance has λ-bounded density,
λ ≥ 1 if the supply distribution has a probability density function almost everywhere, and the
density is between 1

λ and λ. Using the full power of Theorem 4.1, we obtain the following regret
bound.

Theorem 8.2. Consider the dynamic task pricing problem with k-piecewise-uniform costs and λ-
bounded density, for some absolute constants k ∈ N and λ > 1. AgnosticZooming with Xcand = X
achieves regret R(T ) = Õ(T 3/5).

Proof Sketch. Since the supply distribution has density at most λ, it follows that F (·) is a Lipschitz-
continuous function with Lipschitz constant λ. It follows that each cell of virtual width at least ϵ
has diameter at least Ω(ϵ/λ), for any ϵ > 0. (Note that each “cell” is now simply a sub-interval
[p, q] ⊂ [0, 1], so its diameter is simply q − p.)

Second, we claim that Xϵ is contained in a union of k intervals of diameter O(
√
ϵλ). To see this,

consider the partition of [0, 1] into k subintervals such that the supply distribution has a uniform
density on each subinterval. Let [pj , qj ] be the j-th subinterval. Let p∗j be the local optimum of
U(·) on this subinterval, and let Xj,ϵ = {x ∈ [pj , qj ] : U(p∗j )− U(x) ≤ ϵ}. Then Xϵ ⊂ ∪jXj,ϵ. We

can show that Xj,ϵ ⊂ [p∗j − δ, p∗j + δ] for some δ = O(
√
ϵλ).

Recall that Nϵβ0(Xϵ) is the number of feasible cells of virtual width at least ϵβ0 which overlap
with Xϵ. It follows that Nϵβ0(Xϵ) is at most k times the maximal number of feasible cells of
diameter at least Ω(ϵ/λ) that overlap with an interval of diameter O(

√
ϵλ). Therefore: Nϵβ0(Xϵ) =

O(kλ3/2ϵ−1/2 log 1
ϵ ). Moreover, we have a less sophisticated upper bound on Nϵβ0(Xϵ): it is at most

the number of feasible cell of diameter at least Ω(ϵ/λ). So Nϵβ0(Xϵ) = O(λ/ϵ)(log 1
ϵ ). The theorem

follows by plugging both upper bounds on Nϵβ0(Xϵ) into Equation (6).

Comparison with NonAdaptive. Consider NonAdaptive(ψ0), where ψ0 = Θ̃(T−1/3) is the gran-
ularity required for the optimal worst-case performance. Call a problem instance nice if it has
2-piecewise-uniform costs and λ-bounded density, for some sufficiently large absolute constant λ;
say λ = 4 for concreteness. We claim that AgnosticZooming outperforms NonAdaptive(ψ0) on the
“nice” problem instances.

Lemma 8.3. NonAdaptive(ψ0) achieves regret R(T ) = Ω(T 2/3) in the worst case over all “nice”
problem instances.

Proof Sketch. Recall that for k = 2 the supply distribution has density λ1 on interval [0, p0], and
density λ2 on interval [p0, 1], for some numbers λ1, λ2, p0. We pick p0 so that it is sufficiently far
from any point in Xcand(ψ0). Note that the function U(·) is a parabola on each of the two intervals.
We adjust the densities so that U(·) achieves its maximum at p0, and the maximum of either of
the two parabolas is sufficiently far from p0. Then the discretization error of Xcand(ψ0) is at least
Ω(ψ0), which implies regret Ω(ψ0T ).

Lower bound for NonAdaptive. We provide a specific lower-bounding example for the worst-
case performance of NonAdaptive(ψ), for an arbitrary ψ > 0. Let F be the family of all problem
instances with k-piecewise-uniform costs and λ-bounded density, for all k ∈ N and λ = 4.

Lemma 8.4. Let Rψ(T ) be the maximal regret of NonAdaptive(ψ) over all problem instances in
F . Then Rψ(T ) = Ω(ψT +

√
T/ψ) ≥ Ω(T 2/3).
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Proof Sketch. For piecewise-uniform costs, we have F (0) = 0 and F (p) = 1. Assume that the
principal derives value v = 1 from each item. Then the expected utility from price p is U(p) =
F (p)(1− p).

Fix ψ > 0. Use the following problem instance. Let Pδ = [25 ,
3
5 ] ∩ {4jψ + δ : j ∈ N}. Set

U(p) = 1
4 for each p ∈ P0. Further, pick some p∗ ∈ Pψ/2 and set U(p∗) = 1

4 + Ω(ψ). This defines
F (p) for p ∈ P ∪ {0, 1, p∗}. For the rest of the prices, define F (·) via linear interpolation. This
completes the description of the problem instance.

We show that Xψ consists of N = Ω( 1ψ ) candidate contracts. Therefore, using standard lower-

bounding arguments for MAB, we obtain R(T |Xcand) ≥ Ω(
√
TN) = Ω(

√
T/ψ). Further, we show

that the discretization error is at least Ω(ψ), implying that R(T ) ≥ R(T |Xcand) + Ω(ψT ).

9 Related work

This paper is related to three different areas: contract theory, market design for crowdsourcing,
and online decision problems. Below we outline connections to each of these areas.

Contract theory. Our model can be viewed as an extension of the classic principal-agent model
from contract theory [Laffont and Martimort, 2002]. In the most basic version of the classic model, a
single principal interacts with a single agent whose type (specified by a cost function and production
function, as described in Section 2) is generally assumed to be known. The principal specifies a
contract mapping outcomes to payments that the principal commits to make to the agent. The
agent then chooses an action (i.e., effort level) that stochastically results in an outcome in order to
maximize his expected utility given the contract. The principal observes the outcome, but cannot
directly observe the agent’s effort level, creating a moral hazard problem. The goal of the principal
is to design a contract to maximize her own expected utility, which is the difference between the
utility she receives from the outcome and the payment she makes. This maximization can be written
as a constrained optimization problem, and it can be shown that linear contracts are optimal.

The adverse selection variation of the principal-agent problem relaxes the assumption that
the agent’s type is known. Most existing literature on the principal-agent problem with adverse
selection focuses on applying the revelation principle [Laffont and Martimort, 2002]. In this setting,
the principal offers a menu of contracts, and the contract chosen by the agent reveals the agent’s
type. The problem of selecting a menu of contracts that maximizes the principal’s expected utility
can again be formulated as a constrained optimization.

Our work differs from the classic setting in that we consider a principal interacting with multiple
agents, and the principal may adjust her contract over time in an online manner. Several other
authors have considered extensions of the classic model to multiple agents. Levy and Vukina [2002]
show that with multiple agents it is optimal to set individual linear contracts for each agent rather
than a single uniform contract for all agents, but offer a variety of descriptive explanations for why
it is more common to see uniform contracts in practice. Babaioff et al. [2006] consider a setting in
which one principal interacts with multiple agents, but observes only a single outcome which is a
function of all agents’ effort levels. Misra et al. [2012] consider a variant in which the algorithm
must decide both how to set a uniform contract for many agents and how to select a subset of
agents to hire.
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Alternative online versions of the problem have been considered in the literature as well. In
dynamic principal agent problem [Sannikov, 2008, Williams, 2009, Sannikov, 2012], a single prin-
cipal interacts with a single agent repeatedly over a period of time. The agent can choose to exert
different effort at different time, and the outcome at time t is a function of all the efforts exerts by
the agent before t. The principal cannot observe the agent’s efforts but can observe the outcome.
The goal of the principal is to design an optimal contract over time to maximize his payoff. Our
work is different from this line of work since we consider the setting with multiple agents with
different, unknown types. Our algorithm needs to learn the distribution of agent types and design
an optimal contract accordingly.

Conitzer and Garera [2006] studies the online principal agent problem with a similar setting to
ours. However, they focus on empirically comparing different online algorithms, including bandit
approaches with uniform discretization, gradient ascent, and Bayesian update approaches to the
problem. Our goal is to provide an algorithm with nice theoretical guarantees.

Bohren and Kravitz [2013] studies the setting when the outcome is unverifiable. To address this
issue, they propose to assign a bundle of tasks to each worker. To verify the outcome, each task
in the bundle is chosen as a verifiable task with some non-trivial probability. A verifiable task can
either be a gold standard task with known answer or a task which is assigned to multiple workers
for verification. The payment for a task bundle is then conditional only on the outcome of verified
tasks. In our setting, we assume the task outcome is verifiable. We can relax this assumption by
adopting similar approaches.

Incentives in crowdsourcing systems. Researchers have recently begun to examine the design
of incentive mechanisms to encourage high-quality work in crowdsourcing systems. Jain et al.
[2012] explore ways in which to award virtual points to users in online question-and-answer forums
to improve the quality of answers. Ghosh and Hummel [2011, 2013] and Ghosh and McAfee [2011]
study how to distribute user generated content (e.g., Youtube videos) to users to encourage the
production of high-quality internet content by people who are motivated by attention. Ho et al.
[2012] and Zhang and van der Schaar [2012] consider the design of two-sided reputation systems to
encourage good behavior from both workers and requesters in crowdsourcing markets. While we
also consider crowdsourcing markets, our work differs in that it focuses on how to design contracts,
perhaps the most natural incentive scheme, to incentivize workers to exert effort.

The problem closest to ours which has been studied in the context of crowdsourcing systems
is the online task pricing problem in which a requester has an unlimited supply of tasks to be
completed and a budget B to spend on them [Badanidiyuru et al., 2012, Singer and Mittal, 2013].
Workers with private costs arrive online, and the requester sets a single price for each arriving
worker. The goal is to learn the optimal single fixed price over time. Our work can be viewed as a
generalization of the task pricing problem, which is a special case of our setting with the number
of non-null outcomes m fixed at 1.

There has also been empirical work examining how workers’ behavior varies based on the finan-
cial incentives offered in crowdsourcing markets. Mason and Watts [2009] study how workers react
to changes of performance-independent financial incentives. In their study, increasing financial in-
centives increases the number of tasks workers complete, but not the quality of their output. Yin
et al. [2013] provide a potential explanation for this phenomenon using the concept of “anchoring
effect”: a worker’s cost for completing a task is influenced by the first price the worker sees for
this task. Horton and Chilton [2010] run experiments to estimate workers’ reservation wage for
completing tasks. They show that many workers respond rationally to offered contracts, whereas
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some of the workers appeared to have some “target payment” in mind.
Some recent research studies the effects of performance-contingent payments. Harris [2011]

runs MTurk experiments on resume screening, where workers can get a bonus if they perform
well. He concludes that the quality of work is better with performance-contingent payments than
with uniform payments. Yin et al. [2013] provide a more detailed study. They conclude that the
magnitude of the bonus does not have much effect compared to the mere existence thereof.

Overall, previous empirical work demonstrates that workers in crowdsourcing markets do re-
spond to the change of financial incentives, but that their behavior does not always follow the
traditional rational-worker model — similar to people in any real-world market. In our work, we
start our analysis with the rational-worker assumption ubiquitous in economic theory, but demon-
strate that our results can still hold without these assumptions as long as the collective worker
behavior satisfies some natural properties (in particular, as long as Lemma 3.1 holds).

Sequential decision problems. In sequential decision problems, an algorithm makes sequential
decisions over time.Two directions that are relevant to this paper are multi-armed bandits (MAB)
and dynamic pricing.

MAB have been studied since 1933 [Thompson, 1933] in Operations Research, Economics, and
several branches of Computer Science including machine learning, theoretical computer science, AI,
and algorithmic economics. A survey of prior work on MAB is beyond the scope of this paper; the
reader is encouraged to refer to Cesa-Bianchi and Lugosi [2006] or Bubeck and Cesa-Bianchi [2012]
for background on prior-independent MAB, and to Gittins et al. [2011] for background on Bayesian
MAB. Below we briefly discuss the lines of work on MAB that are directly relevant to our paper.

Our setting can be modeled as prior-independent MAB with stochastic rewards: the reward of a
given arm i is an i.i.d. sample of some time-invariant distribution, and neither this distribution nor
a Bayesian prior on it are known to the algorithm. The basic formulation (with a small number of
arms) is well-understood [Lai and Robbins, 1985, Auer et al., 2002, Bubeck and Cesa-Bianchi, 2012].
To handle problems with a large or infinite number of arms, one typically needs side information
on similarity between arms. A typical way to model this side information, called Lipschitz MAB
Kleinberg et al. [2008], is that an algorithm is given a distance function on the arms, and the
expected rewards are assumed to satisfy Lipschitz-continuity (or a relaxation thereof) with respect
this distance function, e.g. [Agrawal, 1995, Kleinberg, 2004, Auer et al., 2007, Kleinberg et al.,
2008, Bubeck et al., 2011a, Slivkins, 2011b]. Most related to this paper is the idea of adaptive
discretization which is often used in this setting [Kleinberg et al., 2008, Bubeck et al., 2011a,
Slivkins, 2011b], and particularly the zooming algorithm [Kleinberg et al., 2008, Slivkins, 2011b].
In particular, the general template of our algorithm is similar to the one in the zooming algorithm
(but our “selection rule” and “zooming rule” are very different, reflecting the lack of a priori known
similarity information).

In some settings (including ours), the numerical similarity information required for Lipschitz
MAB is not immediately available. For example, in applications to web search and advertising it is
natural to assume that an algorithm can only observe a tree-shaped taxonomy on arms [Kocsis and
Szepesvari, 2006, Munos and Coquelin, 2007, Pandey et al., 2007, Slivkins, 2011a, Bull, 2013]. In
particular, Slivkins [2011a] and Bull [2013] explicitly reconstruct (the relevant parts of) the metric
space defined by the taxonomy. In a different direction, Bubeck et al. [2011b] study a version of
Lipschitz MAB where the Lipschitz constant is not known, and essentially recover the performance
of NonAdaptive for this setting.
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Dynamic pricing (a.k.a. online posted-price auctions) refers to settings in which a principal
interacts with agents that arrive over time and offers each agent a price for a transaction, such
as selling or buying an item. The version in which the principal sells items has been studied in
Operations Research, typically in a Bayesian setting [Besbes and Zeevi, 2009]. The study of prior-
independent formulations has been initiated in Blum et al. [2003] and Kleinberg and Leighton
[2003a] and continued by several others [Besbes and Zeevi, 2009, Babaioff et al., 2012, Besbes and
Zeevi, 2012, Badanidiyuru et al., 2013]. Further, Badanidiyuru et al. [2012], Singla and Krause
[2013], and Badanidiyuru et al. [2013] studied the version in which the principal buys items, or
equivalently commissions tasks; we call this version dynamic task pricing. It is worth noting that
all work after the initial papers [Blum et al., 2003, Kleinberg and Leighton, 2003a] has focused on
models with constraints on the principal’s supply or budgets, and does not imply any improved
results when specialized to unconstrained settings.

10 Conclusions

Motivated by applications to crowdsourcing markets, we define the dynamic contract design prob-
lem, a multi-round version of the principal-agent model with unobservable strategic decisions. We
treat this problem as a multi-armed bandit problem, design an algorithm for this problem, and
derive regret bounds which compare favorably to prior work. Our main conceptual contribution,
aside from identifying the model, is the adaptive discretization approach that does not rely on
Lipschitz-continuity assumptions. We provably improve on the uniform discretization approach
from prior work, both in the general case and in some illustrative special cases. These theoretical
results are supported by simulations.

We believe that the dynamic contract design problem deserves further study, in several directions
that we outline below.

1. It is not clear whether our provable results can be improved, perhaps using substantially
different algorithms and relative to different problem-specific structures. In particular, one needs
to establish lower bounds in order to argue about optimality; no lower bounds for dynamic contract
design are currently known.

2. Our adaptive discretization approach may be fine-tuned to improve its performance in practice.
In particular, the definition of the “index” It(C) of a given feasible cell C may be re-defined in
several different ways. First, it can use the information from C in a more sophisticated way, similar
to the more sophisticated indices for the basic K-armed bandit problem; for example, see Garivier
and Cappé [2011]. Second, the index can incorporate information from other cells. Third, it can
be defined in a “smoother”, probabilistic way, e.g., as in Thompson Sampling [Thompson, 1933].

3. Deeper insights into the structure of the (static) principal-agent problem are needed, primarily
in order to optimize the choice of Xcand, the set of candidate contracts. The most natural target
here is the uniform mesh Xcand(ϵ). To optimize the granularity ϵ, one needs to upper-bound the
discretization error OPT(Xcand)− OPT(Xcand(ϵ)) in terms of some function f(ϵ) such that f(ϵ)→ 0
as ϵ→ 0. The first-order open question is to resolve whether this can be done in the general case, or
provide a specific example when it cannot. A related open question concerns the effect of increasing
the granularity: upper-bound the difference OPT(Xcand(ϵ))− OPT(Xcand(ϵ

′)), ϵ > ϵ′ > 0, in terms of
some function of ϵ and ϵ′. Further, it is not known whether the optimal mesh of contracts is in fact
a uniform mesh.
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Also of interest is the effect of restricting our attention to monotone contracts. While we prove
that monotone contracts may not be optimal (Appendix A), the significance of this phenomenon
is unclear. One would like to characterize the scenarios when restricting to monotone contracts
is alright (in the sense that the best monotone contract is as good, or not much worse, than the
best contract), and the scenarios when this restriction results in a significant loss. For the latter
scenarios, different algorithms may be needed.

4. A much more extensive analysis of special cases is in order. Our general results are difficult to
access (which appears to be an inherent property of the general problem), so the most immediate
direction for special cases is deriving lucid corollaries from the current regret bounds. In particular,
it is desirable to optimize the choice of candidate contracts. Apart from “massaging” the current
results, one can also design improved algorithms and derive specialized lower bounds. Particularly
appealing special cases concern supply distributions that are mixtures of a small number of types,
and supply distributions that belong to a (simple) parameterized family with unknown parameter.

Going beyond our current model, a natural direction is to incorporate a budget constraint,
extending the corresponding results on dynamic task pricing. The main difficulty for such settings
is that a distribution over two contracts may perform much better than any fixed contract; see
Badanidiyuru et al. [2013] for discussion. Effectively, an algorithm needs to optimize over the
distributions. As a first step, one can use non-adaptive discretization in conjunction with the
general algorithms for bandits with budget constraints (sometimes called “bandits with knapsacks”
[Badanidiyuru et al., 2013, Agrawal and Devanur, 2014]). However, it is not clear how to choose
an optimal mesh of contracts (as we discussed throughout the paper), and this mesh is not likely
to be uniform (because it is not uniform for the special case of dynamic task pricing with a budget
[Badanidiyuru et al., 2013]). The eventual target in this research direction is to marry adaptive
discretization and the techniques from prior work on “bandits with knapsacks.”
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A Monotone contracts may not be optimal

In this section we provide an example of a problem instance for which all monotone contracts are
suboptimal (at least when restricting attention to only those contracts with non-negative payoffs).
In this example, there are three non-null outcomes (i.e., m = 3), and two non-null effort levels,
“low” effort and “high” effort, which we denote eℓ and eh respectively. There is only a single worker
type. Since there is only one type, we drop the subscript when describing the cost function c. We
let c(eℓ) = 0, and let c(eh) be any positive value less than 0.5(v(2)− v(1)). If a worker chooses low
effort, the outcome is equally likely to be 1 or 3. If the worker chooses high effort, it is equally
likely to be 2 or 3. It is easy to verify that this type satisfies the FOSD assumption. Finally, for
simplicity, we assume that all workers break ties between high effort and any other effort level in
favor of high effort, and that all workers break ties between low effort and the null effort level in
favor of low effort.

Let’s consider the optimal contract. Since there is just a single worker type and all workers
of this type break ties in the same way, we can consider separately the best contract that would
make all workers choose the null effort level, the best contract that would make all workers choose
low effort, and the best contract that would make all workers choose high effort, and compare the
requester’s expected value for each.

Since c(eℓ) = 0 and workers break ties between low effort and null effort in favor of low effort,
there is no contract that would cause workers to choose null effort; workers always prefer low effort
to null effort.

It is easy to see that the best contract (in terms of requester expected value) that would make
workers choose low effort would set x(1) = x(3) = 0 and x(2) sufficiently low that workers would
not be enticed to choose high effort; setting x(2) = 0 is sufficient. In this case, the expected value
of the requester would be 0.5(v(1) + v(3)).

Now let’s consider contracts that cause workers to choose high effort. If a worker chooses high
effort, the expected value to the requester is

0.5(v(2)− x(2) + v(3)− x(3)). (23)
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Workers will choose high effort if and only if

0.5(x(1) + x(3)) ≤ 0.5(x(2) + x(3))− c(eh)

or
0.5x(1) ≤ 0.5x(2)− c(eh). (24)

So to find the contract that maximizes the requester’s expected value when workers choose high
effort, we want to maximize Equation 23 subject to the constraint in Equation 24. Since x(3)
doesn’t appear in Equation 24, we can set it to 0 to maximize Equation 23. Since x(1) does not
appear in Equation 23, we can set x(1) = 0 to make Equation 24 as easy as possible to satisfy. We
can then see that the optimal occurs when x(2) = 2c(eh).

Plugging this contact x into Equation 23, the expected utility in this case is 0.5(v(2) + v(3))−
c(eh). Since we assumed that c(eh) < 0.5(v(2)− v(1))), this is strictly preferable to the constant 0
contract, and is in fact the unique optimal contract. Since x(2) > x(3), the unique optimal contract
is not monotonic.
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